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1. Introduction

Fractional calculus [1, 2] is a field of mathematics that deals with integrals and derivatives of
fractional orders. The most used fractional operators are the Riemann-Liouville and Caputo types.
There are other types of fractional derivatives as well, we allude to [3—10] and references therein.
More recently, Almeida [11] and Sousa et al. [12] have provided fractional operarors to generalize
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Caputo and Hilfer types respectively with respect to another function, which have become known as
Y-Caputo and y-Hilfer, also Jarad and Abdeljawad in [13] have introduced interesting properties of
this generalized operator in the frame of a i function including the generalized Laplace transform.

Due to the rapid and intense growth in fractional calculus and its applications, fractional
differential equations (FDEs) have been of extraordinary interest, so, several authors have applied
some generalized fractional operators to investigate the qualitative analysis of FDEs, see [14-23].

Hybrid differential equations include the fractional derivatives of an unknown function hybrid with
the nonlinearity relying upon it. This class of equations emerges from a wide range of spaces of
applied and physical sciences, e.g., in the redirection of a bent pillar having a consistent or changing
cross-area, a three-layer shaft, electromagnetic waves, or gravity-driven streams, etc. Hybrid FDEs
have been investigated using various types of fractional derivatives in literature (see, e.g. [24-39].
For instance, Dhage and Lakshmikanathm [25] investigated the existence and uniqueness results for a
hybrid differential equation:

{ £ (8D = go(®. v(®). 0 € [0, 1],
() = vo,
where g; : [0, 1] X R — R —{0}and g, : [0, 1] X R — R are continuous.

Zhao et al. [24] studied the existence and uniqueness results for a hybrid FDE in the frame of
Riemann-Liouville operators:

D5, (91(2;(,13219») = (3, v()),0 € [0,T],
v(0) =0,

where g; : [0,T]XR - R—-{0}and g, : [0,7] X R — R are continuous.
Motivated by the above investigations, we discuss two nonlinear fractional differential hybrid
systems subjected to periodic boundary conditions. The first fractional nonlinear system is given by

DL WG (B, u()) = &8, v@)), 0 € (0. 1) o

v(a) = v(b), '
and the second system has the following form

O W) (9, v9) = G2 (D)), ¢ € (1,2), 12

u(a) = v(b), v'(a) = v'(b), '

where ¢ € U := [a,b], Ci)i;ly is the W-Caputo fractional derivative, g; : U X R — R — {0} and
g2 : U X R — R are continuous with g, and g, are identically zero at the origin and g,(:3,0) = 0.

In this respect, we study the existence of solutions to two types of hybrid FDEs involving
generalized Caputo fractional derivatives rather than the classical Caputo one. The hybrid problems
have been discussed in the literature under classical FDEs, while we investigate the generalized FDEs
under similar boundary conditions which is the novel contribution of this research paper. Furthermore,
the special cases generated from various values of the positive increasing function ¥ are covered in our
examination.

The paper is coordinated as follows. In Section 2, we present a few documentations, definitions
and lemmas. In Section 3, we demonstrate existence results for problems (1.1) and (1.2) by utilizing
Dhage’s fixed point theorem. In Section 4, we illustrate the acquired outcomes by examples. At last,
we close our paper with a conclusion.
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2. Preliminaries

Let ¥ € C!(U,R) be an increasing differentiable function such that V() # 0 for all € U. Now,
we start by defining W-fractional integral and derivative:

Definition 2.1. [/] The Y-Riemann-Liouville fractional integral of order o > 0 for an integrable
functionv : O — R is given by

1

7Y = —
S

3
f P (&)(P() — ¥(6)) ™ v(s)ds.

One can deduce that
Dy (I25v@®) = W IL " v(®), 0 > 1,

where Dy = %.

Definition 2.2. [/I/] Forn—-1 < o < n(n € N) and v,¥ € C"(O,R), the Y-Caputo fractional
derivative of a function v of order o is given by

C ;P _ oV & "
DEV () = I (T,( ﬂ)) u(9),

wheren = [p] + 1 foro ¢ N, n = o foro € N.

From Definition 2.2, we can express W-Caputo fractional derivative by formula

fﬂ V() (F () -¥(g)" ! ( Dy )" v(o)ds, ifo¢N,

¢ z)gff’v(ﬂ) —JJa Fng) o V() .
) u(d) if o € N.

Lemma 2.3. [I] For 0;,0, > 0, and v € C(U,R), we have
o 1%Yy(9) = 1972 u(®), a.e.9 € U.
Lemma2.4. [I1] Leto > 0. If v € C(O,R), then
D% %Y u(9) = v(9), 9 € U,

and if v € C""1(U,R), then

n—1 Dy
72 D) = v - ) (‘I’“’)Z—,m) [¥(@) - ¥@), €U

k=0
Lemma 2.5. [I,11] Ford > a, 0> 0,8> 0. If x3(8) = (P(F) — P(a)y’"!, then

o T80 %p(9) = Faoskpio(9);
o (DY np(0) = i p-o();
o CD" () =0, forall ke {0,...,n—1},n e N.
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Now, we mention the key outcomes to the forthcoming analysis.

Theorem 2.6. [40,41] Let X be a closed convex and bounded subset of the Banach algebra N and let
AR > Nand B : X — N be two operators such that

(a) A is Lipschitzian with Lipschitz constant L,

(b) B is compact and continuous,

(c)v=AvBv* = veXforal v* € X, and

(d) LaMg < 1, where Mg = ||B(X)|| = sup{||Bv|| : v € X}

Then the operator equation v = AvBuv has a solution in X.

2.1. Solutions representation

Lemma 2.7. A function v is a solution of the fractional integral equation

v(®) =

(I () + — 1D I@”’hz(m) @1

h () hi(p) = hi(@)”

if and only if v is a solution of the periodic hybrid system

{ DT W®hy (@) = hy(®),0 € (0, 1), 2.2)

v(a) = v(b),

Proof. Applying the operator I fij on both sides for the first equation of (2.2) and using Lemma 2.4,
we have
u(®hi (@) = I% hy(9) + co. (2.3)

Then, at ¥ = a and ¢ = b, we get

v(ahi(a) = co,
u(b)hi(b) = I hy(b) + co.

The periodic condition (v(a) = v(b)) implies that

Co _fillyhz(b)+ o
hi(@ ~ hi(b) hi(b)

Hence

cozfg;“’hz(b)( @) )

hi(b) - hi(a)

Substituting the value of ¢, into (2.3), we get the solution (2.1).
Conversely, it is clear that if v satisfies Eq (2.1), then system (2.2) is satisfied by v, due to Lemma
2.4 and Lemma 2.5. The proof is completed. O

Lemma 2.8. A function v is a solution of the fractional integral equation

v(d) =

a+

r gy (L@ = ) I ha) + v T o 8) (2.4)
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if and only if v is a solution of the periodic hybrid system

{ O W@ (®) = ha(®).0 € (1,2), 2:5)

v(a) = v(b),v'(a) = U (b),
where

(hi(@) (M@¥ (b) - (DY (@) - (hi(@h (b) - hi(B)N, (@) (@) — (@)

p(@) = hi'(®) , / , , ;
(hi(B) = (@) (1 (B (@) = hi(@F (B) + (i@, (B) = N (@h1 (B)) (¥(b) — (@)

and

hi(@¥ (b) (F(b) = ¥(@) hi(@) + (P = (@) hi(b)) '
(hy(b) — (@) (hi (D) (@) — hi( @)V (D)) + (hl(a)h'l(b) - h'l(a)hl(b)) (F(b) - ¥(a))

v(®) := h{'(®)

Proof. Applying the operator I gfy on both sides for the first equation of (2.5) and using Lemma 2.4,
we have
v (@) = T% @) + co + ¢ [F() — ¥(@)] . (2.6)

Differentiating Eq (2.6) with respect to ¥} and using Leibniz rule yields that
U (@hi (@) + v@h| () = ¥ NI hy(@) + P ().
Then, at ¥ = a and ¢ = b, we get

v(a)hi(a)
u(b)hy(b)

Co,
I3 ha(b) + co + o1 [¥(b) ~ (@),

and

a¥(a)
¥ (b)Y I hy(b) + e (b).

v (@)hi(a) + v(a)h;(a)
v (b)hy(b) + v(b)h) (b)

The boundary conditions imply that

 h@ » hy(a) .
= H @ —me e O @ e O @l @7
and ’ ’
h,(a)¥ (b) Ly co (hMi(@h|(d) - hl(b)hl(a)]
= T hy(b - - ) 2.8
@ @B —mOT @ e O h1<a>(h1<a>w &) - ¥ @ 8)

Solving (2.7) and (2.8) in terms of ¢( and ¢, we obtain

hi(@) (ni (@' (b) — i (D) (@) T h ()
(hi(b) = (@) (0 (D)¥ (@) — Ny (@' (B)) + (ha(@h) (b) = N (@i (b)) (¥(b) — ¥(@))

Coy =
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) (h1(@)* ¥ (5) [¥(b) - ¥(@)] T5- " ha(b)
(hy(B) = hi(@) (B (@) = N @' (B) + (M@} (B) = i (@hi (D)) (F(b) = (@)

and
hi(@¥ (b) (hi(a) — hy (b)) T2 hy(b)
(hi(b) = hi(@) (i (D) (@) — hy(@ ¥ (b)) + (i (@h)(B) - hi(@h, (b)) (P(b) - ¥(a)
(hi@h;B) = hiB)h; (@) 79 a(b)
(hi(b) = hi(@) (B (@) — N (@' (B) + (hi(@h) (b) = W (@hi(B)) (F(b) — ¥(@))

cT =

+

Substituting the values of ¢( and ¢ into (2.6), we get the solution (2.4).
The converse of the lemma follows by direct computation along with Lemmas 2.4 and 2.5.
This finishes the proof. O

2.2. Existence result of (1.1)

In order to achieve our main results, we list the following hypotheses:

(H1) g : UXR — Rand g; :OxR — R — {0} are continuous.

(H2) g;' : UXR — R is continuous and

i) There exists a positive function w with bounds ||w||, such that
loT' @, v1) - g7 @, v2)| < W) vy — val, (2.9)
for each (9, vy), (¥, 1,) € U X R;
ii) The mapping v — g;' (9, v) is increasing in R a.e. for each ¢ € U.

(H3) There exists constant My, such that

19> (¥, v)| < Mg, for each (¢#,v) € U X R.

To simplify, we will use the following notations

M _:' 91(a, v(a))
o gu(b, vb)) - gi(a, v(a) |’

(F) - Y@y

M :=(1+M,,) Torn Mo (2.10)
() (P () — P(s))°!
$2 (9, ) = (s)( (;)(Q) ()
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Theorem 2.9. Suppose (H1)—-(H3) hold. If
Mlwl| <1, (2.11)

then hybrid problem (1.1) has a solution on O.

Proof. Define the set X = {v € C :|lv|| < R}. Clearly, X is a convex, closed, bounded subset of C.

Choose
Mg

2
1 =Ml
where 919 = supy.g; 19" (9, 0)|. From Lemma 2.7, the nonlinear hybrid problem (1.1) is equivalent to
the nonlinear fractional integral equation

(2.12)

u(@®) = g7 (8, v(®)) (I ¥ ga(9, v(9)) + Qa@via) __rovy v(b))). 2.13)

91(b, (b)) - gi(a, v(@)”
Define two operators A : C — Cand B : X — C by

Av(®) = g;' (3, v(®)), ¥ € U, and

gi(a, v(a)) o
797 gy(b, u(b)), ¥ € U.
91(b,v(b)) — gi(a,v(a))” ¢ 92(b,u(b)), ¥ €

Then, (2.13) can be express in the operator form as

Bu(9) = I%" (8, () +

v(¥) = Av(H)Bu(YP), ¥ € U.

To achieve Theorem 2.6, we will summarize the proof in the following steps:
Step1: A is Lipschitzian on C.
Let v, v* € C. Then by (H2), for 3 € U

AV — Av* ()] 197 (@, (@) - g7 (@, v* (9)]

w@() — v (D),

IA

which leads to
A — Av*|| < lwllllv = v*]|.

So. A is Lipschitzian on C with Lipschitz constant ||w||.
Step 2: B is completely continuous on X.

Firstly, 8 is continuous on C, due to the continuity of g,, g; implies that 8 is continuous too. Next,
we shall prove that B(X) is uniformly bounded in X. For any v € X, we have

g1(a, v(a)) o
T1%.°9x(b, u(b
01(b, u(b)) — gi(a, v(a)) “ 92(b, v(D))

0
< f $.(8,6) [0z (¢, v(s))| de

91(a, v(a))
91(b, v(b)) = gi(a, v(a))

1Bu()| = |12 (9, () +

b
f $2,(b, ) 19 (, () dg
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g b
<M, | sy, 9)ds + Mg My, | sy(b,¢)ds

a a

(‘P(D) - Y(a))
< (1 +M91) W 02>

which implies

(‘YD) -Y(@))
To+1) o

This shows that {Buv : v € X} is uniformly bounded set.

To prove that B(X) is an equicontinuous set in X, let ¢, ¢, € U (}; < ). Then for any v € X and by
(H3), we get

1Bl < (1+Mg,) = M.

1B)(82) - Bw)()|
1757 95 (6, () (92) — T8 9 (5, u(s)) (9]

% O
f Su(t, )9 (s, u(s)) ds — f su(1, )9 (s, v(s)) ds

IA

IA

L
re)

IA

Al
f () [(P@) — V() = (P(W) — P(6) | 192 (5, v(§)) d

)3

+— ¥ (6)(P() — V() g2 (s, v(s))| ds
I'(0) Jy,

< [(F(D) - ¥(@)? - (V) — Y(@)].

92
I'o+1)

Distinctly, the right-hand side of the a bove inequality tends to zero independently of v € X as ¢, — .
As a result of the Ascoli-Arzela theorem, 8 is a completely continuous operator on X.

Step 3: Assumption (c) of Theorem 2.6 is satisfied.

Let v € C and v* € X such that v = AvBv*. Then

@) < AV |Bv* ()]

W
< |7 @, v(®)| ( f s%,(9,6) |92 (5, v*(s))| ds

0i(a, v(a)) b .
91(b, o) - 91(a, v(@)) f Sp(b.)[g2 (5. v*(9))] dg)

< (|lo7' @, v@®) - 97" @, 0)| + |97 (@, 0)))
9 b
( f $5,(9.6) |92 (5. v*(9))| ds + M, f s5.(b. <) |gz(§,v*(§))|d§)

(F(b) - Y(a))°
I'o+1)

< (lwll(@)] + g10) (1 + Mg, ) Mg,
= (lwlllv@)] + g10) M,
which gives

Mg

vl < 7—="— < R.
1 = Mlwl|
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Step 4: Assumption (d) of Theorem 2.6 holds.
To this end, we show that ||w|| N < 1, where N = ||B(X)||. Since

N = |IBX)Il = sup {Sup IBv(ﬂ)I} <M,

veX \ ¥

we have
lwl|N < |lwl|M < 1.

Thus all the assumptions of Theorem 2.6 hold. Hence, v = AvBv has a solution in X. So, the hybrid
problem 1.1 has a solution on O. O

2.3. Existence result of (1.2)

In view of Lemma 2.8, we have
(@) = g;' @, v@)) (72" 928, v(@)) — (@, vVONTE! ga(b, v(b)) + V(B V@) T2 ga(b, u(b))),

where
1 —p2 (P(@) — ¥(a)
P3 ’
m (P(b) =¥ ) + n (P - ‘P(a))'

P3

(@, v(®) = g7’ (9, ()2

(@, (@) = g7 (9, u(9))

pr = 9i1(a,v(@) (9i(a, v@)¥ (b) - 91 (b, v b)Y (@),
pr = (9i(a, v(a)g, b, v(b)) - 9i(b, u(b))g, (a, u(a))),

py = = (@b, u(b)) — 9ila, v(@))) (91 (b, vbNY (@) - gi(a, U(@)¥ (b))
+(91(a, v(@)g, (b, v(b)) - @) (a, U(@)i (b, v(b))) (¥(b) - ¥(a)) ,

m = [91(a. v(@)] ¥ (B), n2 = gi(a w(@)gi (b, (b)Y (),

To simplify, we will use the following notations:

._ (P -Y (@) L (POb)-Y@)!
Q.—((1+,u) o T T ) .

and

W= max u@ @) andy' = max @, v@)l
Theorem 2.10. Assume that (HI)—(H3) hold. Furthermore, if
lwllQ2 < 1, (2.14)

then the hybrid problem (1.2) has a least one solution defined on O.
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Proof. Define
Q
R, > go—'
1 — |lwl|Q

In the light of (2.14), R, > 0. Define a subset X of the Banach algebra C by

(2.15)

X={veC:|vl<R}.

Clearly, X is a closed, convex and bounded subset of C. Consider the operators A; : C — C and
B, : X — C defined by

(A = g7 P, v®), ¥ €U,

and

(B1v) (@) = T2" ga(9, v(9)) — u(®, vNTL Ga(b, v(B)) + V(B vINTZ " ga(b, v(B)), P € U,

where v = AjvBiv, v EeC.

Now, we prove that A; and B, fulfills assumptions of Theorem 2.6. The proof will be given in
forthcoming steps.

Step I: A, is lipschitzian on C with Lipschitz constants ||w]|.

Let v, v* € C and ¥ €0. Then, by using (H2), we have

A u(9) — Av* ()| 97" (3, v(®) — 97" @, v* ()

w(@) (@) - v* (D).

IA

Thus
| — A || < llwll v = v* |l

That is, A; is a Lipschitzian with Lipschitz constant ||w]|.

Step II: B, is completely continuous on X. Firstly, B, is continuous on C, due to the continuity of
02.91,9;" implies that i and v are continuous and hence B, is continuous too. Next, we shall prove
that 8;(X) is uniformly bounded in X. For any v € X, we have

1Bu()] =

127 go (8, u(®)) — u(3, VONIL o (b, (b)) + V(B VNI " 9o, v(D))|

2
< f Sy(9,6) 192 (s, v(s)l ds
b
+ (0, (@) f $2.(b, ) 195 (5. v(e))| ds

b
+ (@, v())| f so (b, 6) 192 (s, v(s)) ds

9 b b
< Mg, su(?,9)ds + 'Mg, | su(b,¢)ds +v'Mg, SQ\P_I(b, S)dg

B —R@E . (F(b) - Pay!
S((1“‘) e+ ' T ) %

a
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which implies

o (P(b) —P(@)?  ,(P(b) - V()P
I1B1vll < ((1 +u) XPESY +y o

M. =

This shows that {B,v : v € X} is uniformly bounded set. Now, we show that B;(X) is an equicontinuous
setin X, let ¢, 9, € U (¢ < ). Then for any v € X and by (H3), we get

1B,()(%) — Bi(W)()|
1787 92 (02, () — 157 g2 (@1, v(®h))|

+ (@2, () — (@1, v TEF 92 (b, v())
+ (2, u(2)) = v, v @I TS 9 (b, u(b))|

IA

IA

Jn U
f Se (%2, $)92 (s, v(5)) dg — f se(91,6)0: (g,v(g))dgl

b
+ (D, u(2)) — (S, v(h))| f Sﬁ,(b,c)gz(gv(g))dg'

+ (2, u(92)) — v(, v())l

b
f s5(b,6)9: (5, v(s)) ds

IA

P b3
[ (6460209 - 5301 90) s vl + [ 40290102 s vt ds

191

b
+ (92, u(h)) — (P, v(d))| f su(b,6) 92 (s, v(s)l ds

b
£ (B, 0(B2)) = (B, () f S2 (b, ) [0 (6, v(s) ds

M
(o . py [(F(@) — ¥@) - (¥(B) - ¥(@)Y]

M
+ (2, v(2)) — p(dr, v())| o Jg: D YO -Y@r

Mo, (P(b) — P(a))”!
I'(o)

IA

+ (2, u(92)) — v(, v())l

— Qasd — 9.

As aresult of the Ascoli-Arzela theorem, B, is a completely continuous operator on X.
Step Ill: We prove the third condition (c) of Theorem 2.6 holds. Let v € C and v* € X such that
v =AvBv*. Then

@) < | A @) |Biv* @)

)
< o' @, v@®)| ( f s5(,6) |92 (5, v*(6))| ds
b
v @) [ 460 5.0 ) ds
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b
+ [y, v* ()| f 5 (b,6) |92 (6. v*(9))] dg)
< (|g7' @, v®) - g;' @, 0)| + |97 @, 0)))

9 b
( f 5.8, 6) |92 (5. v*(6)| dg + f s5.(b,9) |92 (5, v* ()| ds

b
+v* f 57 (b,9) |92 (5. % (9)| dg)

< (lwlv@)] + o)
((1 oy FO Y@K ()~ W@y ) }
e+ D )

= (l&lv@)] + gi0) 2,

which gives
Q910 <
1 = Qflwl|l —
Thus, ||v]| < R; and so the hypothesis (c) of Theorem 2.6 is satisfied.
Step IV: Assumption (d) of Theorem 2.6 holds.
To this end, we show that ||w|| N < 1, where N = ||B;(X)||. Since

vl <

N = [|81(X)]| = sup {Sup IBlv(ﬂ)l} <Q

veX \9¥e€0

we have
[lw||N < ||lw|| Q2 < 1.

Thus all the assumptions of Theorem 2.6 hold. Hence, v = A;vB,v has a solution in X. So, the
hybrid problem 1.2 has a solution on U. O

3. Examples

In this section, in order to illustrate our results, we consider two examples.

Example 3.1. Consider the following nonlocal hybrid boundary value problem:

2 -1 29)
{Cﬂi;“‘(vw)(?—o(%(v(m>+0)) ) = 42 Ginv@), 0 < 0,1 o
v(0) = u(l),
From the system (3 1), and we choose Y(¥) = ¢, a =0, b =1, = 4/5, gl‘l(ﬂ v() =

e( 29)

(Z (@) +0) g v@®) =

(sm v(1)) . Clearly, gg,gl are continuous. Moreover
|97 @, v1) - 97" (@, )| < E v —val,

and
192, v ()] <

W =
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with w = 110, Mg, = «F and gy = SUPyey; |g (9, 0)| 15+ Using these values, we get M ||w|| =~ 0.35 < 1.

As all the condmons of Theorem 2.9 are satisfied, problem 3.1 has at least one solution on O.

Example 3.2. Consider the following nonlocal hybrid boundary value problem:

-1 cos~ (2
{?ﬂf@mﬂ?@w@»+®)): D)y (), 0 € (1,2), 42
u(l) =v(2),v (1) =v(2),
From the system (3.2), and we choose ¥Y(3) = 9, a = 0, b = 1, = 8/5, g, v(}) =

(g (% () + 19)) , (3, v (D) = MU(ﬁ) Clearly, 9»,9;" are continuous. Moreover

lo7! @, vi) — 97" @, )| < |m—m

and |
192(F, v ()] < T

with w = Mgz = ‘—1‘ and gy = SUPyeys |g‘1(19, O)| = % Using these values, we get Q||w|| < 1. As all the
condttlons of Theorem 2.10 are satisfied, problem 3.2 has at least one solution on O.

4. Conclusions

It is important that we examine the fractional systems of the hybrid with generalized derivatives
since these derivatives cover many systems in the literature and they contain a kernel with different
values that generate many special cases.

In this research work, we have investigated the sufficient conditions to the existence of solutions
to two new types of boundary value problems of nonlinear hybrid fractional differential equations
involving generalized fractional derivatives known as W-Caputo operators. In order to achieve the
objectives, we applied Dhage’s fixed point theorem for the sum of three operators. Two examples are
provided to confirm the feasibility of the obtained results.

Moreover, we have formulated illustrative examples for this type of hybrid fractional systems to
support our main results from a numerical point of view.
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