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curves. We also obtain the curvatures of non-geodesic Frenet curves on 3-dimensional 6-Lorentzian
trans-Sasakian manifolds. Finally, we give some results for these curves.
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1. Introduction

The differential geometry of curves especially in contact and para-contact manifolds studied by
several authors. Olszak [16], derived certain necessary and sufficient conditions for an almost contact
metric (a.c.m) structure on M to be normal and point out some of their consequences. Olszak
completely characterized the local nature of normal a.c.m. structures on M by giving suitable
examples. Moreover Olszak gave some restrictions on the scalar curvature in contact metric
manifolds which are conformally flat or of constant ¢-sectional curvature in [15].

Welyczko [21], generalized some of results for Legendre curves to the case of 3-dimensional
normal almost contact metric manifolds, especially, quasi-Sasakian manifolds. Welyczko [20],
studied the curvature and torsion of slant Frenet curves in 3-dimensional normal almost paracontact
metric manifolds.

Curvature and torsion of Legendre curves in 3-dimensional (g, ) trans-Sasakian manifolds was
obtained in [1]. Lee defined Lorentzian cross product in a three-dimensional almost contact Lorentzian
manifold. Using a Lorentzian cross product, Lee proved that the ratio of x and 7-1 is constant along
a Frenet slant curve in a Sasakian Lorentzian three-manifold. Moreover, Lee proved that vy is a slant
curve if and only if M is Sasakian for a contact magnetic curve y in contact Lorentzian three-manifold
M in [11]. Lee, also gave the properties of the generalized Tanaka-Webster connection in a contact
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Lorentzian manifold in [12].

Yldrm [22] obtained curvatures of non-geodesic Frenet curves on 3-dimensional normal almost
contact manifolds without neglecting a and 3, and provided the results of their characterization.

Trans-Sasakian structure on a manifold with Lorentzian metric and conformally flat Lorentzian
trans-Sasakian manifolds was studied in [19].

Siddiki [17] studied o-Lorentzian trans-Sasakian manifolds with a semi-symmetric-metric
connection and computed curvature tensors, Ricci curvature tensors and scalar curvature of the
o-Lorentzian trans-Sasakian manifold with a semi-symmetric-metric connection.

In this framework, the paper is organized in the following way. In section 2, we give basic definitions
and propositions of a -Lorentzian trans-Sasakian manifold. We give the Frenet-Serret equations of a
curve in Lorentzian 3-manifold. In section 3, we obtain an orthonormal basis {e}, e;, e3} by using
the basis (', ¢’ €) for the curve ¢ in a 3-dimensional ¢-Lorentzian trans-Sasakian manifold. Also
we calculate the Frenet elements of a non-geodesic Frenet curve, slant curve and Legendre curve in
this manifold. Then, we give the curvatures of the curve { on some kinds of §-Lorentzian manifolds.
In the last section, we give some examples for the spacelike curves on a 3-dimensional ¢-Lorentzian
trans-Sasakian manifold.

2. Materials and methods

2.1. 6-Lorentzian trans-Sasakian Manifolds

Let N be a d-almost contact metric manifold equipped with §-almost contact metric structure
(¢,&,1m,8,0) consisting of (1,1) tensor field ¢, a vector field &, a 1-form n and an indefinite metric g
such that

o> =U+n)é, e =-1, 2.1)
P& =0, nop=0, (2.2)

(&, &) = -, (2.3)

n(U) = 6g(U, &), (2.4)

2(eU, V) = 2(U, V) + snU)n(V), (2.5)

for all U,V € N, where 6> = 1 so that § = F1. The above structure (p,&,1m,8,0) is called the ¢-
Lorentzian structure on N. If § = 1, then the manifold becomes the usual Lorentzian structure [2] on
N, the vector field & is timelike [18].

In the classification of almost Hermitian manifolds, there appears a class W, of Hermitian manifolds
which are closely related to the conformal Kaehler manifolds [17]. The class C¢ & C5 coincides with
the class of trans-Sasakian structue of type (@, 8) [13]. In fact, the local nature of the two sub classes,
namely Cg and Cs of trans-Sasakian structures are charactrized completely. An almost contact metric
structure on N is called trans-Sasakian if (N x ‘R, J, G) belongs to the class Wy, where J is the almost
complex structure on N x R defined by

d d
JU.f=7) = (SOU - 1<, U(U)d_t)’ (2.6)
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for all vector fields U on N and smooth functions f on N x R and G is the product metric on N X R.
This may be expressed by the condition

Vo)V = a@U, V)§ = n(V)U) + B(g(eU, V)E = n(V)eU), (2.7)

for any vector fields U and V on N, V denotes the Levi-Civita connection with respect to g, & and 3 are
smooth functions on N [17]. The existence of condition (2.3) is ensure by the above discussion.
With the above literature, the 6-Lorentzian trans-Sasakian manifolds are defined as follows.

Definition 2.1. /2] A ¢-Lorentzian manifold with structure (¢,&,1,8,0) is said to be d-Lorentzian
trans-Sasakian manifold of type (a, B) if it satisfies the condition

(Vup)V = a@U,V)§ - on(V)U) + B(g(eU, V)& — on(V)eU), (2.8)
for any vector fields U and V on N.

If 6 = 1, then the §-Lorentzian trans-Sasakian manifold becomes the usual Lorentzian trans-Sasakian
manifold of type (a,fB) [17]. 6-Lorentzian trans-Sasakian manifold of type (0, 0), (0,5), (@, 0) are the
Lorentzian cosymplectic, Lorentzian S-Kenmotsu and Lorentzian a-Sasakian manifolds respectively.
In particular if « = 1, 8 = 0 and @ = 0, 8 = 1, a 6-Lorentzian trans-Sasakian manifold reduces to a
o-Lorentzian Sasakian manifold and a 6-Lorentzian Kenmotsu manifold respectively.

From (2.4), we have

Vyé = 6(—ap(U) - BU + n(U)E)), (2.9)
and
(VumV = ageU, V) + BIg(U, V) + on(U)n(V)]. (2.10)

Further for a 0-Lorentzian trans-Sasakian manifold, we have
op(grada) = 6(n — 2)(gradp), (2.11)

and
2af — 6(¢éa) = 0. (2.12)

2.2. Frenet curves

Let £ : I — N be a unit speed curve in Lorentzian 3-manifold N such that g(Z',) = & = *1.
The constant &, is called the casual character of £. The constants &, and &5 defined by g(n,n) = &, and
g(b,b) = &5 and called the second casual character and third casual character of £, respectively. Thus
we have g,&, = —é&3.

A unit speed curve  is said to be spacelike or timelike if its casual character is 1 or -1, respectively.
A unit speed curve ¢ is said to be a Frenet curve if (£, ') # 0. A Frenet curve ¢ admits an orthonormal
frame field {t = £, n, b} along . Then the Frenet-Serret equations are given as follows

\Y ;b= &kn,
Vyn = -kt — &b, (2.13)
A\ b = &rn,
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where k = [V/{ | is first curvature and 7 is second curvature of ¢ [11]. The vector fields t, n and b
are called the tangent vector field, the principal normal vector field and the binormal vector field of ¢,
respectively.

A Frenet curve { is a geodesic if and only if k = 0. A Frenet curve { with constant first curvature and
zero second curvature is called a pseudo-circle. A pseudo-helix is a Frenet curve { whose curvatures
are constant.

A curve in a Lorentzian three-manifold is said to be slant if its tangent vector field has constant
angle with the Reeb vector field, 1.e., n({’) = —g({’, &) = constant. If n({’) = —g({’,&) = 0, then the
curve ( is called a Legendre curve [11].

3. Main results

In this section, we consider a 3-dimensional §-Lorentzian trans-Sasakian manifold N. Let : I — N
be a non-geodesic (x # 0) Frenet curve given with the arc-parameter s and V be the Levi-Civita
connection on N. From the basis (¢, ¢, £) we obtain an orthonormal basis {e;, e, e3} given by

’

ep, = C(,
o = G.1)
\/81+6p2
_ —&1& +0pl
e = ——>

Ver + 0p? ,

where
) =68, €) = op. (3.2)
Then if we write the covariant differentiation of ¢ as

Vyer = vey + pes, 3.3)
where v is a certain function.
V= g(vg/ela ). (3.4)
Moreover we obtain
= op’
u=2g\Vyer,e)= B g10BVer + 6p?, (3.5)

Ve + 0p?

where p’(s) = %. Then we find

v{,ez = —ve; + 6(—8@ + L] es, (3.6)

Vel + 6p?

and

V(fe3 = —ue; — 6(—810 + L] e. 3.7

Vel + 0p?
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The fundamental forms of the tangent vector £’ on the basis of the Eq (3.1) is

0 % u
, - 0 §|-e1a+ =&
[wii N =|"" ( o «/—Wspz) , (3.8)
- S oy
u 6( g1+ W) 0
and the Darboux vector connected to the vector ’ is
w(l) = 5(—8161’ + L] el — uey + ves. (3.9
Ve + 0p?
So we can write
6(/6,‘ = (L)(g/) N gi€e; (1 <i< 3) (310)

Furthermore, for any vector field Z = Z?:l 0'e; € y(N) strictly dependent on the curve ¢ on N, there
exists the following equation

3
VoZ=wlYAZ+6 ) selt]e: 3.11)
i=1

3.1. Frenet elements of {

Let £ : I — N be a non-geodesic (k # 0) Frenet curve given with the arc parameter s and the
elements {t, n, b, k, T}. The Frenet elements of this curve are calculated as follows:
If we consider the Eq (3.3), then we get

Erkn = V(,el = ve, + ues. (3.12)

From the Eqgs (3.5) and (3.12) we find

2
6 ’
K= 4|+ (L —£16Be + 6p2] . (3.13)
Ve + 0p?
On the other hand
Von = (_) ng,eﬁ(i) e+ L 50, (3.14)
i ErK ErK ErK ErK
(3.15)
= —gkt — &7TB.
By means of the Eqgs (3.6) and (3.7) we obtain
v\ u pv
-&5™B = [[—] - — |- 0o+ ——=|| e (3.16)
&K &K ‘/81 + (5p2
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+ es.

( u )' . ov P
SQK 82K : A ’81 + 5p2
By a direct computation we find

IR I e

Taking the norm of the last equation and if we consider the Eqs (3.5) and (3.16) on (3.15) we obtain

ol—eja+ 22— |-
Ver+6p?

| e =T 619

E2K

&K

Moreover we can write the Frenet vector fields of £ as in the following theorem.

Theorem 3.1. Let N be a 3-dimensional 5-Lorentzian trans-Sasakian manifold and ¢ be a Frenet curve
on N. The Frenet vector fields t, n and b are in the form of

r = g’ =e,
n = Le2+ie3, (3.19)
&K &K
1 v\  ou pv
b = —||—| ——1|- +—
e3T (82K) 82K[ “ara '/81+(5p2) ©2
1 w\  ov pv
- —|l— +—1- + — .
E3T (82/() Szk( ar ',81 +6p2J €3
Moreover we have
OuAe| + 0p*
£ = Sept+ BN, (3.20)
&K
&1 + 6p? ( u ) % pv
- — -] -—|-5ja+ ———||b
&3T &K EXK Ve + 6p2

Let { be non-geodesic Frenet curve given with the arc-parameter s in 3-dimensional d-Lorentzian
trans-Sasakian manifold N. So we can give the following theorem.

Theorem 3.2. Let N be a 3-dimensional 5-Lorentzian trans-Sasakian manifold and ¢ be a Frenet
curve on N. ( is a slant curve (p = n({’) = cos® = constant) on N if and only if the Frenet elements
{t,n,b,k, T} of  are as follows.

AIMS Mathematics Volume 7, Issue 1, 199-211.



205

b o= o= —&1& + o6cosll (3.21)

V&l + 8cos?0 ’

K = \/,82(81 + 6cos20) + 12,

5(—810’ + —\/‘%)
112
Al

(—sléﬂ\/sl+6coszﬁ)l]2 .

&K

Proof. Let the curve ¢ be a slant curve in 3-dimensional §-Lorentzian trans-Sasakian manifold N. If
we take into account the condition p = n({") = cosd = constant in the Eqs (3.1), (3.13) and (3.17)
we find (3.21). If the equations in (3.21) hold, from the definition of slant curves it is obvious that the
curve { is a slant curve. |

If we consider the Theorem (3.1), we can give the following corollaries.

Corollary 3.1. Let N be a 3-dimensional S-Lorentzian trans-Sasakian manifold and { be a slant
curve on N. If the first curvature k is non-zero constant, then [ is a pseudo-helix with

S -1 + costv
Ve1+dcos? 6

Corollary 3.2. Let N be a 3-dimensional 6-Lorentzian trans-Sasakian manifold and { be a slant curve
on this manifold N. If k is not constant and T = 0, then, { is a plane curve and the following equation

satisfies
vz({—f)’ \er +5cos? o

V2 + B(e; + 6 cos?h)

T =

8(Vper,e3) = (3.22)
Theorem 3.3. Let N be a 3-dimensional §-Lorentzian trans-Sasakian manifold and ¢ be a spacelike
Frenet curve on N. [ is a Legendre curve(p = 1n({") = 0) in this manifold if and only if the Frenet
elements {t,n, b, k, T} of { satisfy the following equations:

t = e =7,

n = e =@,

b o= e = -t (3.23)
K = VvV +p2

2
+

..l
Il

’ 712
R SR}
&K ErK
Proof. Let the curve ¢ be a Legendre curve 3-dimensional §-Lorentzian trans-Sasakian manifold N. If
we take into account the condition p = (") = 0 in the Eqgs (3.1), (3.13) and (3.17) we find (3.23). If

the equations in (3.23) hold, from the definition of Legendre curves it is obvious that the curve { is a
Legendre curve on N. m|
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Corollary 3.3. Let the curve { be a Legendre curve in 3-dimensional 6-Lorentzian trans-Sasakian
manifold N. If k is non-zero constant and 7 is equal to zero, then { is a plane curve and a = 0.

If we consider the Egs (3.13) and (3.17) and theorem (3.1) we can give the following corollaries.

Corollary 3.4. Let N be a 3-dimensional §-Lorentzian trans-Sasakian manifold and ¢ be a Frenet
curve on this manifold N. The first curvature of the curve ¢ is not dependent on a and .

Corollary 3.5. From the Eqs (3.13) and (3.17) the first curvature and the second curvature of { on
3-dimensional §-Lorentzian cosymplectic manifold N are

2
k= Al a| =22, (3.24)
Veér + (()‘p2

and

2

(3.25)

Z
=10 — — +

£ + 6p? &K £k &1 + O6p?
i) If the curve ¢ in 3-dimensional §-Lorentzian cosymplectic manifold N is a slant curve, then we have

vcoso

V& +8cos?d

ii) If the curve { in 3-dimensional 6-Lorentzian cosymplectic manifold N is a Legendre curve, then we

k=v and T=|0

) (3.26)

have

k=v and T=0. (3.27)

Corollary 3.6. Let [ be a curve on 3-dimensional 5-Lorentzian B-Kenmotsu manifold N. Then, the first
and second curvatures of { are

2

6 ’

K= A2+ | —F _e68 e + 602, (3.28)
Ve + (5p2

and

o—=
Ve1+6p?

/ /2
T = % 168\ 1 +6p2 A
][

&K

&K

If the curve ( is a slant curve on N, then we have

k = V2 +pBe +6cos?h), (3.29)

S vcos6

Vei+6cos? 0
T = M2 .
B [(L)/]z N —£168 \s1+6cos? 0
&2K &E2K
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If the curve [ is a Legendre curve on N, then we have

2

(/g)]z (3.30)

Corollary 3.7. Let / be a curve on 3-dimensional 5-Lorentzian a-Sasakian manifold N. Then, the first
curvature and the second curvature of { are

+ &
ErK

2
‘= v2+(—5” ] (3.31)
Vel + 6p?

and

O|l—eja + —£&
£1+0p?

|l

712
op’
&2k \ &1 +6p?

The curvatures of { are

0
k=v and T= 5(—810’ + L) , (3.32)
Ve +6cos? o
where ( is a slant curve in 3-dimensional 6-Lorentzian a-Sasakian manifold N and
k=v and T=|g0dal, (3.33)

where ( is a Legendre curve in 3-dimensional 5-Lorentzian a-Sasakian manifold N.

Corollary 3.8. From the Eqgs (3.13) and (3.17) the first curvature and the second curvature of { on
3-dimensional 6-Lorentzian Kenmotsu manifold N are

2
6 ’
K= Jvz + (L —&g10&] + 6p? |, (3.34)

Vel + 6p?

and
o—=
Ve +op?

’
T = P £1+0p?
e

E2K

2

£2K

i) If the curve ¢ in 3-dimensional §-Lorentzian Kenmotsu manifold N is a slant curve, then we obtain

kK = W2 +e +6cos?b, (3.35)
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S vcost

Vei1+6cos? 6
T = 112
_ [(L)/]z + (—816\/31+6c0s20) ]
&2k

&K
ii) If the curve { in 3-dimensional 6-Lorentzian Kenmotsu manifold N is a Legendre curve, then we

have
(K;)r (3.36)

Corollary 3.9. Let ¢ be a curve on 3-dimensional 6-Lorentzian Sasakian manifold N. Then, the first
and second curvatures of { are

+ &

et o= 2]

&K

2
k= A2 | (3.37)
\181+5p2

and

T

If the curve { is a slant curve on N, then we have

—~l
Il

712
op’
&2k \ &1 +6p?

0
k=v and T= 6(—81 + L) . (3.38)
Ve +5cos? b
If the curve { is a Legendre curve on N, then we obtain
k=v and T=|gd|. (3.39)
4. Examples
Let N be a 3-dimensional manifold given
N ={(ny2 e R z20], (4.1)
where (x,y,z) denote the standart co-ordinates in R*. Then
0 0 0
Ei=7—, E,=7—, E3=-7—, 4.2
1=2Z Ix 2 =2 8y 3 < 9z 4.2)

are linearly independent of each point of N [17]. Let g be the Lorentzian metric tensor defined by

8(E\,Ey) = 8(Ey, E,) = 8(E3, E3) =6, (4.3)
8(ELE;)=0, i+,
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fori,j = 1,2,3 and 6 = F1. Let n be a 1-form defined by n(Z) = 6g(Z, E;) for any vector field
Z € I(TN). Let ¢ be the (1,1)-tensor field defined by

QDEI = —Ez, QDEZ = El’ QDE3 =0. (44)
Then using the condition of the linearity of ¢ and g, we obtain n(E3) = 1 and

©’Z = Z +n(Z)E;, (4.5)
8(0Z, oW) = 3(Z, W) — sn(Z)n(W),

for all Z, W € I'(TN).
Now, let V be the Levi-Civita connection with respect to the Lorentzian metric g. Then we obtain

[E1, E2] =0, [Ey, E3] =0E,, [E», E3]=0E;. (4.6)
The Riemannian connection V with respect to the metric g is given by

28(VxY,Z2) = Xg(Y,Z)+Yg(Z X)—Zg(X,Y) 4.7)
+ 8([X,Y],2)-g(Y.Z],X) + 8([Z, X1, Y).

If we use this equation which is known as Koszul’s formula for the Lorentzian metric tensor g, we
can easily calculate the covariant derivations as follows:

Vi E3 = 6E,, Vg,E3=0E;, VgE;=0,
VE1E2 = 0, VEZEZ = —5E3, VE3E2 = O, (48)
VElEl = —5E3, VE2E1 = O VE3E1 = O

From the above relations, for any vector field X on N, we have

Vxé = 6(X + (X)), (4.9)

for ¢ = E;, @ = 0 and B8 = 1. Hence the manifold N under consideration is a §-Lorentzian trans-
Sasakian of type (0, 1) manifold of dimension three.

Example 4.1. Let y be a spacelike curve defined as

y: I - N
s —y(s) = (2lns,2,Ins),

where the curve y parametrized by the arc length parameter t. If we differentiate y(t) and consider (3.1)
we find

dy 2 |
4 =vy'(t) = —FE, — —FE;3,

dr - NG

and
e =Y (1),
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ey = Ey,
ez = —LE + LE
3 N 1 N 3,
where p = n(y'(t)). If we consider the Egs (3.2), (3.3), (3.5), (3.13) and (3.17) we can write
pzé%, ,u:—%, v:(%, (4.10)
4 1
K= 3’ T= 3

Thus, the curve vy is a spacelike helix in N.
Example 4.2. Let w be a spacelike Legendre curve defined as
w: I >N
s s
=177~ 1 .
s — w(s) ( 73 )

where the curve w parametrized by the arc length parameter t. If we differentiate w(t) and using (3.1)
we find

do _ o N2 2

= W (1) = —E, + —E,,
AU S
and er = w'(D),
V2. V2
et b
€3——E3.

If we consider the Egs (3.2), (3.3), (3.5), (3.13) and (3.17) we obtain

p=0, p=-0p, v=0, (4.11)

k=2IB], T=|a.
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