
http://www.aimspress.com/journal/Math

AIMS Mathematics, 7(1): 199–211.
DOI:10.3934/math.2022012
Received: 30 May 2021
Accepted: 24 September 2021
Published: 09 October 2021

Research article

Frenet curves in 3-dimensional δ-Lorentzian trans Sasakian manifolds

Muslum Aykut Akgun∗

Department of Mathematics, Technical Sciences Vocational School, Adiyaman University, Turkey

* Correspondence: Email: muslumakgun@adiyaman.edu.tr.

Abstract: In this paper, we give some characterizations of Frenet curves in 3-dimensional δ-
Lorentzian trans-Sasakian manifolds. We compute the Frenet equations and Frenet elements of these
curves. We also obtain the curvatures of non-geodesic Frenet curves on 3-dimensional δ-Lorentzian
trans-Sasakian manifolds. Finally, we give some results for these curves.

Keywords: Frenet curves; Frenet elements; Lorentzian metric; almost contact metric manifold;
δ-Lorentzian manifold
Mathematics Subject Classification: 53A35, 53B30

1. Introduction

The differential geometry of curves especially in contact and para-contact manifolds studied by
several authors. Olszak [16], derived certain necessary and sufficient conditions for an almost contact
metric (a.c.m) structure on M to be normal and point out some of their consequences. Olszak
completely characterized the local nature of normal a.c.m. structures on M by giving suitable
examples. Moreover Olszak gave some restrictions on the scalar curvature in contact metric
manifolds which are conformally flat or of constant φ-sectional curvature in [15].

Welyczko [21], generalized some of results for Legendre curves to the case of 3-dimensional
normal almost contact metric manifolds, especially, quasi-Sasakian manifolds. Welyczko [20],
studied the curvature and torsion of slant Frenet curves in 3-dimensional normal almost paracontact
metric manifolds.

Curvature and torsion of Legendre curves in 3-dimensional (ε, δ) trans-Sasakian manifolds was
obtained in [1]. Lee defined Lorentzian cross product in a three-dimensional almost contact Lorentzian
manifold. Using a Lorentzian cross product, Lee proved that the ratio of κ and τ-1 is constant along
a Frenet slant curve in a Sasakian Lorentzian three-manifold. Moreover, Lee proved that γ is a slant
curve if and only if M is Sasakian for a contact magnetic curve γ in contact Lorentzian three-manifold
M in [11]. Lee, also gave the properties of the generalized Tanaka-Webster connection in a contact
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Lorentzian manifold in [12].
Yldrm [22] obtained curvatures of non-geodesic Frenet curves on 3-dimensional normal almost

contact manifolds without neglecting α and β, and provided the results of their characterization.
Trans-Sasakian structure on a manifold with Lorentzian metric and conformally flat Lorentzian

trans-Sasakian manifolds was studied in [19].
Siddiki [17] studied δ-Lorentzian trans-Sasakian manifolds with a semi-symmetric-metric

connection and computed curvature tensors, Ricci curvature tensors and scalar curvature of the
δ-Lorentzian trans-Sasakian manifold with a semi-symmetric-metric connection.

In this framework, the paper is organized in the following way. In section 2, we give basic definitions
and propositions of a δ-Lorentzian trans-Sasakian manifold. We give the Frenet-Serret equations of a
curve in Lorentzian 3-manifold. In section 3, we obtain an orthonormal basis {e1, e2, e3} by using
the basis (ζ′, ϕζ′, ξ) for the curve ζ in a 3-dimensional δ-Lorentzian trans-Sasakian manifold. Also
we calculate the Frenet elements of a non-geodesic Frenet curve, slant curve and Legendre curve in
this manifold. Then, we give the curvatures of the curve ζ on some kinds of δ-Lorentzian manifolds.
In the last section, we give some examples for the spacelike curves on a 3-dimensional δ-Lorentzian
trans-Sasakian manifold.

2. Materials and methods

2.1. δ-Lorentzian trans-Sasakian Manifolds

Let N̄ be a δ-almost contact metric manifold equipped with δ-almost contact metric structure
(ϕ, ξ, η, ḡ, δ) consisting of (1,1) tensor field ϕ, a vector field ξ, a 1-form η and an indefinite metric ḡ
such that

ϕ2 = U + η(U)ξ, η(ξ) = −1, (2.1)
ϕ(ξ) = 0, η ◦ ϕ = 0, (2.2)

ḡ(ξ, ξ) = −δ, (2.3)
η(U) = δḡ(U, ξ), (2.4)

ḡ(ϕU, ϕV) = ḡ(U,V) + δη(U)η(V), (2.5)

for all U,V ∈ N̄, where δ2 = 1 so that δ = ∓1. The above structure (ϕ, ξ, η, ḡ, δ) is called the δ-
Lorentzian structure on N̄. If δ = 1, then the manifold becomes the usual Lorentzian structure [2] on
N̄, the vector field ξ is timelike [18].

In the classification of almost Hermitian manifolds, there appears a class W4 of Hermitian manifolds
which are closely related to the conformal Kaehler manifolds [17]. The class C6 ⊕ C5 coincides with
the class of trans-Sasakian structue of type (α, β) [13]. In fact, the local nature of the two sub classes,
namely C6 and C5 of trans-Sasakian structures are charactrized completely. An almost contact metric
structure on N̄ is called trans-Sasakian if (N̄ × <, J,G) belongs to the class W4, where J is the almost
complex structure on N̄ ×< defined by

J(U, f
d
dt

) =

(
ϕU − f ξ, η(U)

d
dt

)
, (2.6)
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for all vector fields U on N̄ and smooth functions f on N̄ × < and G is the product metric on N̄ × <.
This may be expressed by the condition

(∇Uϕ)V = α(ḡ(U,V)ξ − η(V)U) + β(ḡ(ϕU,V)ξ − η(V)ϕU), (2.7)

for any vector fields U and V on N̄, ∇ denotes the Levi-Civita connection with respect to ḡ, α and β are
smooth functions on N̄ [17]. The existence of condition (2.3) is ensure by the above discussion.

With the above literature, the δ-Lorentzian trans-Sasakian manifolds are defined as follows.

Definition 2.1. [2] A δ-Lorentzian manifold with structure (ϕ, ξ, η, ḡ, δ) is said to be δ-Lorentzian
trans-Sasakian manifold of type (α, β) if it satisfies the condition

(∇Uϕ)V = α(ḡ(U,V)ξ − δη(V)U) + β(ḡ(ϕU,V)ξ − δη(V)ϕU), (2.8)

for any vector fields U and V on N̄.

If δ = 1, then the δ-Lorentzian trans-Sasakian manifold becomes the usual Lorentzian trans-Sasakian
manifold of type (α, β) [17]. δ-Lorentzian trans-Sasakian manifold of type (0, 0), (0, β), (α, 0) are the
Lorentzian cosymplectic, Lorentzian β-Kenmotsu and Lorentzian α-Sasakian manifolds respectively.
In particular if α = 1, β = 0 and α = 0, β = 1, a δ-Lorentzian trans-Sasakian manifold reduces to a
δ-Lorentzian Sasakian manifold and a δ-Lorentzian Kenmotsu manifold respectively.

From (2.4), we have
∇Uξ = δ(−αϕ(U) − β(U + η(U)ξ)), (2.9)

and
(∇Uη)V = αḡ(ϕU,V) + β[ḡ(U,V) + δη(U)η(V)]. (2.10)

Further for a δ-Lorentzian trans-Sasakian manifold, we have

δϕ(gradα) = δ(n − 2)(gradβ), (2.11)

and
2αβ − δ(ξα) = 0. (2.12)

2.2. Frenet curves

Let ζ : I → N̄ be a unit speed curve in Lorentzian 3-manifold N̄ such that ḡ(ζ
′

, ζ
′

) = ε1 = ∓1.
The constant ε1 is called the casual character of ζ. The constants ε2 and ε3 defined by ḡ(n, n) = ε2 and
ḡ(b, b) = ε3 and called the second casual character and third casual character of ζ, respectively. Thus
we have ε1ε2 = −ε3.

A unit speed curve ζ is said to be spacelike or timelike if its casual character is 1 or -1, respectively.
A unit speed curve ζ is said to be a Frenet curve if ḡ(ζ

′

, ζ
′

) , 0. A Frenet curve ζ admits an orthonormal
frame field {t = ζ

′

, n, b} along ζ. Then the Frenet-Serret equations are given as follows

∇ζ′ t = ε2κn,

∇ζ′n = −ε1κt − ε3τb, (2.13)
∇ζ′b = ε2τn,
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where κ = |∇ζ′ζ
′

| is first curvature and τ is second curvature of ζ [11]. The vector fields t, n and b
are called the tangent vector field, the principal normal vector field and the binormal vector field of ζ,
respectively.

A Frenet curve ζ is a geodesic if and only if κ = 0. A Frenet curve ζ with constant first curvature and
zero second curvature is called a pseudo-circle. A pseudo-helix is a Frenet curve ζ whose curvatures
are constant.

A curve in a Lorentzian three-manifold is said to be slant if its tangent vector field has constant
angle with the Reeb vector field, i.e., η(ζ′) = −ḡ(ζ′, ξ) = constant. If η(ζ′) = −ḡ(ζ′, ξ) = 0, then the
curve ζ is called a Legendre curve [11].

3. Main results

In this section, we consider a 3-dimensional δ-Lorentzian trans-Sasakian manifold N̄. Let ζ : I → N̄
be a non-geodesic (κ , 0) Frenet curve given with the arc-parameter s and ∇̄ be the Levi-Civita
connection on N̄. From the basis (ζ

′

, ϕζ
′

, ξ) we obtain an orthonormal basis {e1, e2, e3} given by

e1 = ζ
′

,

e2 =
ϕζ

′√
ε1 + δρ2

, (3.1)

e3 =
−ε1ξ + δρζ

′√
ε1 + δρ2

,

where
η(ζ

′

) = δḡ(ζ
′

, ξ) = δρ. (3.2)

Then if we write the covariant differentiation of ζ
′

as

∇̄ζ′e1 = νe2 + µe3, (3.3)

where ν is a certain function.
ν = ḡ(∇̄ζ′e1, e2). (3.4)

Moreover we obtain

µ = ḡ(∇̄ζ′e1, e3) =
δρ′√
ε1 + δρ2

− ε1δβ
√
ε1 + δρ2, (3.5)

where ρ′(s) =
dρ(ζ(s))

ds . Then we find

∇̄ζ′e2 = −νe1 + δ

−ε1α +
ρν√

ε1 + δρ2

 e3, (3.6)

and

∇̄ζ′e3 = −µe1 − δ

−ε1α +
ρν√

ε1 + δρ2

 e2. (3.7)
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The fundamental forms of the tangent vector ζ′ on the basis of the Eq (3.1) is

[ωi j(ζ′)] =


0 ν µ

−ν 0 δ

(
−ε1α +

ρν√
ε1+δρ2

)
−µ −δ

(
−ε1α +

ρν√
ε1+δρ2

)
0

 , (3.8)

and the Darboux vector connected to the vector ζ′ is

ω(ζ′) = δ

−ε1α +
ρν√

ε1 + δρ2

 e1 − µe2 + νe3. (3.9)

So we can write
∇̄ζ′ei = ω(ζ′) ∧ εiei (1 ≤ i ≤ 3). (3.10)

Furthermore, for any vector field Z =
∑3

i=1 θ
iei ∈ χ(N̄) strictly dependent on the curve ζ on N̄, there

exists the following equation

∇̄ζ′Z = ω(ζ′) ∧ Z + δ

3∑
i=1

εiei[θi]ei. (3.11)

3.1. Frenet elements of ζ

Let ζ : I → N̄ be a non-geodesic (κ , 0) Frenet curve given with the arc parameter s and the
elements {t, n, b, κ, τ}. The Frenet elements of this curve are calculated as follows:

If we consider the Eq (3.3), then we get

ε2κn = ∇̄ζ′e1 = νe2 + µe3. (3.12)

From the Eqs (3.5) and (3.12) we find

κ =

√√
ν2 +

 δρ′√
ε1 + δρ2

− ε1δβ
√
ε1 + δρ2

2

. (3.13)

On the other hand

∇̄ζ′n =

(
ν

ε2κ

)′
e2 +

ν

ε2κ
∇ζ′e2 +

(
µ

ε2κ

)′
e3 +

µ

ε2κ
∇ζ′e3 (3.14)

(3.15)
= −ε1κt − ε3τB.

By means of the Eqs (3.6) and (3.7) we obtain

− ε3τB =

( ν

ε2κ

)′
−
δµ

ε2κ

−ε1α +
ρν√

ε1 + δρ2

 e2 (3.16)
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+

( µε2κ

)′
+
δν

ε2κ

−ε1α +
ρν√

ε1 + δρ2

 e3.

By a direct computation we find[(
ν

ε2κ

)′]2

+

[(
µ

ε2κ

)′]2

=

[(
ν

ε2κ

)′
µ

ε2κ
−

ν

ε2κ

(
µ

ε2κ

)′]2

. (3.17)

Taking the norm of the last equation and if we consider the Eqs (3.5) and (3.16) on (3.15) we obtain

τ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
δ

(
−ε1α +

ρν√
ε1+δρ2

)
−√√√√√[(

ν
ε2κ

)′]2
+




δρ′√
ε1+δρ2

−ε1δβ
√
ε1+δρ2

ε2κ


′

2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (3.18)

Moreover we can write the Frenet vector fields of ζ as in the following theorem.

Theorem 3.1. Let N̄ be a 3-dimensional δ-Lorentzian trans-Sasakian manifold and ζ be a Frenet curve
on N̄. The Frenet vector fields t, n and b are in the form of

t = ζ′ = e1,

n =
ν

ε2κ
e2 +

µ

ε2κ
e3, (3.19)

b = −
1
ε3τ

( ν

ε2κ

)′
−
δµ

ε2κ

−ε1α +
ρν√

ε1 + δρ2

 e2

−
1
ε3τ

( µε2κ

)′
+
δν

ε2κ

−ε1α +
ρν√

ε1 + δρ2

 e3.

Moreover we have

ξ = δε1ρt +
δµ

√
ε1 + δρ2

ε2κ
n (3.20)

−
δ
√
ε1 + δρ2

ε3τ

( µε2κ

)′
−
δν

ε2κ

−ε1α +
ρν√

ε1 + δρ2

 b.

Let ζ be non-geodesic Frenet curve given with the arc-parameter s in 3-dimensional δ-Lorentzian
trans-Sasakian manifold N̄. So we can give the following theorem.

Theorem 3.2. Let N̄ be a 3-dimensional δ-Lorentzian trans-Sasakian manifold and ζ be a Frenet
curve on N̄. ζ is a slant curve (ρ = η(ζ′) = cosθ = constant) on N̄ if and only if the Frenet elements
{t, n, b, κ, τ} of ζ are as follows.

t = e1 = ζ′,

n = e2 =
ϕζ′√

ε1 + δcos2θ
,
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b = e3 =
−ε1ξ + δcosθζ′√
ε1 + δcos2θ

, (3.21)

κ =
√
β2(ε1 + δcos2θ) + ν2,

τ =

∣∣∣∣∣∣∣∣∣∣∣∣∣
δ

(
−ε1α + cosθν√

ε1+δ cos2 θ

)
−

√[(
ν
ε2κ

)′]2
+

[(
−ε1δβ
√
ε1+δ cos2 θ

ε2κ

)′]2

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Proof. Let the curve ζ be a slant curve in 3-dimensional δ-Lorentzian trans-Sasakian manifold N̄. If
we take into account the condition ρ = η(ζ′) = cosθ = constant in the Eqs (3.1), (3.13) and (3.17)
we find (3.21). If the equations in (3.21) hold, from the definition of slant curves it is obvious that the
curve ζ is a slant curve. �

If we consider the Theorem (3.1), we can give the following corollaries.

Corollary 3.1. Let N̄ be a 3-dimensional δ-Lorentzian trans-Sasakian manifold and ζ be a slant
curve on N̄. If the first curvature κ is non-zero constant, then ζ is a pseudo-helix with

τ =

∣∣∣∣∣∣δ
(
−ε1α + cosθν√

ε1+δ cos2 θ

)∣∣∣∣∣∣.
Corollary 3.2. Let N̄ be a 3-dimensional δ-Lorentzian trans-Sasakian manifold and ζ be a slant curve
on this manifold N̄. If κ is not constant and τ = 0, then, ζ is a plane curve and the following equation
satisfies

ḡ(∇ζ′e2, e3) =
ν2(β

ν
)′

√
ε1 + δ cos2 θ

ν2 + β2(ε1 + δ cos2 θ)
. (3.22)

Theorem 3.3. Let N̄ be a 3-dimensional δ-Lorentzian trans-Sasakian manifold and ζ be a spacelike
Frenet curve on N̄. ζ is a Legendre curve(ρ = η(ζ′) = 0) in this manifold if and only if the Frenet
elements {t, n, b, κ, τ} of ζ satisfy the following equations:

t = e1 = ζ′,

n = e2 = ϕζ′,

b = e3 = −ξ, (3.23)
κ =

√
ν2 + β2,

τ =

∣∣∣∣∣∣∣∣δα +

√[(
ν

ε2κ

)′]2

+

[(
β

ε2κ

)′]2
∣∣∣∣∣∣∣∣ .

Proof. Let the curve ζ be a Legendre curve 3-dimensional δ-Lorentzian trans-Sasakian manifold N̄. If
we take into account the condition ρ = η(ζ′) = 0 in the Eqs (3.1), (3.13) and (3.17) we find (3.23). If
the equations in (3.23) hold, from the definition of Legendre curves it is obvious that the curve ζ is a
Legendre curve on N̄. �
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Corollary 3.3. Let the curve ζ be a Legendre curve in 3-dimensional δ-Lorentzian trans-Sasakian
manifold N̄. If κ is non-zero constant and τ is equal to zero, then ζ is a plane curve and α = 0.

If we consider the Eqs (3.13) and (3.17) and theorem (3.1) we can give the following corollaries.

Corollary 3.4. Let N̄ be a 3-dimensional δ-Lorentzian trans-Sasakian manifold and ζ be a Frenet
curve on this manifold N̄. The first curvature of the curve ζ is not dependent on α and β.

Corollary 3.5. From the Eqs (3.13) and (3.17) the first curvature and the second curvature of ζ on
3-dimensional δ-Lorentzian cosymplectic manifold N̄ are

κ =

√√
ν2 +

 δρ′√
ε1 + δρ2

2

, (3.24)

and

τ =

∣∣∣∣∣∣∣∣∣δ
ρν√

ε1 + δρ2
−

√√√[(
ν

ε2κ

)′]2

+

 δρ′

ε2κ
√
ε1 + δρ2

′2
∣∣∣∣∣∣∣∣∣ . (3.25)

i) If the curve ζ in 3-dimensional δ-Lorentzian cosymplectic manifold N̄ is a slant curve, then we have

κ = ν and τ =

∣∣∣∣∣∣∣δ νcosθ√
ε1 + δ cos2 θ

∣∣∣∣∣∣∣ . (3.26)

ii) If the curve ζ in 3-dimensional δ-Lorentzian cosymplectic manifold N̄ is a Legendre curve, then we
have

κ = ν and τ = 0. (3.27)

Corollary 3.6. Let ζ be a curve on 3-dimensional δ-Lorentzian β-Kenmotsu manifold N̄. Then, the first
and second curvatures of ζ are

κ =

√√
ν2 +

 δρ′√
ε1 + δρ2

− ε1δβ
√
ε1 + δρ2

2

, (3.28)

and

τ =

∣∣∣∣∣∣∣∣∣∣∣∣∣
δ ρν√

ε1+δρ2

−

√√√√√[(
ν
ε2κ

)′]2
+




δρ′√
ε1+δρ2

−ε1δβ
√
ε1+δρ2

ε2κ


′

2

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

If the curve ζ is a slant curve on N̄, then we have

κ =
√
ν2 + β2(ε1 + δ cos2 θ), (3.29)

τ =

∣∣∣∣∣∣∣∣∣∣∣
δ νcosθ√

ε1+δ cos2 θ

−

√[(
ν
ε2κ

)′]2
+

[(
−ε1δβ
√
ε1+δ cos2 θ

ε2κ

)′]2

∣∣∣∣∣∣∣∣∣∣∣ .
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If the curve ζ is a Legendre curve on N̄, then we have

κ =
√
ν2 + ε1β2 and τ =

√[(
ν

ε2κ

)′]2

+ ε1

[(
β

κ

)′]2

. (3.30)

Corollary 3.7. Let ζ be a curve on 3-dimensional δ-Lorentzian α-Sasakian manifold N̄. Then, the first
curvature and the second curvature of ζ are

κ =

√√
ν2 +

 δρ′√
ε1 + δρ2

2

, (3.31)

and

τ =

∣∣∣∣∣∣∣∣∣∣∣∣∣
δ

(
−ε1α +

ρν√
ε1+δρ2

)
−

√[(
ν
ε2κ

)′]2
+

[(
δρ′

ε2κ
√
ε1+δρ2

)′]2

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

The curvatures of ζ are

κ = ν and τ =

∣∣∣∣∣∣∣δ
−ε1α +

νcosθ√
ε1 + δ cos2 θ


∣∣∣∣∣∣∣ , (3.32)

where ζ is a slant curve in 3-dimensional δ-Lorentzian α-Sasakian manifold N̄ and

κ = ν and τ = |ε1δα| , (3.33)

where ζ is a Legendre curve in 3-dimensional δ-Lorentzian α-Sasakian manifold N̄.

Corollary 3.8. From the Eqs (3.13) and (3.17) the first curvature and the second curvature of ζ on
3-dimensional δ-Lorentzian Kenmotsu manifold N̄ are

κ =

√√
ν2 +

 δρ′√
ε1 + δρ2

− ε1δ
√
ε1 + δρ2

2

, (3.34)

and

τ =

∣∣∣∣∣∣∣∣∣∣∣∣∣
δ ρν√

ε1+δρ2

−

√√√√√[(
ν
ε2κ

)′]2
+




δρ′√
ε1+δρ2

−ε1δ
√
ε1+δρ2

ε2κ


′

2

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

i) If the curve ζ in 3-dimensional δ-Lorentzian Kenmotsu manifold N̄ is a slant curve, then we obtain

κ =
√
ν2 + ε1 + δ cos2 θ, (3.35)

AIMS Mathematics Volume 7, Issue 1, 199–211.



208

τ =

∣∣∣∣∣∣∣∣∣∣∣
δ νcosθ√

ε1+δ cos2 θ

−

√[(
ν
ε2κ

)′]2
+

[(
−ε1δ
√
ε1+δ cos2 θ

ε2κ

)′]2

∣∣∣∣∣∣∣∣∣∣∣ .
ii) If the curve ζ in 3-dimensional δ-Lorentzian Kenmotsu manifold N̄ is a Legendre curve, then we
have

κ =
√
ν2 + ε1 and τ =

√[(
ν

ε2κ

)′]2

+ ε1

[(
κ′

κ

)′]2

. (3.36)

Corollary 3.9. Let ζ be a curve on 3-dimensional δ-Lorentzian Sasakian manifold N̄. Then, the first
and second curvatures of ζ are

κ =

√√
ν2 +

 δρ′√
ε1 + δρ2

2

, (3.37)

and

τ =

∣∣∣∣∣∣∣∣∣∣∣∣∣
δ

(
−ε1 +

ρν√
ε1+δρ2

)
−

√[(
ν
ε2κ

)′]2
+

[(
δρ′

ε2κ
√
ε1+δρ2

)′]2

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

If the curve ζ is a slant curve on N̄, then we have

κ = ν and τ =

∣∣∣∣∣∣∣δ
−ε1 +

νcosθ√
ε1 + δ cos2 θ


∣∣∣∣∣∣∣ . (3.38)

If the curve ζ is a Legendre curve on N̄, then we obtain

κ = ν and τ = |ε1δ| . (3.39)

4. Examples

Let N̄ be a 3-dimensional manifold given

N̄ =
{
(x, y, z) ∈ <3, z , 0

}
, (4.1)

where (x,y,z) denote the standart co-ordinates in<3. Then

E1 = z
∂

∂x
, E2 = z

∂

∂y
, E3 = −z

∂

∂z
, (4.2)

are linearly independent of each point of N̄ [17]. Let ḡ be the Lorentzian metric tensor defined by

ḡ(E1, E1) = ḡ(E2, E2) = ḡ(E3, E3) = δ, (4.3)
ḡ(Ei, E j) = 0, i , j,
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for i, j = 1, 2, 3 and δ = ∓1. Let η be a 1-form defined by η(Z) = δḡ(Z, E3) for any vector field
Z ∈ Γ(T N̄). Let ϕ be the (1,1)-tensor field defined by

ϕE1 = −E2, ϕE2 = E1, ϕE3 = 0. (4.4)

Then using the condition of the linearity of ϕ and ḡ, we obtain η(E3) = 1 and

ϕ2Z = Z + η(Z)E3, (4.5)
ḡ(ϕZ, ϕW) = ḡ(Z,W) − δη(Z)η(W),

for all Z,W ∈ Γ(T N̄).
Now, let ∇ be the Levi-Civita connection with respect to the Lorentzian metric ḡ. Then we obtain

[E1, E2] = 0, [E1, E3] = δE1, [E2, E3] = δE2. (4.6)

The Riemannian connection ∇ with respect to the metric ḡ is given by

2ḡ(∇XY,Z) = Xḡ(Y,Z) + Yḡ(Z, X) − Zḡ(X,Y) (4.7)
+ ḡ([X,Y] ,Z) − ḡ([Y,Z] , X) + ḡ([Z, X] ,Y).

If we use this equation which is known as Koszul’s formula for the Lorentzian metric tensor ḡ, we
can easily calculate the covariant derivations as follows:

∇E1 E3 = δE1, ∇E2 E3 = δE2, ∇E3 E3 = 0,
∇E1 E2 = 0, ∇E2 E2 = −δE3, ∇E3 E2 = 0, (4.8)
∇E1 E1 = −δE3, ∇E2 E1 = 0 ∇E3 E1 = 0.

From the above relations, for any vector field X on N̄, we have

∇Xξ = δ(X + η(X)ξ), (4.9)

for ξ = E3, α = 0 and β = 1. Hence the manifold N̄ under consideration is a δ-Lorentzian trans-
Sasakian of type (0, 1) manifold of dimension three.

Example 4.1. Let γ be a spacelike curve defined as

γ : I → N̄

s → γ(s) = (2lns, 2, lns) ,

where the curve γ parametrized by the arc length parameter t. If we differentiate γ(t) and consider (3.1)
we find

dγ
dt

= γ′(t) =
2
√

3
E1 −

1
√

3
E3,

and
e1 = γ′(t),
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e2 = E1,

e3 = −
1
√

3
E1 +

1
√

3
E3,

where ρ = η(γ′(t)). If we consider the Eqs (3.2), (3.3), (3.5), (3.13) and (3.17) we can write

ρ = δ
1
√

3
, µ = −

2
√

3
, ν = δ

2
3
, (4.10)

κ =
4
3
, τ =

1
3
.

Thus, the curve γ is a spacelike helix in N̄.

Example 4.2. Let ω be a spacelike Legendre curve defined as

ω : I → N̄

s → ω(s) =

(
s2

2
,

s2

2
, 1

)
.

where the curve ω parametrized by the arc length parameter t. If we differentiate ω(t) and using (3.1)
we find

dω
dt

= ω′(t) =

√
2

2
E1 +

√
2

2
E2,

and e1 = ω′(t),

e2 =

√
2

2
E1 −

√
2

2
E2,

e3 = −E3.

If we consider the Eqs (3.2), (3.3), (3.5), (3.13) and (3.17) we obtain

ρ = 0, µ = −δβ, ν = 0, (4.11)
κ = 2 |β| , τ = |α| .
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