Mathematics

Research article

Frenet curves in 3-dimensional δ-Lorentzian trans Sasakian manifolds

Muslum Aykut Akgun*
Department of Mathematics, Technical Sciences Vocational School, Adiyaman University, Turkey
* Correspondence: Email: muslumakgun@adiyaman.edu.tr.

Abstract

In this paper, we give some characterizations of Frenet curves in 3-dimensional δ Lorentzian trans-Sasakian manifolds. We compute the Frenet equations and Frenet elements of these curves. We also obtain the curvatures of non-geodesic Frenet curves on 3-dimensional δ-Lorentzian trans-Sasakian manifolds. Finally, we give some results for these curves.

Keywords: Frenet curves; Frenet elements; Lorentzian metric; almost contact metric manifold; δ-Lorentzian manifold
Mathematics Subject Classification: 53A35, 53B30

1. Introduction

The differential geometry of curves especially in contact and para-contact manifolds studied by several authors. Olszak [16], derived certain necessary and sufficient conditions for an almost contact metric (a.c.m) structure on M to be normal and point out some of their consequences. Olszak completely characterized the local nature of normal a.c.m. structures on M by giving suitable examples. Moreover Olszak gave some restrictions on the scalar curvature in contact metric manifolds which are conformally flat or of constant ϕ-sectional curvature in [15].

Welyczko [21], generalized some of results for Legendre curves to the case of 3-dimensional normal almost contact metric manifolds, especially, quasi-Sasakian manifolds. Welyczko [20], studied the curvature and torsion of slant Frenet curves in 3-dimensional normal almost paracontact metric manifolds.

Curvature and torsion of Legendre curves in 3-dimensional (ε, δ) trans-Sasakian manifolds was obtained in [1]. Lee defined Lorentzian cross product in a three-dimensional almost contact Lorentzian manifold. Using a Lorentzian cross product, Lee proved that the ratio of κ and $\tau-1$ is constant along a Frenet slant curve in a Sasakian Lorentzian three-manifold. Moreover, Lee proved that γ is a slant curve if and only if M is Sasakian for a contact magnetic curve γ in contact Lorentzian three-manifold M in [11]. Lee, also gave the properties of the generalized Tanaka-Webster connection in a contact

Lorentzian manifold in [12].
Yldrm [22] obtained curvatures of non-geodesic Frenet curves on 3-dimensional normal almost contact manifolds without neglecting α and β, and provided the results of their characterization.

Trans-Sasakian structure on a manifold with Lorentzian metric and conformally flat Lorentzian trans-Sasakian manifolds was studied in [19].

Siddiki [17] studied δ-Lorentzian trans-Sasakian manifolds with a semi-symmetric-metric connection and computed curvature tensors, Ricci curvature tensors and scalar curvature of the δ-Lorentzian trans-Sasakian manifold with a semi-symmetric-metric connection.

In this framework, the paper is organized in the following way. In section 2, we give basic definitions and propositions of a δ-Lorentzian trans-Sasakian manifold. We give the Frenet-Serret equations of a curve in Lorentzian 3-manifold. In section 3, we obtain an orthonormal basis $\left\{e_{1}, e_{2}, e_{3}\right\}$ by using the basis $\left(\zeta^{\prime}, \varphi \zeta^{\prime}, \xi\right)$ for the curve ζ in a 3 -dimensional δ-Lorentzian trans-Sasakian manifold. Also we calculate the Frenet elements of a non-geodesic Frenet curve, slant curve and Legendre curve in this manifold. Then, we give the curvatures of the curve ζ on some kinds of δ-Lorentzian manifolds. In the last section, we give some examples for the spacelike curves on a 3-dimensional δ-Lorentzian trans-Sasakian manifold.

2. Materials and methods

2.1. δ-Lorentzian trans-Sasakian Manifolds

Let \bar{N} be a δ-almost contact metric manifold equipped with δ-almost contact metric structure $(\varphi, \xi, \eta, \bar{g}, \delta)$ consisting of $(1,1)$ tensor field φ, a vector field ξ, a 1-form η and an indefinite metric \bar{g} such that

$$
\begin{array}{r}
\varphi^{2}=U+\eta(U) \xi, \quad \eta(\xi)=-1, \\
\varphi(\xi)=0, \quad \eta \circ \varphi=0, \\
\bar{g}(\xi, \xi)=-\delta, \\
\eta(U)=\delta \bar{g}(U, \xi), \\
\bar{g}(\varphi U, \varphi V)=\bar{g}(U, V)+\delta \eta(U) \eta(V), \tag{2.5}
\end{array}
$$

for all $U, V \in \bar{N}$, where $\delta^{2}=1$ so that $\delta=\mp 1$. The above structure $(\varphi, \xi, \eta, \bar{g}, \delta)$ is called the δ Lorentzian structure on \bar{N}. If $\delta=1$, then the manifold becomes the usual Lorentzian structure [2] on \bar{N}, the vector field ξ is timelike [18].

In the classification of almost Hermitian manifolds, there appears a class W_{4} of Hermitian manifolds which are closely related to the conformal Kaehler manifolds [17]. The class $C_{6} \oplus C_{5}$ coincides with the class of trans-Sasakian structue of type (α, β) [13]. In fact, the local nature of the two sub classes, namely C_{6} and C_{5} of trans-Sasakian structures are charactrized completely. An almost contact metric structure on \bar{N} is called trans-Sasakian if ($\bar{N} \times \Re, J, G$) belongs to the class W_{4}, where J is the almost complex structure on $\bar{N} \times \Re$ defined by

$$
\begin{equation*}
J\left(U, f \frac{d}{d t}\right)=\left(\varphi U-f \xi, \eta(U) \frac{d}{d t}\right), \tag{2.6}
\end{equation*}
$$

for all vector fields U on \bar{N} and smooth functions f on $\bar{N} \times \Re$ and G is the product metric on $\bar{N} \times \Re$. This may be expressed by the condition

$$
\begin{equation*}
\left(\nabla_{U} \varphi\right) V=\alpha(\bar{g}(U, V) \xi-\eta(V) U)+\beta(\bar{g}(\varphi U, V) \xi-\eta(V) \varphi U) \tag{2.7}
\end{equation*}
$$

for any vector fields U and V on \bar{N}, ∇ denotes the Levi-Civita connection with respect to \bar{g}, α and β are smooth functions on \bar{N} [17]. The existence of condition (2.3) is ensure by the above discussion.

With the above literature, the δ-Lorentzian trans-Sasakian manifolds are defined as follows.
Definition 2.1. [2] A δ-Lorentzian manifold with structure $(\varphi, \xi, \eta, \bar{g}, \delta)$ is said to be δ-Lorentzian trans-Sasakian manifold of type (α, β) if it satisfies the condition

$$
\begin{equation*}
\left(\nabla_{U} \varphi\right) V=\alpha(\bar{g}(U, V) \xi-\delta \eta(V) U)+\beta(\bar{g}(\varphi U, V) \xi-\delta \eta(V) \varphi U) \tag{2.8}
\end{equation*}
$$

for any vector fields U and V on \bar{N}.
If $\delta=1$, then the δ-Lorentzian trans-Sasakian manifold becomes the usual Lorentzian trans-Sasakian manifold of type (α, β) [17]. δ-Lorentzian trans-Sasakian manifold of type $(0,0),(0, \beta),(\alpha, 0)$ are the Lorentzian cosymplectic, Lorentzian β-Kenmotsu and Lorentzian α-Sasakian manifolds respectively. In particular if $\alpha=1, \beta=0$ and $\alpha=0, \beta=1$, a δ-Lorentzian trans-Sasakian manifold reduces to a δ-Lorentzian Sasakian manifold and a δ-Lorentzian Kenmotsu manifold respectively.

From (2.4), we have

$$
\begin{equation*}
\nabla_{U} \xi=\delta(-\alpha \varphi(U)-\beta(U+\eta(U) \xi)) \tag{2.9}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\nabla_{U} \eta\right) V=\alpha \bar{g}(\varphi U, V)+\beta[\bar{g}(U, V)+\delta \eta(U) \eta(V)] . \tag{2.10}
\end{equation*}
$$

Further for a δ-Lorentzian trans-Sasakian manifold, we have

$$
\begin{equation*}
\delta \varphi(\operatorname{grad} \alpha)=\delta(n-2)(\operatorname{grad} \beta), \tag{2.11}
\end{equation*}
$$

and

$$
\begin{equation*}
2 \alpha \beta-\delta(\xi \alpha)=0 \tag{2.12}
\end{equation*}
$$

2.2. Frenet curves

Let $\zeta: I \rightarrow \bar{N}$ be a unit speed curve in Lorentzian 3-manifold \bar{N} such that $\bar{g}\left(\zeta^{\prime}, \zeta^{\prime}\right)=\varepsilon_{1}=\mp 1$. The constant ε_{1} is called the casual character of ζ. The constants ε_{2} and ε_{3} defined by $\bar{g}(n, n)=\varepsilon_{2}$ and $\bar{g}(b, b)=\varepsilon_{3}$ and called the second casual character and third casual character of ζ, respectively. Thus we have $\varepsilon_{1} \varepsilon_{2}=-\varepsilon_{3}$.

A unit speed curve ζ is said to be spacelike or timelike if its casual character is 1 or -1 , respectively. A unit speed curve ζ is said to be a Frenet curve if $\bar{g}\left(\zeta^{\prime}, \zeta^{\prime}\right) \neq 0$. A Frenet curve ζ admits an orthonormal frame field $\left\{t=\zeta^{\prime}, n, b\right\}$ along ζ. Then the Frenet-Serret equations are given as follows

$$
\begin{align*}
\nabla_{\zeta^{\prime}} t & =\varepsilon_{2} \kappa n, \\
\nabla_{\zeta^{\prime}} n & =-\varepsilon_{1} \kappa t-\varepsilon_{3} \tau b, \tag{2.13}\\
\nabla_{\zeta^{\prime}} b & =\varepsilon_{2} \tau n,
\end{align*}
$$

where $\kappa=\left|\nabla_{\zeta^{\prime}} \zeta^{\prime}\right|$ is first curvature and τ is second curvature of $\zeta[11]$. The vector fields t, n and b are called the tangent vector field, the principal normal vector field and the binormal vector field of ζ, respectively.

A Frenet curve ζ is a geodesic if and only if $\kappa=0$. A Frenet curve ζ with constant first curvature and zero second curvature is called a pseudo-circle. A pseudo-helix is a Frenet curve ζ whose curvatures are constant.

A curve in a Lorentzian three-manifold is said to be slant if its tangent vector field has constant angle with the Reeb vector field, i.e., $\eta\left(\zeta^{\prime}\right)=-\bar{g}\left(\zeta^{\prime}, \xi\right)=$ constant. If $\eta\left(\zeta^{\prime}\right)=-\bar{g}\left(\zeta^{\prime}, \xi\right)=0$, then the curve ζ is called a Legendre curve [11].

3. Main results

In this section, we consider a 3-dimensional δ-Lorentzian trans-Sasakian manifold \bar{N}. Let $\zeta: I \rightarrow \bar{N}$ be a non-geodesic ($\kappa \neq 0$) Frenet curve given with the arc-parameter s and $\bar{\nabla}$ be the Levi-Civita connection on \bar{N}. From the basis $\left(\zeta^{\prime}, \varphi \zeta^{\prime}, \xi\right)$ we obtain an orthonormal basis $\left\{e_{1}, e_{2}, e_{3}\right\}$ given by

$$
\begin{align*}
e_{1} & =\zeta^{\prime} \\
e_{2} & =\frac{\varphi \zeta^{\prime}}{\sqrt{\varepsilon_{1}+\delta \rho^{2}}} \tag{3.1}\\
e_{3} & =\frac{-\varepsilon_{1} \xi+\delta \rho \zeta^{\prime}}{\sqrt{\varepsilon_{1}+\delta \rho^{2}}},
\end{align*}
$$

where

$$
\begin{equation*}
\eta\left(\zeta^{\prime}\right)=\delta \bar{g}\left(\zeta^{\prime}, \xi\right)=\delta \rho . \tag{3.2}
\end{equation*}
$$

Then if we write the covariant differentiation of ζ^{\prime} as

$$
\begin{equation*}
\bar{\nabla}_{\zeta^{\prime}} e_{1}=v e_{2}+\mu e_{3}, \tag{3.3}
\end{equation*}
$$

where v is a certain function.

$$
\begin{equation*}
v=\bar{g}\left(\bar{\nabla}_{\zeta^{\prime}} e_{1}, e_{2}\right) . \tag{3.4}
\end{equation*}
$$

Moreover we obtain

$$
\begin{equation*}
\mu=\bar{g}\left(\bar{\nabla}_{\zeta^{\prime}} e_{1}, e_{3}\right)=\frac{\delta \rho^{\prime}}{\sqrt{\varepsilon_{1}+\delta \rho^{2}}}-\varepsilon_{1} \delta \beta \sqrt{\varepsilon_{1}+\delta \rho^{2}}, \tag{3.5}
\end{equation*}
$$

where $\rho^{\prime}(s)=\frac{d \rho(\zeta(s))}{d s}$. Then we find

$$
\begin{equation*}
\bar{\nabla}_{\zeta^{\prime}} e_{2}=-v e_{1}+\delta\left(-\varepsilon_{1} \alpha+\frac{\rho v}{\sqrt{\varepsilon_{1}+\delta \rho^{2}}}\right) e_{3} \tag{3.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\bar{\nabla}_{\breve{\zeta}^{\prime}} e_{3}=-\mu e_{1}-\delta\left(-\varepsilon_{1} \alpha+\frac{\rho v}{\sqrt{\varepsilon_{1}+\delta \rho^{2}}}\right) e_{2} . \tag{3.7}
\end{equation*}
$$

The fundamental forms of the tangent vector ζ^{\prime} on the basis of the Eq (3.1) is

$$
\left[\omega_{i j}\left(\zeta^{\prime}\right)\right]=\left[\begin{array}{ccc}
0 & v & \mu \tag{3.8}\\
-v & 0 & \delta\left(-\varepsilon_{1} \alpha+\frac{\rho v}{\sqrt{\varepsilon_{1}+\delta \rho^{2}}}\right) \\
-\mu & -\delta\left(-\varepsilon_{1} \alpha+\frac{\rho v}{\sqrt{\varepsilon_{1}+\delta \rho^{2}}}\right) & 0
\end{array}\right],
$$

and the Darboux vector connected to the vector ζ^{\prime} is

$$
\begin{equation*}
\omega\left(\zeta^{\prime}\right)=\delta\left(-\varepsilon_{1} \alpha+\frac{\rho v}{\sqrt{\varepsilon_{1}+\delta \rho^{2}}}\right) e_{1}-\mu e_{2}+v e_{3} . \tag{3.9}
\end{equation*}
$$

So we can write

$$
\begin{equation*}
\bar{\nabla}_{\zeta^{\prime}} e_{i}=\omega\left(\zeta^{\prime}\right) \wedge \varepsilon_{i} e_{i} \quad(1 \leq i \leq 3) . \tag{3.10}
\end{equation*}
$$

Furthermore, for any vector field $Z=\sum_{i=1}^{3} \theta^{i} e_{i} \in \chi(\bar{N})$ strictly dependent on the curve ζ on \bar{N}, there exists the following equation

$$
\begin{equation*}
\bar{\nabla}_{\zeta^{\prime}} Z=\omega\left(\zeta^{\prime}\right) \wedge Z+\delta \sum_{i=1}^{3} \varepsilon_{i} e_{i}\left[\theta^{i}\right] e_{i} . \tag{3.11}
\end{equation*}
$$

3.1. Frenet elements of ζ

Let $\zeta: I \rightarrow \bar{N}$ be a non-geodesic $(\kappa \neq 0)$ Frenet curve given with the arc parameter s and the elements $\{t, n, b, \kappa, \tau\}$. The Frenet elements of this curve are calculated as follows:

If we consider the Eq (3.3), then we get

$$
\begin{equation*}
\varepsilon_{2} \kappa n=\bar{\nabla}_{\zeta^{\prime}} e_{1}=v e_{2}+\mu e_{3} . \tag{3.12}
\end{equation*}
$$

From the Eqs (3.5) and (3.12) we find

$$
\begin{equation*}
\kappa=\sqrt{v^{2}+\left(\frac{\delta \rho^{\prime}}{\sqrt{\varepsilon_{1}+\delta \rho^{2}}}-\varepsilon_{1} \delta \beta \sqrt{\varepsilon_{1}+\delta \rho^{2}}\right)^{2}} . \tag{3.13}
\end{equation*}
$$

On the other hand

$$
\begin{align*}
\bar{\nabla}_{\zeta^{\prime}} n & =\left(\frac{v}{\varepsilon_{2} K}\right)^{\prime} e_{2}+\frac{v}{\varepsilon_{2} \kappa} \nabla_{\zeta^{\prime}} e_{2}+\left(\frac{\mu}{\varepsilon_{2} \kappa}\right)^{\prime} e_{3}+\frac{\mu}{\varepsilon_{2} \kappa} \nabla_{\zeta^{\prime}} e_{3} \tag{3.14}\\
& =-\varepsilon_{1} \kappa t-\varepsilon_{3} \tau B . \tag{3.15}
\end{align*}
$$

By means of the Eqs (3.6) and (3.7) we obtain

$$
\begin{equation*}
-\varepsilon_{3} \tau B=\left[\left(\frac{v}{\varepsilon_{2} \kappa}\right)^{\prime}-\frac{\delta \mu}{\varepsilon_{2} \kappa}\left(-\varepsilon_{1} \alpha+\frac{\rho v}{\sqrt{\varepsilon_{1}+\delta \rho^{2}}}\right)\right] e_{2} \tag{3.16}
\end{equation*}
$$

$$
+\left[\left(\frac{\mu}{\varepsilon_{2} K}\right)^{\prime}+\frac{\delta v}{\varepsilon_{2} K}\left(-\varepsilon_{1} \alpha+\frac{\rho v}{\sqrt{\varepsilon_{1}+\delta \rho^{2}}}\right)\right] e_{3} .
$$

By a direct computation we find

$$
\begin{equation*}
\left[\left(\frac{v}{\varepsilon_{2} K}\right)^{\prime}\right]^{2}+\left[\left(\frac{\mu}{\varepsilon_{2} K}\right)^{\prime}\right]^{2}=\left[\left(\frac{v}{\varepsilon_{2} K}\right)^{\prime} \frac{\mu}{\varepsilon_{2} K}-\frac{v}{\varepsilon_{2} K}\left(\frac{\mu}{\varepsilon_{2} K}\right)^{\prime}\right]^{2} \tag{3.17}
\end{equation*}
$$

Taking the norm of the last equation and if we consider the Eqs (3.5) and (3.16) on (3.15) we obtain

$$
\tau=\left\lvert\, \begin{gather*}
\delta\left(-\varepsilon_{1} \alpha+\frac{\rho v}{\sqrt{\varepsilon_{1}+\delta \rho^{2}}}\right)- \tag{3.18}\\
\left.\left.\sqrt{\left[\left(\frac{v}{\varepsilon_{2} \kappa}\right)^{\prime}\right]^{2}+\left[\left(\frac{\frac{\delta \rho^{\prime}}{\sqrt{\varepsilon_{1}+\delta \rho^{2}}}-\varepsilon_{1} \delta \beta \sqrt{\varepsilon_{1}+\delta \rho^{2}}}{\varepsilon_{2} \kappa}\right.\right.}\right)^{\prime}\right]^{2}
\end{gather*} .\right.
$$

Moreover we can write the Frenet vector fields of ζ as in the following theorem.
Theorem 3.1. Let \bar{N} be a 3-dimensional δ-Lorentzian trans-Sasakian manifold and ζ be a Frenet curve on \bar{N}. The Frenet vector fields t, n and b are in the form of

$$
\begin{align*}
t & =\zeta^{\prime}=e_{1}, \\
n & =\frac{v}{\varepsilon_{2} K} e_{2}+\frac{\mu}{\varepsilon_{2} K} e_{3}, \tag{3.19}\\
b & =-\frac{1}{\varepsilon_{3} \tau}\left[\left(\frac{v}{\varepsilon_{2} K}\right)^{\prime}-\frac{\delta \mu}{\varepsilon_{2} K}\left(-\varepsilon_{1} \alpha+\frac{\rho v}{\sqrt{\varepsilon_{1}+\delta \rho^{2}}}\right)\right] e_{2} \\
& -\frac{1}{\varepsilon_{3} \tau}\left[\left(\frac{\mu}{\varepsilon_{2} K}\right)^{\prime}+\frac{\delta v}{\varepsilon_{2} K}\left(-\varepsilon_{1} \alpha+\frac{\rho v}{\sqrt{\varepsilon_{1}+\delta \rho^{2}}}\right)\right] e_{3} .
\end{align*}
$$

Moreover we have

$$
\begin{align*}
\xi & =\delta \varepsilon_{1} \rho \mathbf{t}+\frac{\delta \mu \sqrt{\varepsilon_{1}+\delta \rho^{2}}}{\varepsilon_{2} K} \mathbf{n} \tag{3.20}\\
& -\frac{\delta \sqrt{\varepsilon_{1}+\delta \rho^{2}}}{\varepsilon_{3} \tau}\left[\left(\frac{\mu}{\varepsilon_{2} \kappa}\right)^{\prime}-\frac{\delta v}{\varepsilon_{2} K}\left(-\varepsilon_{1} \alpha+\frac{\rho v}{\sqrt{\varepsilon_{1}+\delta \rho^{2}}}\right)\right] \mathbf{b} .
\end{align*}
$$

Let ζ be non-geodesic Frenet curve given with the arc-parameter s in 3-dimensional δ-Lorentzian trans-Sasakian manifold \bar{N}. So we can give the following theorem.

Theorem 3.2. Let \bar{N} be a 3-dimensional δ-Lorentzian trans-Sasakian manifold and ζ be a Frenet curve on \bar{N}. ζ is a slant curve $\left(\rho=\eta\left(\zeta^{\prime}\right)=\cos \theta=\right.$ constant $)$ on \bar{N} if and only if the Frenet elements $\{t, n, b, \kappa, \tau\}$ of ζ are as follows.

$$
\begin{aligned}
t & =e_{1}=\zeta^{\prime} \\
n & =e_{2}=\frac{\varphi \zeta^{\prime}}{\sqrt{\varepsilon_{1}+\delta \cos ^{2} \theta}}
\end{aligned}
$$

$$
\begin{gather*}
b=e_{3}=\frac{-\varepsilon_{1} \xi+\delta \cos \theta \zeta^{\prime}}{\sqrt{\varepsilon_{1}+\delta \cos ^{2} \theta}} \tag{3.21}\\
\tau=\sqrt{\beta^{2}\left(\varepsilon_{1}+\delta \cos ^{2} \theta\right)+v^{2}} \\
\tau=\left\lvert\, \begin{array}{c}
\delta\left(-\varepsilon_{1} \alpha+\frac{\cos \theta v}{\sqrt{\varepsilon_{1}+\delta \cos ^{2} \theta}}\right) \\
\left.\left.-\sqrt{\left[\left(\frac{v}{\varepsilon_{2} \kappa}\right)^{\prime}\right]^{2}+\left[\left(\frac{-\varepsilon_{1} \delta \beta \sqrt{\varepsilon_{1}+\delta \cos ^{2} \theta}}{\varepsilon_{2} K}\right.\right.}\right)^{\prime}\right]^{2}
\end{array} .\right.
\end{gather*}
$$

Proof. Let the curve ζ be a slant curve in 3 -dimensional δ-Lorentzian trans-Sasakian manifold \bar{N}. If we take into account the condition $\rho=\eta\left(\zeta^{\prime}\right)=\cos \theta=$ constant in the Eqs (3.1), (3.13) and (3.17) we find (3.21). If the equations in (3.21) hold, from the definition of slant curves it is obvious that the curve ζ is a slant curve.

If we consider the Theorem (3.1), we can give the following corollaries.
Corollary 3.1. Let \bar{N} be a 3-dimensional δ-Lorentzian trans-Sasakian manifold and ζ be a slant curve on \bar{N}. If the first curvature κ is non-zero constant, then ζ is a pseudo-helix with $\tau=\left|\delta\left(-\varepsilon_{1} \alpha+\frac{\cos \theta \nu}{\sqrt{\varepsilon_{1}+\delta \cos ^{2} \theta}}\right)\right|$.
Corollary 3.2. Let \bar{N} be a 3-dimensional δ-Lorentzian trans-Sasakian manifold and ζ be a slant curve on this manifold \bar{N}. If κ is not constant and $\tau=0$, then, ζ is a plane curve and the following equation satisfies

$$
\begin{equation*}
\bar{g}\left(\nabla_{\zeta^{\prime}} e_{2}, e_{3}\right)=\frac{v^{2}\left(\frac{\beta}{v}\right)^{\prime} \sqrt{\varepsilon_{1}+\delta \cos ^{2} \theta}}{v^{2}+\beta^{2}\left(\varepsilon_{1}+\delta \cos ^{2} \theta\right)} . \tag{3.22}
\end{equation*}
$$

Theorem 3.3. Let \bar{N} be a 3-dimensional δ-Lorentzian trans-Sasakian manifold and ζ be a spacelike Frenet curve on $\bar{N} . \zeta$ is a Legendre curve $\left(\rho=\eta\left(\zeta^{\prime}\right)=0\right.$) in this manifold if and only if the Frenet elements $\{t, n, b, \kappa, \tau\}$ of ζ satisfy the following equations:

$$
\begin{align*}
t & =e_{1}=\zeta^{\prime}, \\
n & =e_{2}=\varphi \zeta^{\prime}, \\
b & =e_{3}=-\xi, \tag{3.23}\\
\kappa & =\sqrt{v^{2}+\beta^{2}}, \\
\tau & =\left|\delta \alpha+\sqrt{\left[\left(\frac{v}{\varepsilon_{2} \kappa}\right)^{\prime}\right]^{2}+\left[\left(\frac{\beta}{\varepsilon_{2} \kappa}\right)^{\prime}\right]^{2}}\right| .
\end{align*}
$$

Proof. Let the curve ζ be a Legendre curve 3-dimensional δ-Lorentzian trans-Sasakian manifold \bar{N}. If we take into account the condition $\rho=\eta\left(\zeta^{\prime}\right)=0$ in the Eqs (3.1), (3.13) and (3.17) we find (3.23). If the equations in (3.23) hold, from the definition of Legendre curves it is obvious that the curve ζ is a Legendre curve on \bar{N}.

Corollary 3.3. Let the curve ζ be a Legendre curve in 3-dimensional δ-Lorentzian trans-Sasakian manifold \bar{N}. If κ is non-zero constant and τ is equal to zero, then ζ is a plane curve and $\alpha=0$.

If we consider the Eqs (3.13) and (3.17) and theorem (3.1) we can give the following corollaries.
Corollary 3.4. Let \bar{N} be a 3-dimensional δ-Lorentzian trans-Sasakian manifold and ζ be a Frenet curve on this manifold \bar{N}. The first curvature of the curve ζ is not dependent on α and β.
Corollary 3.5. From the Eqs (3.13) and (3.17) the first curvature and the second curvature of ζ on 3-dimensional δ-Lorentzian cosymplectic manifold \bar{N} are

$$
\begin{equation*}
\kappa=\sqrt{v^{2}+\left(\frac{\delta \rho^{\prime}}{\sqrt{\varepsilon_{1}+\delta \rho^{2}}}\right)^{2}}, \tag{3.24}
\end{equation*}
$$

and

$$
\begin{equation*}
\tau=\left|\delta \frac{\rho v}{\sqrt{\varepsilon_{1}+\delta \rho^{2}}}-\sqrt{\left[\left(\frac{v}{\varepsilon_{2} \kappa}\right)^{\prime}\right]^{2}+\left[\left(\frac{\delta \rho^{\prime}}{\varepsilon_{2} \kappa \sqrt{\varepsilon_{1}+\delta \rho^{2}}}\right)^{\prime}\right]^{2}}\right| . \tag{3.25}
\end{equation*}
$$

i) If the curve ζ in 3-dimensional δ-Lorentzian cosymplectic manifold \bar{N} is a slant curve, then we have

$$
\begin{equation*}
\kappa=v \quad \text { and } \quad \tau=\left|\delta \frac{v \cos \theta}{\sqrt{\varepsilon_{1}+\delta \cos ^{2} \theta}}\right| . \tag{3.26}
\end{equation*}
$$

ii) If the curve ζ in 3-dimensional δ-Lorentzian cosymplectic manifold \bar{N} is a Legendre curve, then we have

$$
\begin{equation*}
\kappa=v \quad \text { and } \quad \tau=0 \tag{3.27}
\end{equation*}
$$

Corollary 3.6. Let ζ be a curve on 3-dimensional δ-Lorentzian β-Kenmotsu manifold \bar{N}. Then, the first and second curvatures of ζ are

$$
\begin{equation*}
\kappa=\sqrt{v^{2}+\left(\frac{\delta \rho^{\prime}}{\sqrt{\varepsilon_{1}+\delta \rho^{2}}}-\varepsilon_{1} \delta \beta \sqrt{\varepsilon_{1}+\delta \rho^{2}}\right)^{2}}, \tag{3.28}
\end{equation*}
$$

and

$$
\left.\left.\tau=\left\lvert\,-\sqrt{\delta \frac{\rho \nu}{\sqrt{\varepsilon_{1}+\delta \rho^{2}}}} \underset{\left[\left(\frac{v}{\varepsilon_{2} K}\right)^{\prime}\right]^{2}+\left[\left(\frac{\frac{\delta \rho^{\prime}}{\sqrt{\varepsilon_{1}+\delta \rho^{2}}}-\varepsilon_{1} \delta \beta \sqrt{\varepsilon_{1}+\delta \rho^{2}}}{\varepsilon_{2} \kappa}\right.\right.}{ }\right.\right)^{\prime}\right]^{2} \mid .
$$

If the curve ζ is a slant curve on \bar{N}, then we have

$$
\begin{gathered}
\kappa=\sqrt{v^{2}+\beta^{2}\left(\varepsilon_{1}+\delta \cos ^{2} \theta\right)}, \\
\tau=\left\lvert\, \begin{array}{c}
\delta \frac{v \cos \theta}{\sqrt{\varepsilon_{1}+\delta \cos ^{2} \theta}} \\
\left.\left.-\sqrt{\left[\left(\frac{v}{\varepsilon_{2} \kappa}\right)^{\prime}\right]^{2}+\left[\left(\frac{-\varepsilon_{1} \delta \beta \sqrt{\varepsilon_{1}+\delta \cos ^{2} \theta}}{\varepsilon_{2} \kappa}\right.\right.}\right)^{\prime}\right]^{2}
\end{array} .\right.
\end{gathered}
$$

If the curve ζ is a Legendre curve on \bar{N}, then we have

$$
\begin{equation*}
\kappa=\sqrt{v^{2}+\varepsilon_{1} \beta^{2}} \quad \text { and } \quad \tau=\sqrt{\left[\left(\frac{v}{\varepsilon_{2} \kappa}\right)^{\prime}\right]^{2}+\varepsilon_{1}\left[\left(\frac{\beta}{\kappa}\right)^{\prime}\right]^{2}} \text {. } \tag{3.30}
\end{equation*}
$$

Corollary 3.7. Let ζ be a curve on 3-dimensional δ-Lorentzian α-Sasakian manifold \bar{N}. Then, the first curvature and the second curvature of ζ are

$$
\begin{equation*}
\kappa=\sqrt{v^{2}+\left(\frac{\delta \rho^{\prime}}{\sqrt{\varepsilon_{1}+\delta \rho^{2}}}\right)^{2}}, \tag{3.31}
\end{equation*}
$$

and

$$
\tau=\left|\begin{array}{c}
\delta\left(-\varepsilon_{1} \alpha+\frac{\rho \nu}{\sqrt{\varepsilon_{1}+\delta \rho^{2}}}\right) \\
\left.\left.-\sqrt{\left[\left(\frac{\nu}{\varepsilon_{2} \kappa}\right)^{\prime}\right]^{2}+\left[\left(\frac{\delta \rho^{\prime}}{\varepsilon_{2} \kappa \sqrt{\varepsilon_{1}+\delta \rho^{2}}}\right.\right.}\right)^{\prime}\right]^{2}
\end{array}\right| .
$$

The curvatures of ζ are

$$
\begin{equation*}
\kappa=v \quad \text { and } \quad \tau=\left|\delta\left(-\varepsilon_{1} \alpha+\frac{v \cos \theta}{\sqrt{\varepsilon_{1}+\delta \cos ^{2} \theta}}\right)\right| \text {, } \tag{3.32}
\end{equation*}
$$

where ζ is a slant curve in 3-dimensional δ-Lorentzian α-Sasakian manifold \bar{N} and

$$
\begin{equation*}
\kappa=v \quad \text { and } \quad \tau=\left|\varepsilon_{1} \delta \alpha\right|, \tag{3.33}
\end{equation*}
$$

where ζ is a Legendre curve in 3-dimensional δ-Lorentzian α-Sasakian manifold \bar{N}.
Corollary 3.8. From the Eqs (3.13) and (3.17) the first curvature and the second curvature of ζ on 3-dimensional δ-Lorentzian Kenmotsu manifold \bar{N} are

$$
\begin{equation*}
\kappa=\sqrt{v^{2}+\left(\frac{\delta \rho^{\prime}}{\sqrt{\varepsilon_{1}+\delta \rho^{2}}}-\varepsilon_{1} \delta \sqrt{\varepsilon_{1}+\delta \rho^{2}}\right)^{2}} \tag{3.34}
\end{equation*}
$$

and

$$
\left.\left.\tau=\left\lvert\,-\sqrt{\delta \frac{\rho v}{\sqrt{\varepsilon_{1}+\delta \rho^{2}}}}-\sqrt{\left[\left(\frac{v}{\varepsilon_{2} K}\right)^{\prime}\right]^{2}+\left[\left(\frac{\frac{\delta \rho^{\prime}}{\sqrt{\varepsilon_{1}+\delta \rho^{2}}}}{}-\varepsilon_{1} \delta \sqrt{\varepsilon_{1}+\delta \rho^{2}}\right.\right.} \varepsilon^{\prime}\right.\right]^{2}\right]^{2} \mid .
$$

i) If the curve ζ in 3-dimensional δ-Lorentzian Kenmotsu manifold \bar{N} is a slant curve, then we obtain

$$
\begin{equation*}
\kappa=\sqrt{v^{2}+\varepsilon_{1}+\delta \cos ^{2} \theta} \tag{3.35}
\end{equation*}
$$

$$
\tau=\left|\begin{array}{c}
\delta \frac{\nu \cos \theta}{\sqrt{\varepsilon_{1}+\delta \cos ^{2} \theta}} \\
-\sqrt{\left[\left(\frac{v}{\varepsilon_{2} K}\right)^{\prime}\right]^{2}+\left[\left(\frac{-\varepsilon_{1} \delta \sqrt{\varepsilon_{1}+\delta \cos ^{2} \theta}}{\varepsilon_{2} \kappa}\right)^{\prime}\right]^{2}}
\end{array}\right|
$$

ii) If the curve ζ in 3-dimensional δ-Lorentzian Kenmotsu manifold \bar{N} is a Legendre curve, then we have

$$
\begin{equation*}
\kappa=\sqrt{v^{2}+\varepsilon_{1}} \quad \text { and } \quad \tau=\sqrt{\left[\left(\frac{v}{\varepsilon_{2} \kappa}\right)^{\prime}\right]^{2}+\varepsilon_{1}\left[\left(\frac{\kappa^{\prime}}{\kappa}\right)^{\prime}\right]^{2}} . \tag{3.36}
\end{equation*}
$$

Corollary 3.9. Let ζ be a curve on 3-dimensional δ-Lorentzian Sasakian manifold \bar{N}. Then, the first and second curvatures of ζ are

$$
\begin{equation*}
\kappa=\sqrt{v^{2}+\left(\frac{\delta \rho^{\prime}}{\sqrt{\varepsilon_{1}+\delta \rho^{2}}}\right)^{2}} \tag{3.37}
\end{equation*}
$$

and

$$
\tau=\left|\begin{array}{c}
\delta\left(-\varepsilon_{1}+\frac{\rho v}{\sqrt{\varepsilon_{1}+\delta \rho^{2}}}\right) \\
-\sqrt{\left[\left(\frac{v}{\varepsilon_{2} K}\right)^{\prime}\right]^{2}+\left[\left(\frac{\delta \rho^{\prime}}{\varepsilon_{2} \kappa \sqrt{\varepsilon_{1}+\delta \rho^{2}}}\right)^{\prime}\right]^{2}}
\end{array}\right| .
$$

If the curve ζ is a slant curve on \bar{N}, then we have

$$
\begin{equation*}
\kappa=v \quad \text { and } \quad \tau=\left|\delta\left(-\varepsilon_{1}+\frac{v \cos \theta}{\sqrt{\varepsilon_{1}+\delta \cos ^{2} \theta}}\right)\right| \tag{3.38}
\end{equation*}
$$

If the curve ζ is a Legendre curve on \bar{N}, then we obtain

$$
\begin{equation*}
\kappa=v \quad \text { and } \quad \tau=\left|\varepsilon_{1} \delta\right| \tag{3.39}
\end{equation*}
$$

4. Examples

Let \bar{N} be a 3 -dimensional manifold given

$$
\begin{equation*}
\bar{N}=\left\{(x, y, z) \in \mathfrak{R}^{3}, z \neq 0\right\} \tag{4.1}
\end{equation*}
$$

where $(\mathrm{x}, \mathrm{y}, \mathrm{z})$ denote the standart co-ordinates in \mathfrak{R}^{3}. Then

$$
\begin{equation*}
E_{1}=z \frac{\partial}{\partial x}, \quad E_{2}=z \frac{\partial}{\partial y}, \quad E_{3}=-z \frac{\partial}{\partial z} \tag{4.2}
\end{equation*}
$$

are linearly independent of each point of \bar{N} [17]. Let \bar{g} be the Lorentzian metric tensor defined by

$$
\begin{array}{r}
\bar{g}\left(E_{1}, E_{1}\right)=\bar{g}\left(E_{2}, E_{2}\right)=\bar{g}\left(E_{3}, E_{3}\right)=\delta \tag{4.3}\\
\bar{g}\left(E_{i}, E_{j}\right)=0, \quad i \neq j
\end{array}
$$

for $i, j=1,2,3$ and $\delta=\mp 1$. Let η be a 1 -form defined by $\eta(Z)=\delta \bar{g}\left(Z, E_{3}\right)$ for any vector field $Z \in \Gamma(T \bar{N})$. Let φ be the (1,1)-tensor field defined by

$$
\begin{equation*}
\varphi E_{1}=-E_{2}, \quad \varphi E_{2}=E_{1}, \quad \varphi E_{3}=0 \tag{4.4}
\end{equation*}
$$

Then using the condition of the linearity of φ and \bar{g}, we obtain $\eta\left(E_{3}\right)=1$ and

$$
\begin{array}{r}
\varphi^{2} Z=Z+\eta(Z) E_{3} \tag{4.5}\\
\bar{g}(\varphi Z, \varphi W)=\bar{g}(Z, W)-\delta \eta(Z) \eta(W)
\end{array}
$$

for all $Z, W \in \Gamma(T \bar{N})$.
Now, let ∇ be the Levi-Civita connection with respect to the Lorentzian metric \bar{g}. Then we obtain

$$
\begin{equation*}
\left[E_{1}, E_{2}\right]=0, \quad\left[E_{1}, E_{3}\right]=\delta E_{1}, \quad\left[E_{2}, E_{3}\right]=\delta E_{2} \tag{4.6}
\end{equation*}
$$

The Riemannian connection ∇ with respect to the metric \bar{g} is given by

$$
\begin{align*}
2 \bar{g}\left(\nabla_{X} Y, Z\right) & =X \bar{g}(Y, Z)+Y \bar{g}(Z, X)-Z \bar{g}(X, Y) \tag{4.7}\\
& +\bar{g}([X, Y], Z)-\bar{g}([Y, Z], X)+\bar{g}([Z, X], Y)
\end{align*}
$$

If we use this equation which is known as Koszul's formula for the Lorentzian metric tensor \bar{g}, we can easily calculate the covariant derivations as follows:

$$
\begin{array}{ccc}
\nabla_{E_{1}} E_{3}=\delta E_{1}, \quad \nabla_{E_{2}} E_{3}=\delta E_{2}, & \nabla_{E_{3}} E_{3}=0, \\
\nabla_{E_{1}} E_{2}=0, & \nabla_{E_{2}} E_{2}=-\delta E_{3}, & \nabla_{E_{3}} E_{2}=0, \tag{4.8}\\
\nabla_{E_{1}} E_{1}=-\delta E_{3}, & \nabla_{E_{2}} E_{1}=0 & \nabla_{E_{3}} E_{1}=0 .
\end{array}
$$

From the above relations, for any vector field X on \bar{N}, we have

$$
\begin{equation*}
\nabla_{X} \xi=\delta(X+\eta(X) \xi) \tag{4.9}
\end{equation*}
$$

for $\xi=E_{3}, \alpha=0$ and $\beta=1$. Hence the manifold \bar{N} under consideration is a δ-Lorentzian transSasakian of type $(0,1)$ manifold of dimension three.

Example 4.1. Let γ be a spacelike curve defined as

$$
\begin{aligned}
\gamma: \quad I & \rightarrow \bar{N} \\
& s
\end{aligned} \rightarrow \gamma(s)=(2 \ln s, 2, \ln s),
$$

where the curve γ parametrized by the arc length parameter t. If we differentiate $\gamma(t)$ and consider (3.1) we find

$$
\frac{d \gamma}{d t}=\gamma^{\prime}(t)=\frac{2}{\sqrt{3}} E_{1}-\frac{1}{\sqrt{3}} E_{3}
$$

and

$$
e_{1}=\gamma^{\prime}(t)
$$

$$
\begin{gathered}
e_{2}=E_{1}, \\
e_{3}=-\frac{1}{\sqrt{3}} E_{1}+\frac{1}{\sqrt{3}} E_{3},
\end{gathered}
$$

where $\rho=\eta\left(\gamma^{\prime}(t)\right.$). If we consider the Eqs (3.2), (3.3), (3.5), (3.13) and (3.17) we can write

$$
\begin{array}{r}
\rho=\delta \frac{1}{\sqrt{3}}, \quad \mu=-\frac{2}{\sqrt{3}}, \quad v=\delta \frac{2}{3}, \tag{4.10}\\
\kappa=\frac{4}{3}, \quad \tau=\frac{1}{3} .
\end{array}
$$

Thus, the curve γ is a spacelike helix in \bar{N}.
Example 4.2. Let ω be a spacelike Legendre curve defined as

$$
\begin{aligned}
\omega: I & \rightarrow \bar{N} \\
s & \rightarrow \omega(s)=\left(\frac{s^{2}}{2}, \frac{s^{2}}{2}, 1\right) .
\end{aligned}
$$

where the curve ω parametrized by the arc length parameter t. If we differentiate $\omega(t)$ and using (3.1) we find

$$
\frac{d \omega}{d t}=\omega^{\prime}(t)=\frac{\sqrt{2}}{2} E_{1}+\frac{\sqrt{2}}{2} E_{2},
$$

and

$$
\begin{gathered}
e_{1}=\omega^{\prime}(t), \\
e_{2}=\frac{\sqrt{2}}{2} E_{1}-\frac{\sqrt{2}}{2} E_{2}, \\
e_{3}=-E_{3} .
\end{gathered}
$$

If we consider the Eqs (3.2), (3.3), (3.5), (3.13) and (3.17) we obtain

$$
\begin{array}{r}
\rho=0, \quad \mu=-\delta \beta, \quad v=0, \tag{4.11}\\
\kappa=2|\beta|, \quad \tau=|\alpha| .
\end{array}
$$

Conflict of interest

The author declares that there is no competing interest.

References

1. B. E. Acet, S. Y. Perktas, Curvature and torsion of a Legendre curve in (ε, δ) trans-Sasakian manifolds, Malaya J. Mat., 6 (2018), 140-144. doi: 10.26637/MJM0601/0018.
2. S. M. Bhati, On weakly Ricci ϕ-symmetric δ-Lorentzian trans-Sasakian manifolds, Bull. Math. Anal. Appl., 5 (2013), 36-43.
3. D. E. Blair, Riemannian geometry of contact and symplectic manifolds, Springer Science \& Business Media, 2002.
4. C. Camci, Extended cross product in a 3-dimensional almost contact metric manifold with applications to curve theory, Turk. J. Math., 36 (2012), 305-318. doi: 10.3906/mat-0910-103.
5. G. Calvaruso, Contact Lorentzian manifolds, Differ. Geom. Appl., 29 (2011), 41-51. doi: 10.1016/j.difgeo.2011.04.006.
6. G. Calvaruso, D. Perrone, Contact pseudo-metric manifolds, Differ. Geom. Appl., 28 (2010), 615634. doi: 10.1016/j.difgeo.2010.05.006.
7. G. Calvaruso, Homogeneous structures on three-dimensional Lorentzian manifolds, J. Geom. Phys., 57 (2007), 1279-1291. doi: 10.1016/j.geomphys.2006.10.005.
8. G. Calvaruso, Einstein-like metrics on three-dimensional homogeneous Lorentzian manifolds, Geom. Dedicata, 127 (2007), 99-119. doi: 10.1007/s10711-007-9163-7.
9. J. T. Cho, J. Ioguchi, J. Lee, On slant curves in Sasakian 3-manifolds, B. Aust. Math. Soc., 74 (2006), 359-367. doi: 10.1017/S0004972700040429.
10. K. L. Duggal, D. H. Jin, Null curves and hypersurfaces of semi-Riemannian manifolds, World Scientific Publishing Company, 2007.
11. J. Lee, Slant curves and contact magnetic curves in Sasakian Lorentzian 3-manifolds, Symmetry, 11 (2019), 784. doi: 10.3390/sym1 1060784.
12. J. Lee, Slant curves in contact Lorentzian manifolds with CR structures, Mathematics, 8 (2020), 46. doi: 10.3390/math8010046.
13. J. C. Marrero, The local structure of trans-Sasakian manifolds, Ann. Mat. pur. Appl., 162 (1992), 77-86. doi: 10.1007/BF01760000.
14. B. O'Neill, Semi-Riemannian Geometry with applications to relativity, Academic Press, 1983.
15. Z. Olszak, On contact metric manifolds, Tohoku Math. J., 31 (1979), 247-253. doi: $10.2748 / \mathrm{tmj} / 1178229842$.
16. Z. Olszak, Normal almost contact metric manifolds of dimension three, Ann. Pol. Math., 47 (1986), 41-50. doi: 10.4064/ap-47-1-41-50.
17. M. D. Siddiqi, On δ-Lorentzian trans Sasakian manifold with a semi-symmetric metric connection, Bol. Soc. Paran. Mat., 39 (2021), 113-135. doi: 10.5269/bspm. 41108.
18. S. Tanno, The automorphism groups of almost contact Riemannian manifolds, Tohoku Math. J., 21 (1969), 21-38. doi: $10.2748 / \mathrm{tmj} / 1178243031$.
19. U. C. De, K. De, On Lorentzian trans-Sasakian manifolds, Commun. Fac. Sci. Univ., 62 (2013), 37-51. doi: 10.1501/Commua1_0000000697.
20. J. Welyczko, Slant curves in 3-dimensional normal almost paracontact metric manifolds, Mediterr. J. Math., 11 (2014), 965-978. doi: 10.1007/s00009-013-0361-2.
21. J. Welyczko, On Legendre curves in 3-dimensional normal almost contact metric manifolds, Soochow J. Math., 33 (2007), 929-937.
22. A. Yildirim, On curves in 3-dimensional normal almost contact metric manifolds, Int. J. Geom. Methods M., 18 (2021), 2150004. doi: 10.1142/S0219887821500043.
© 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
