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Abstract: Let n ≥ 8 be an integer and let p be a prime number satisfying n
2 < p < n− 2. In this paper,

we prove that the Galois groups of the trinomials

Tn,p,k(x) := xn + nk p(n−1−p)kxp + nk pnk,

S n,p(x) := xn + pn(n−1−p)npxp + np pn2

and
En,p(x) := xn + pnxn−p + pn2

are the full symmetric group S n under several conditions. This extends the Cohen-Movahhedi-Salinier
theorem on the irreducible trinomials f (x) = xn + axs + b with integral coefficients.
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1. Introduction

Let Z, Z+ and Q be the set of integers, the set of positive integers and the field of rational numbers,
respectively. Let f (x) ∈ Q[x] be a polynomial of degree n. The Galois group of f (x) over Q means the
Galois group of the splitting field of f (x) over Q, and is denoted by GalQ( f ). Let f (x) = xn + axs + b
be a trinomial with integral coefficients, where gcd(n, s) = 1. There are lots of results about the Galois
group of special trinomials. Uchida [14] and Yamamoto [15] showed that the Galois group of the
polynomial xn + ax + b ∈ Z[x] over Q is S n under the following conditions:

(1) n is a prime number,
(2) a(n − 1) and nb are relatively prime,
(3) xn + ax + b is irreducible over Q.

Ohta [11] generalized these results under certain conditions. Osada [12] considered the polynomial
f (x) = xn + a0cnxl + bl

0cn and proved that GalQ( f ) is S n if f (x) is irreducible over Q and gcd(a0c(n −
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l), nb0) = 1. Cohen, Movahhedi and Salinier [4] extended Osada’s result by considering irreducible
trinomials f (x) = xn + axs + b with integral coefficients, where gcd(nb, as(n − s)) = 1 and s , n − 1.
They proved that if s is a prime number and there is a prime divisor p of b such that gcd(s, vp(b)) = 1,
then GalQ( f ) contains An. They also determined what GalQ( f ) could be if An * GalQ( f ) under certain
conditions.

Another variation of the result of Uchida and Yamamoto is to consider the Galois group of f (x) =

xp +axs +a, where p is a prime number. These trinomials were investigated by Komatsu in [9] and [10]
with a taking special values. Later on, Movahhedi, Cohen, Bensebaa and Salinier also considered the
trinomials of the forms xp + ax + a, xp + axp−1 + a and xp + axs + a. The interested readers can consult
with [1, 2, 8].

Let xn + axs + b denote a general trinomial over Q. In this paper, we mainly study three kinds of
trinomials. Setting s = p, a = nk p(n−1−p)k and b = nk pnk, we get the first trinomials

Tn,p,k(x) := xn + nk p(n−1−p)kxp + nk pnk.

The first main result of this paper can be stated as follows:

Theorem 1.1. Let n and k be positive integers such that n ≥ 8 and k < n log 2/ log n. Let p be a prime
number with n/2 < p < n − 2. Then GalQ(Tn,p,k) = S n.

Setting s = p, a = pn(n−1−p) and b = np pn2
gives the second trinomials as follows:

S n,p(x) := xn + pn(n−1−p)npxp + np pn2
.

We have the second main result of this paper as follows:

Theorem 1.2. Let n be an integer greater than 8 and let p be a prime number with n/2 < p < n − 2.
Then GalQ(S n,p) = S n.

Letting s = n − p, a = pn and b = pn2 yields the third trinomials as follows:

En,p(x) := xn + pnxn−p + pn2.

This is an Eisenstein trinomial. The third main result is given in the following:

Theorem 1.3. Let n be an integer greater than 8 and let p be a prime number with n/2 < p < n − 2.
Then GalQ(En,p) = S n.

The existence of the prime number p between n/2 and n − 2 for each n ≥ 8 is guaranteed by
Chebyshev’s result in [3]. As one sees clearly that the coefficients a and b of the trinomials Tn,p,k(x),
S n,p(x) and En,p(x) are not coprime, our results can be viewed as an extension of Theorem 2 of [4].

The paper is organized as follows. Section 2 is devoted to some preliminary lemmas. We give the
proof of Theorem 1.1 in Section 3. In Section 4, we present the proof of Theorems 1.2 and 1.3.

2. Preliminary lemmas

In this section, we present some definitions and preliminary lemmas.
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Definition 2.1. The p-adic valuation of an integer m with respect to p, denoted by vp(m), is defined as

vp(m) =

{
max{k : pk | m} if m , 0,
∞ if m = 0.

Obviously, this definition can extend to the rational field Q and the local field Qp naturally. We
recall the definition of p-adic Newton polygons.

Definition 2.2. The p-adic Newton polygon NPp( f ) of a polynomial f (x) =
n∑

j=0
c jx j ∈ Q[x] is the lower

convex hull of the set S p( f ) = {( j, vp(c j)) | 0 ≤ j ≤ n}.

Evidently, the p-adic Newton polygon is the highest polygonal line passing on or below the points
in S p( f ).

The vertices (x0, y0), (x1, y1), . . . , (xr, yr), where the slope of the Newton polygon changes are called
the corners of NPp( f ); their x-coordinates 0 = x0 < x1 < ... < xr = n are the breaks of NPp( f ); the
lines connected two vertices are called the segments of NPp( f ). We also need the following result on
the p-adic Newton polygon.

Lemma 2.3. [6] (Main theorem of p-adic Newton polygon). Let (x0, y0), (x1, y1), ..., (xr, yr) denote
the successive vertices of NPp( f ). Then there exist polynomials f1, ..., fr in Qp[x] such that

(i) f (x) = f1(x) f2(x) · · · fr(x);
(ii) the degree of fi is xi − xi−1;
(iii) all the roots of fi in Qp have p-adic valuations − yi−yi−1

xi−xi−1
.

The following lemma is a generalization of the well-known Eisenstein irreducibility criterion over
Qp. It provides an upper bound for the number of irreducible factors of a polynomial overQp according
to its p-adic Newton polygon.

Lemma 2.4. Let (xi−1, yi−1) and (xi, yi) be two consecutive vertices of NPp( f ), and let di = gcd(xi −

xi−1, yi − yi−1). Then for each i, fi(x) has at most di irreducible factors in Qp and the degree of the
factors of fi(x) is a multiple of xi−xi−1

di
. Particularly, if di = 1, then fi(x) is irreducible over Qp.

Proof. Let xi − xi−1 = ui and yi − yi−1 = vi. By Lemma 2.3, we have deg fi = ui and all the roots of
fi(x) in Qp have p-adic valuations − vi

ui
. Let h(x) ∈ Qp[x] with deg h(x) = t such that h(x) | fi(x), and

α1, ..., αt be roots of h(x) in Qp. Since h(0) ∈ Qp, we have

vp

( t∏
j=1

α j

)
= vp((−1)th(0)) ∈ Z.

Noticing that for each i and j, we have vp(αi) = vp(α j). Therefore we derive that −tvi
ui
∈ Z. Since

gcd(ui, vi) = di, one writes ui = u′idi, vi = v′idi, where gcd(u′i , v
′
i) = 1. It follows that u′i | t, and one

claims that the degree of every factor of fi(x) is a multiple of u′i . Since ui = u′idi, it follows that fi(x)
has at most di irreducible factors in Qp.

This finishes the proof of Lemma 2.4. �

For a trinomial and a fixed prime number p, the p-adic Newton polygon of this trinomial has at
most three vertices, so one can compute its p-adic Newton polygon easily. The following definition
and lemma play an important role in computing the Galois group of a polynomial. Actually, this lemma
presents the information of the Galois group of an irreducible polynomial over Q.
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Definition 2.5. Given f ∈ Q[x], let N f be the least common multiple of the denominators (in lowest
terms) of all slopes of the p-adic Newton polygon NPp( f ) as p ranges over all primes. Such N f is
called the Newton index of f .

Lemma 2.6. [7] For any irreducible polynomial f ∈ Q[x] of degree n,N f divides the order of GalQ( f ).
Moreover, ifN f has a prime divisor p in the range n

2 < p < n−2, then GalQ( f ) contains the alternating
group An.

To determine whether the Galois group of a polynomial is An or S n, we need the results on the
discriminant of polynomials. First of all, we present some facts about the discriminant in general. Let
f (x) ∈ F[x] be a given monic polynomial of degree n, and let α1, ..., αn be all the roots of f (x) over the
field F. Then

DiscF( f ) :=
∏

1≤i< j≤n

(αi − α j)2

is called the discriminant of f (x) over F.

Lemma 2.7. [5] Let f (x) ∈ F[x] be a polynomial of degree n. Then each of the following holds:
(i) GalF( f ) is transitive if and only if f (x) is irreducible over F.
(ii) If char(F) , 2, then GalF( f ) ⊆ An if and only if DiscF( f ) is a square in F.

The following formula about the discriminant of an arbitrary trinomial over Q is due to Swan.

Lemma 2.8. [13] Let n > s > 0 and d = gcd(n, s). Write n = n1d, s = s1d, where gcd(n1, s1) = 1. For
any a, b ∈ Q, we have

DiscQ(xn + axs + b) = (−1)
n(n−1)

2 bs−1(nn1bn1−s1 + (−1)n1+1(n − s)n1−s1 ss1an1
)d
.

Lemma 2.8 gives an explicit formula for the discriminant of a trinomial. Making the use of this
formula, we will show that the discriminants of Tn,p,k(x), S n,p(x) and En,p(x) are non-square, which are
the following lemmas.

Lemma 2.9. Let n ≥ 8 be a positive integer. Let p be an arbitrary prime number satisfying n/2 < p <
n − 2. For any positive integer k, the discriminant DiscQ(Tn,p,k) is not a square.

Proof. By Lemma 2.8 and the definition of Tn,p,k(x), we have

DiscQ(Tn,p,k) =(−1)
n(n−1)

2 nk(p−1) pnk(p−1)(nn+k(n−p) pnk(n−p)

+ (−1)n+1(n − p)n−pnnk pnk(n−p)+p−nk).
Since p is an odd prime, it follows that nk(p−1) pnk(p−1) is a square. To show that DiscQ(Tn,p,k) is not a
square, it is sufficient to show that

D := (−1)
n(n−1)

2
(
nn+k(n−p) pnk(n−p) + (−1)n+1(n − p)n−pnnk pnk(n−p)+p−nk) (2.1)

is not a square. Since p − nk < 0, by the isosceles triangle principle, we have

vp(D) = min{nk(n − p), nk(n − p) + p − nk} = (n − 1 − p)nk + p. (2.2)
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Noticing that p is an odd prime, by (2.2), one knows that if nk is even, then vp(D) is odd. Hence D
is not a square if either n or k is even. In the following, we assume that both of n and k are odd. We
consider the following cases.

Case 1. n is not a square. It follows that there exists a prime number l dividing n such that vl(n) is odd.
Noticing that n − pk < 0, by (2.1) and the isosceles triangle principle, one has

vl(D) = min{(n − p)k + n, nk}vl(n) = ((n − p)k + n)vl(n).

Because n − p is even and both of n and vl(n) are odd, we have that vl(D) is odd. Therefore D is not a
square in this case.

Case 2. n is a square. Then n ≡ 1 (mod 4). By (2.1), we have

D = nnk pnk(n−p)(nn−kp + (n − p)n−p pp−nk).
Since n is a square and n − p is even, it follows that nnk pnk(n−p) is a square. So it is sufficient to show
that

Dk := nn−kp + (n − p)n−p pp−nk (2.3)

is not a square.
If k = 1, multiple the square number pn−p to D1, we have

(n
n−p

2 p
n−p

2 )2 < (n
n−p

2 p
n−p

2 )2 + (n − p)n−p = nn−p pn−p + (n − p)n−p = D1

< (n
n−p

2 p
n−p

2 )2 + n
n−p

2 p
n−p

2

< (n
n−p

2 p
n−p

2 )2 + 2n
n−p

2 p
n−p

2 + 1 = (n
n−q

2 p
n−p

2 + 1)2.

This implies that D1 lies strictly between the squares of two consecutive integer. It follows that Dk is
not a square for k = 1.

Now we may let k > 1. Then n − pk < 0 and p − nk < 0. Noticing that k, n, p are odd numbers, it
follows that n − pk, p − nk are even numbers and npk−n pnk−p is a square. Multiplying npk−n pnk−p to Dk,
it is sufficient to show that

pnk−p + (n − p)n−pnn−kp

is not a square. Suppose that there exists a positive integer z satisfying that

pnk−p + (n − p)n−pnn−kp = z2.

Since n, k and p are odd, we may let pnk−p = a2
0 and (n − p)n−pnn−kp = b2

0. Thus a2
0 + b2

0 = z2 and so
a2

0 = (z + b0)(z − b0). Since gcd(p, n) = 1, one has gcd(a0, b0) = gcd(a0, z) = gcd(b0, z) = 1. Noticing
that z + b0 is odd, one has

gcd(z + b0, z − b0) = gcd(z + b0, 2z) = gcd(z + b0, z) = gcd(b0, z) = 1.

But a0 = p
nk−p

2 is a power of p, by unique factorization, it follows that z + b0 = a2
0 and z − b0 = 1. This

implies that a2
0 = 2b0 + 1, i.e. we have

pnk−p = 2(n − p)
n−p

2 n
pk−n

2 + 1. (2.4)
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Clearly, one has
1 < 2(n − p)

n−p
2 n

pk−n
2 + 1 < 4(n − p)

n−p
2 n

pk−n
2 .

Hence

log
(
2(n − p)

n−p
2 n

pk−n
2 + 1

)
< log

(
4(n − p)

n−p
2 n

pk−n
2

)
= 2 log 2 +

n − p
2

log(n − p) +
pk − n

2
log n. (2.5)

Since n is an integer greater than 8 and n/2 < p, it follows that p ≥ 5. Noticing the condition that
n < 2p, 2 < n − p < p and the fact that log 2x ≤ 2 log x for any x ≥ 2, we have

2 log 2 < log 5 <
n − p

2
log p.

By (2.5), we derive that

log
(
2(n − p)

n−p
2 n

pk−n
2 + 1

)
< 2 log 2 +

n − p
2

log(n − p) +
pk − n

2
log n

< 2 log 2 +
n − p

2
log p +

pk − n
2

log 2p

< (n − p) log p + (pk − n) log p = (pk − p) log p

< (nk − p) log p.

This implies that
2(n − p)

n−p
2 n

pk−n
2 + 1 < pnk−p,

which contradicts to (2.4) Therefore Dk is not a square in this case.
Combining all the cases, we complete the proof of Lemma 2.9. �

Lemma 2.10. Let n be a positive integer greater than 8. Let p be a prime satisfying n/2 < p < n − 2.
The discriminant DiscQ(S n,p) is not a square.

Proof. By Lemma 2.8 and the definition of S n,p(x), we have

DiscQ(S n,p) =(−1)
n(n−1)

2 np(p−1) pn2(p−1)(npn−p2+n pn3−pn2

+ (−1)n+1(n − p)n−pnnp pp+n3−pn2−n2)
.

Since p is an odd prime, it follows that np(p−1) pn2(p−1) is a square. To show that DiscQ(S n,k) is not a
square, it is sufficient to show that

D := (−1)
n(n−1)

2
(
npn−p2+n pn3−pn2

+ (−1)n+1(n − p)n−pnnp pp+n3−pn2−n2)
(2.6)

is not a square.
Consider the p-adic valuation of D, by the isosceles triangle principle, we have

vp(D) = min{n3 − pn2, n3 − pn2 − n2 + p}.
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Noticing that p < n, we have vp(D) = n3 − pn2 − n2 + p. If n is even, then n3 − pn2 − n2 + p is odd.
Thus vp(D) is odd and D is not a square in this case. In the following, we always assume that n is odd.
We consider the following two cases:

Case 1. n is not a square. Then there exists a prime divisor l dividing n such that vl(n) is odd. So

vl(D) = min{pn − p2 + n, np}vl(n) = (pn − p2 + n)vl(n).

Since vl(n) and pn − p2 + n are both odd, vl(D) is odd in this case.

Case 2. n is a square. Thus n ≡ 1 (mod 4). By (2.6), we have

D = npn−p2+n pn3−pn2
+ (n − p)n−pnnp pp+n3−pn2−n2

.

Noticing that pn3−pn2
and npn are squares, to show that D is not a square, it is sufficient to show that

D0 = nn−p2
+ (n − p)n−p pp−n2

is not a square. Multiplying the square number np2−n pn2−p to D0, it suffices to show that

pn2−p + (n − p)n−pnp2−n

is not a square. Suppose that there exists a positive integer z such that

pn2−p + (n − p)n−pnp2−n = z2.

Noticing that pn2−p and (n − p)n−pnp2−n are squares, letting a2
1 = pn2−p and b2

1 = (n − p)n−pnp2−n gives
a2

1 + b2
1 = z2. It follows that a2

1 = (z + b1)(z− b1). One can check that a1, b1 and z are pairwise relatively
prime and a1 is a power of p. Thus z + b1 = a2

1 and z − b1 = 1. It follows that

2(n − p)
n−p

2 n
p2−n

2 + 1 = pn2−p. (2.7)

By the same argument as in the proof of Lemma 2.9, we have

log
(
2(n − p)

n−p
2 n

p2−n
2 + 1

)
< 2 log 2 +

n − p
2

log(n − p) +
p2 − n

2
log n

< 2 log 2 +
n − p

2
log p +

p2 − n
2

log 2p

< (n − p) log p + (p2 − n) log p = (p2 − p) log p

< (n2 − p) log p.

This implies that (2.7) cannot hold. Hence D is not a square in this case.
Combing all the cases, we complete the proof of Lemma 2.10. �

Lemma 2.11. Let n ≥ 8 be a positive integer. Let p be a prime number satisfying n/2 < p < n − 2.
The discriminant DiscQ(En,p) is not a square.
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Proof. By Lemma 2.8 and the definition of En,p(x), we have

DiscQ(En,p) = (−1)
n(n−1)

2 pn−1(nn+2p + (−1)n+1 pn(n − p)n−pnn).
Let D = DiscQ(En,p). If n is even, then vp(D) = n − 1 is odd. It implies that D is not a square. In the
following, we assume that n is odd. If n is not a square, then exists a prime number l dividing n such
that vl(n) is odd. Hence one derives that vl(D) = nvl(n) is odd. This infers that D is not a square again.

Now let n be an odd square. Then n ≡ 1 (mod 4) and it follows that (−1)
n(n−1)

2 = 1. Since nn and
pn−1 are square numbers, to show that D is not a square, it is enough to show that n2p + pn(n − p)n−p is
not a square.

Suppose that there exists a positive integer z such that

n2p + pn(n − p)n−p = z2.

It follows that
(z + np)(z − np) = pn(n − p)n−p.

Since gcd(n, p(n − p)) = 1, we have gcd(np, z) = 1. Hence

gcd(z + np, z − np) = gcd(2z, 2np) = 2 gcd(z, np) = 2.

Since p > n − p and n > n − p, we have pn > (n − p)n−p. Noticing that z + np > z − np and
gcd(z + np, z − np) = 2, we have 2pn|z + np which implies that

z + np ≥ 2pn

and
z − np ≤

1
2

(n − p)n−p.

Hence

2np ≥ 2pn −
1
2

(n − p)n−p. (2.8)

On the other hand, for fixed n ≥ 9, we define an auxiliary function Fn as follows:

Fn(x) := log 2 + x log n − n log x,

where n/2 < x < n − 2. Noticing that n ≥ 9 and n/x < 2, we have

F′n(x) = log n − n/x > 2 log 3 − 2 = 0.197... > 0.

This shows that the function Fn(x) is a monotone increasing function in the interval [n/2, n − 2].
Therefore

Fn(x) < Fn(n − 2) = log 2 + (n − 2) log n − n log(n − 2)
= log 2 + (n − 2) log n − (n − 2) log(n − 2) − 2 log(n − 2)

= log 2 + (n − 2) log(1 +
1

n − 2
) − 2 log(n − 2).
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It is a well-known fact that log(1 + x) < x for any x > 0. Hence

log 2 + (n − 2) log(1 +
1

n − 2
) − 2 log(n − 2)

< log 2 + 1 − 2 log(n − 2)
≤ log 2 + 1 − 2 log 7 = −2.198... < 0,

which implies that Fn(x) < 0 for all x with n/2 < x < n − 2. Noticing that

2nx

xn = exp(Fn(x)),

it follows that 2nx < xn for all x with n/2 < x < n − 2 when n ≥ 9. Since pn > (n − p)n−p, one has

2np < pn + pn − (n − p)n−p < 2pn −
1
2

(n − p)n−p,

which contradicts to (2.8). Such z does not exist and this completes the proof of Lemma 2.11. �

3. Proof of Theorem 1.1

In this section, we provide the proof of Theorem 1.1.

Proof of Theorem 1.1. Since k < n log 2
log n and n ≥ 8, we have k < n log 2

log 8 = n
3 . Noticing that n

2 < p < n − 2,
we have k < p that implies that gcd(k, p) = 1.

We first prove that Tn,p,k(x) is irreducible over Q. Consider the p-adic Newton polygon of Tn,p,k(x).
Since n− 1− p < n− p, the point (p, (n− 1− p)k) lies below the segment connecting the points (0, nk)
and (n, 0). Hence the p-adic Newton polygon of Tn,p,k(x) has vertices as follows:

(0, nk), (p, (n − 1 − p)k), (n, 0).

The first segment of the p-adic Newton polygon of Tn,p,k(x) has slope

nk − (n − 1 − p)k
0 − p

= −
nk − (n − 1 − p)k

p
= −k −

k
p
.

The second segment of the p-adic Newton polygon of Tn,p,k(x) has slope

(n − 1 − p)k − 0
p − n

= −
(n − 1 − p)k

n − p
= −k +

k
n − p

.

By Lemma 2.3 (i), we have Tn,p,k(x) = F1(x)F2(x) in Qp, where deg F1(x) = p and deg F2(x) = n − p.
Since gcd(k, p) = 1, by Lemma 2.4, it follows that F1(x) is irreducible over Qp. Let gcd(k, n− p) = d0,
by Lemma 2.4, F2(x) has at most d0 prime factors in Qp. If Tn,p,k(x) is reducible over Q, then Tn,p,k(x)
is reducible over Z. Let

Tn,p,k(x) = F(x)G(x),

where deg F(x) ≤ n/2 and deg G(x) ≥ n/2. By the local-global principle, F(x) and G(x) can also be
seen as polynomials over Qp. But we already have proved that Tn,p,k(x) = F1(x)F2(x) in Qp, where
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deg F1(x) = p. Hence we derives that deg G(x) ≥ p and deg F(x) ≤ n − p. By Lemma 2.4 again, we
have

deg F(x) =
(n − p)t

d0
,

where 1 ≤ t ≤ d0.
For any prime number l dividing n, we consider the l-adic Newton polygon of Tn,p,k(x). The l-adic

Newton polygon of Tn,p,k(x) has the vertices as follows:

(0, kvl(n)), (n, 0).

By Lemma 2.3 (iii), each root of Tn,p,k(x) in Ql has l-adic valuation

−
kvl(n) − 0

0 − n
=

kvl(n)
n

.

Since F(x) is a prime factor of Tn,p,k(x) in Q, it is also a prime factor of Tn,p,k(x) in Ql by the local-
global principle. Noticing that F(0) ∈ Z, we have vl(F(0)) is a nonnegative integer. Moreover, by
Vieta’s Theorem and (n − p)tkvl(n) > 0, we have

vl(F(0)) = deg F(x) ·
kvl(n)

n
=

(n − p)tkvl(n)
d0n

∈ Z+. (3.1)

Letting k = ud0, by (3.1) we have

(n − p)tkvl(n)
d0n

=
(n − p)tuvl(n)

n
∈ Z+.

Since gcd(n, n − p) = gcd(n, p) = 1, one has

tuvl(n) ∈ nZ+. (3.2)

Since tu ≤ k and
vl(n) ≤

log n
log l

≤
log n
log 2

,

we have
tu

vl(n)
n
≤ k

log n
n log 2

.

By the condition that k < n log 2
log n , one has tu vl(n)

n < 1 which contradicts to (3.2). Therefore the
irreducibility of Tn,p,k(x) over Q is proved.

Since gcd(k, p) = 1, the first segment of the p-adic Newton polygon of Tn,p,k indicates that p|NTn,p,k .
By Lemma 2.6, we have An ⊆ GalQ(Tn,p,k). It is a well-known fact that the Galois group of a polynomial
of degree n is a subgroup of S n. So

An ⊆ GalQ(Tn,p,k) ⊆ S n.

By Lemma 2.9, the discriminant DiscQ(Tn,p,k) is not a square. By Lemma 2.7, we have GalQ(Tn,p,k) *
An. It then follows that GalQ(Tn,p,k) = S n.

This completes the proof of Theorem 1.1. �
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4. Proofs of Theorems 1.2 and 1.3

In this section, we give the proofs of Theorems 1.2 and 1.3.

Proof of Theorem 1.2. We first prove the irreducibility of S n,p(x). Consider the p-adic Newton
polygon of S n,p(x) which holds the following vertices:

(0, n2), (p, n(n − 1 − p)), (n, 0).

The slope of the first segment of p-adic Newton polygon of S n,p(x) is

n(n − 1 − p) − n2

p − 0
= −

n + np
p

.

The slope of the second segment of p-adic Newton polygon of S n,p(x) is

0 − n(n − 1 − p)
n − p

=
np + n − n2

n − p
.

Noticing that gcd(n, n− p) = 1 and gcd(n2 − n− np, n− p) = gcd(n, n− p) = 1, by Lemma 2.4 we have
S n,p(x) = F1(x)F2(x) in Qp, where F1(x) and F2(x) are both irreducible over Qp with deg F1(x) = p
and deg F2(x) = n− p. By the local-global principle, one knows that if S n,p(x) is reducible over Q, then
S n,p(x) = f1(x) f2(x) with deg f1(x) = p and deg f2(x) = n − p.

Let l be an arbitrary prime divisor of n. Now let us consider the l-adic Newton polygon of S n,p(x).
Then it has the vertices (0, pvl(n)), (n, 0). By Lemma 2.3 (iii), every root of S n,p(x) in Ql has l-adic
valuation

−
0 − pvl(n)

n − 0
=

pvl(n)
n

.

Noticing that vl( f1(0)) ∈ Z, we have p2vl(n) ∈ nZ. Since gcd(n, p) = 1 and vl(n) < n, we have

p2vl(n) < nZ.

We arrive at a contradiction and this proves the irreducibility of S n,p(x). The slope of the first segment of
the p-adic Newton polygon of S n,p(x) indicates that p|NS n,p , by Lemma 2.6, we have An ⊆ GalQ(S n,p).
By Lemma 2.10 and Lemma 2.7, we have GalQ(S n,p) * An. By the fact that An ⊆ GalQ(S n,p) ⊆ S n, we
have GalQ(S n,p) = S n.

This finishes the proof of Theorem 1.2. �

Proof of Theorem 1.3. Since En,p(x) is an Eisenstein polynomial, En,p(x) is irreducible over Q. Let q
be a prime divisor of n. Consider the q-adic Newton polygon of En,p(x) that has the vertices as follows:

(0, 2vq(n)), (n − p, vq(n)), (n, 0).

Consider the segment connected the vertices (n − p, vq(n)) and (n, 0). The slope of this segment is

0 − vq(n)
n − (n − p)

= −
vq(n)

p
.
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Noticing that

vq(n) ≤
log n
log q

≤
log n
log 2

≤
n
2
< p,

it follows that gcd(vq(n), p) = 1. Thus p|NEn,p . By Lemma 2.6, we have An ⊆ GalQ(En,p). By Lemmas
2.11 and 2.7, we have GalQ(En,p) * An. It then follows that GalQ(S n,p) = S n.

This concludes the proof of Theorem 1.3. �

5. Conclusions

Uchida [14] and Yamamoto [15] proved that the Galois group of the polynomial xn + ax + b ∈ Z[x]
over Q is S n under certain conditions. Cohen, Movahhedi and Salinier [4] showed that if the trinomials
f (x) = xn + axs + b with integral coefficients is irreducible, where gcd(nb, as(n − s)) = 1 with s being
a prime number such that s , n − 1 and there is a prime divisor p of b such that gcd(s, vp(b)) = 1,
then GalQ( f ) contains An. They also determined what GalQ( f ) could be if An * GalQ( f ) under certain
conditions. In this paper, we mainly discussed the Galois group of the following three special class of
trinomials:

Tn,p,k(x) := xn + nk p(n−1−p)kxp + nk pnk,

S n,p(x) := xn + pn(n−1−p)npxp + np pn2

and
En,p(x) := xn + pnxn−p + pn2.

By using the p-adic Newton polygon, we showed that all these trinomials are irreducible over Q and
have the Galois group S n. Our results strengthen and extend the theorem of Cohen, Movahhedi and
Salinier.
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