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1. Introduction

The convexity of function is a classical concept, since it plays a fundamental role in mathematical
programming theory, game theory, mathematical economics, variational science, optimal control
theory and other fields, a new branch of mathematics, convex analysis, appeared in the 1960s.
However, it has been noticed that the functions encountered in a large number of theoretical and
practical problems in economics are not classical convex functions, therefore, in the past decades,
the generalization of function convexity has attracted the attention of many scholars and aroused great
interest, such as h-convex functions [1–5], log-convex functions [6–10], log-h-convex functions [11],
and especially for coordinated convex [12]. Since 2001, various extensions and generalizations of
integral inequalities for coordinated convex functions have been established in [12–17].

On the other hand, calculation error has always been a troublesome problem in numerical analysis.
In many problems, it is often to speculate the accuracy of calculation results or use high-precision
operation as far as possible to ensure the accuracy of the results, because the accumulation of
calculation errors may make the calculation results meaningless, interval analysis as a new important
tool to solve uncertainty problems has attracted much attention and also has yielded fruitful results,
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we refer the reader to the papers [18, 19]. It is worth notion that in recent decades, many authors
have combined integral inequalities with interval-valued functions(IVFs) and obtained many excellent
conclusions. In [20], Costa gave Opial-type inequalities for IVFs. In [21,22], Chalco-Cano investigated
Ostrowski type inequalities for IVFs by using generalized Hukuhara derivative. In [23], Román-Flores
derived the Minkowski type inequalities and Beckenbach’s type inequalities for IVFs. Very recently,
Zhao [5, 24] established the Hermite-Hadamard type inequalities for interval-valued coordinated
functions.

Motivated by these results, in the present paper, we introduce the concept of coordinated log-h-
convex for IVFs, and then present some new Jensen type inequalities and Hermite-Hadamard type
inequalities for interval-valued coordinated functions. Also, we give some examples to illustrate our
main results.

2. Preliminaries

Let RI the collection of all closed and bounded intervals of R. We use R+
I

and R+ to represent the
set of all positive intervals and the family of all positive real numbers respectively. The collection of
all Riemann integrable real-valued functions on [a, b], IVFs on [a, b] and IVFs on 4 = [a, b]× [c, d] are
denoted by R([a,b]), IR([a,b]) and ID(4). For more conceptions on IVFs, see [4, 25]. Moreover, we have

Theorem 1. [4] Let f : [a, b]→ RI such that f = [ f , f ]. Then f ∈ IR([a,b]) iff f , f ∈ R([a,b]) and

(IR)
∫ b

a
f (x)dx =

[
(R)

∫ b

a
f (x)dx, (R)

∫ b

a
f (x)dx

]
.

Theorem 2. [25] Let F : 4 → RI. If F ∈ ID(4), then

(ID)
"
4

F (x, y)dxdy = (IR)
∫ b

a
dx(IR)

∫ d

c
F (x, y)dy.

Definition 1. [26] Let h : [0, 1] → R+. We say that f : [a, b] → R+
I

is interval log-h-convex function
or that f ∈ S X(log -h, [a, b],R+

I
), if for all x, y ∈ [a, b] and ϑ ∈ [0, 1], we have

f (ϑx + (1 − ϑ)y) ⊇ [ f (x)]h(ϑ)[ f (y)]h(1−ϑ).

h is called supermultiplicative if

h(ϑτ) ≥ h(ϑ)h(τ) (2.1)

for all ϑ, τ ∈ [0, 1]. If “ ≥” in (2.1) is replaced with “ ≤”, then h is called submultiplicative.

Theorem 3. [26] Let F : [a, b]→ R+
I
, h

(
1
2

)
, 0. If F ∈ S X(log -h, [a, b],R+

I
) and F ∈ IR([a,b]), then

F

(
a + b

2

) 1
2h( 1

2 )
⊇ exp

[
1

b − a

∫ b

a
lnF (x)dx

]
⊇ [F (a)F (b)]

∫ 1
0 h(ϑ)dϑ . (2.2)
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Theorem 4. [27] Let F : [a, b]→ R+
I
, h

(
1
2

)
, 0. If F ∈ S X(log -h, [a, b],R+

I
) and F ∈ IR([a,b]), then

[
F

(
a + b

2

)] 1
4h2( 1

2 )
⊇

[
F

(
3a + b

4

)
F

(
a + 3b

4

)] 1
4h( 1

2 )

⊇

(∫ b

a
F (x)dx

) 1
b−a

⊇

[
F (a)F (b)F 2

(
a + b

2

)] 1
2

∫ 1
0 h(ϑ)dϑ

⊇ [F (a)F (b)][
1
2 +h( 1

2 )]
∫ 1

0 h(ϑ)dϑ .

(2.3)

3. Main results

In this section, we define the coordinated log-h-convex for IVFs and prove some new Jensen type
inequalities and Hermite-Hadamard type inequalities by using this new definition.

Definition 2. Let h : [0, 1] → R+. Then F : 4 → R+
I

is called a coordinated log-h-convex IVFs on 4
if the partial mappings

Fy : [a, b]→ R+
I
,Fy(x) = F (x, y),

Fx : [c, d]→ R+
I
,Fx(y) = F (x, y)

are log-h-convex for all y ∈ [c, d] and x ∈ [a, b]. Then the set of all coordinated log-h-convex IVFs on
4 is denoted by S X(log -ch,4,R+

I
).

Definition 3. Let h : [0, 1] → R+. Then F : 4 → R+ is called a coordinated log-h-convex function in
4 if for any (x1, y1), (x2, y2) ∈ 4 and ϑ ∈ [0, 1] we have

F (ϑx1 + (1 − ϑ)x2, ϑy1 + (1 − ϑ)y2) ≤
[
F (x1, y1)

]h(ϑ) [
F (x2, y2)

]h(1−ϑ) . (3.1)

The set of all log-h-convex functions in 4 is denoted by S X(log -h,4,R+). If inequality (3.1) is reversed,
then F is said to be a coordinated log-h-concave function, the set of all log-h-concave functions in 4
is denoted by S V(log -h,4,R+).

Definition 4. Let h : [0, 1] → R+. Then F : 4 → R+
I

is called a coordinated log-h-convex IVF in 4 if
for any (x1, y1), (x2, y2) ∈ 4 and ϑ ∈ [0, 1] we have

F (ϑx1 + (1 − ϑ)x2, ϑy1 + (1 − ϑ)y2) ⊇
[
F (x1, y1)

]h(ϑ) [
F (x2, y2)

]h(1−ϑ) .

The set of all log-h-convex IVFs in 4 is denoted by S X(log -h,4,R+
I
).

Theorem 5. Let F : 4 → R+
I

such that F = [F ,F ]. If F ∈ S X(log -h,4,R+
I
) iff F ∈ S X(log -h,4,R+)

and F ∈ S V(log -h,4,R+).

Proof. The proof is completed by combining the Definitions 3 and 4 above and the Theorem 3.7 of [4].
�
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Theorem 6. If F ∈ S X(log -h,4,R+
I
), then F ∈ S X(log -ch,4,R+

I
).

Proof. Assume that F ∈ S X(log -h,4,R+
I
). Let Fx : [c, d] → R+

I
,Fx(y) = F (x, y). Then for all

ϑ ∈ [0, 1] and y1, y2 ∈ [c, d], we have

Fx(ϑy1 + (1 − ϑ)y2) = F (x, ϑy1 + (1 − ϑ)y2)
⊇ F (ϑx + (1 − ϑ)x, ϑy1 + (1 − ϑ)y2)

⊇
[
F (x, y1)

]h(ϑ) [
F (x, y2)

]h(1−ϑ)

=
[
Fx(y1)

]h(ϑ) [
Fx(y2)

]h(1−ϑ) .

Hence Fx(y) = F (x, y) is log-h-convex on [c, d]. The fact that Fy(x) = F (x, y) is log-h-convex on [a, b]
goes likewise. �

Remark 1. The converse of Theorem 6 is not generally true. Let h(ϑ) = ϑ and ϑ ∈ [0, 1], 41 =[
π
4 ,

π
2

]
×

[
π
4 ,

π
2

]
, and F : 41 → R

+
I

be defined:

F (x, y) =
[
e−sinx−siny, 64xy

]
.

Obviously, we have that F ∈ S X(log -ch,41,R
+
I
) and F < S X(log -h,41,R

+
I
). Indeed, if

(
π
4 ,

π
2

)
,
(
π
2 ,

π
4

)
∈

41, we have

F

(
ϑ
π

4
+ (1 − ϑ)

π

2
, ϑ
π

2
+ (1 − ϑ)

π

4

)
=

[
e−sin ϑπ

4 −sin (1−ϑ)π
2 , 8π2ϑ(1 − ϑ)

]
,(

F

(
π

4
,
π

2

))h(ϑ) (
F

(
π

2
,
π

4

))h(1−ϑ)
=

[
e
(
1−
√

2
2

)
ϑ−1
, 2ϑ+1π

]
.

If ϑ = 0, then [
0,

1
e

]
+

[
1
e
, 2π

]
.

Thus, F < S X(log -h,41,R
+
I
).

In the following, Jensen type inequalities for coordinated log-h-convex functions in 4 is considered.

Theorem 7. Let pi ∈ R
+, xi ∈ [a, b], yi ∈ [c, d], (i = 1, 2, ..., n),F : 4 → R+. If h is a nonnegative

supermultiplicative function and F ∈ S X(log -h,4,R+), then

F

 1
Pn

n∑
i=1

pixi,
1
Pn

n∑
i=1

piyi

 ≤ n∏
i=1

[F (xi, yi)]h
( pi
Pn

)
, (3.2)

where Pn =
n∑

i=1
pi. If h is a nonnegative submultiplicative function and F ∈ S V(log -h,4,R+), then

(3.2) is reversed.

Proof. If n = 2, then from Definition 3, we have

F

(
p1

P2
x1 +

p2

P2
x2,

p1

P2
y1 +

p2

P2
y2

)
≤ [F (x1, y1)]h

(
p1
P2

)
[F (x2, y2)]h

(
p2
P2

)
.

AIMS Mathematics Volume 7, Issue 1, 156–170.



160

Suppose (3.2) holds for n = k, then

F

 1
Pk

k∑
i=1

pixi,
1
Pk

k∑
i=1

piyi

 ≤ k∏
i=1

[F (xi, yi)]
h
(

pi
Pk

)
.

Now, let us prove that (3.2) is valid when n = k + 1,

F

 1
Pk+1

k+1∑
i=1

pixi,
1
Pk+1

k+1∑
i=1

piyi


= F

 1
Pk+1

k−1∑
i=1

pixi +
pk + pk+1

Pk+1

(
pkxk

pk + pk+1
+

pk+1xk+1

pk + pk+1

)
,

1
Pk+1

k−1∑
i=1

piyi +
pk + pk+1

Pk+1

(
pkyk

pk + pk+1
+

pk+1yk+1

pk + pk+1

)
≤

[
F

(
pkxk

pk + pk+1
+

pk+1xk+1

pk + pk+1
,

pkyk

pk + pk+1
+

pk+1yk+1

pk + pk+1

)]h
(

pk+pk+1
Pk+1

)
k−1∏
i=1

[F (xi, yi)]
h
(

pi
Pk+1

)

≤

([
F (xk, yk)

]h
(

pk
pk+pk+1

) [
F (xk+1, yk+1)

]h
(

pk+1
pk+pk+1

))h
(

pk+pk+1
Pk+1

)
k−1∏
i=1

[F (xi, yi)]
h
(

pi
Pk+1

)

≤
[
F (xk, yk)

]h
(

pk
Pk+1

) [
F (xk+1, yk+1)

]h
(

pk+1
Pk+1

) k−1∏
i=1

[F (xi, yi)]
h
(

pi
Pk+1

)

=

k+1∏
i=1

[F (xi, yi)]
h
(

pi
Pk+1

)
.

This completes the proof. �

Remark 2. If h(ϑ) = ϑ, then the inequality (3.2) is the Jensen inequality for log-convex functions.

Now, we prove the Jensen inequality for log-h-convex IVFs in 4.

Theorem 8. Let pi ∈ R
+, xi ∈ [a, b], yi ∈ [c, d], i = 1, 2, ..., n,F : 4 → R+

I
such that F = [F, F]. If h is

a nonnegative supermultiplicative function and F ∈ S X(log -h,4,R+
I
), then

F

 1
Pn

n∑
i=1

pixi,
1
Pn

n∑
i=1

piyi

 ⊇ n∏
i=1

[F (xi, yi)]h
( pi
Pn

)
, (3.3)

where Pn =
n∑

i=1
pi. If F ∈ S V(log -h,4,R+

I
), then (3.3) is reversed.

Proof. By Theorem 5 and Theorem 7, we have

F

 1
Pn

n∑
i=1

pixi,
1
Pn

n∑
i=1

piyi

 ≤ n∏
i=1

[F (xi, yi)]h
( pi
Pn

)
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and

F

 1
Pn

n∑
i=1

pixi,
1
Pn

n∑
i=1

piyi

 ≥ n∏
i=1

[F (xi, yi)]h
( pi
Pn

)
.

Thus,

F

 1
Pn

n∑
i=1

pixi,
1
Pn

n∑
i=1

piyi


=

F  1
Pn

n∑
i=1

pixi,
1
Pn

n∑
i=1

piyi

 ,F  1
Pn

n∑
i=1

pixi,
1
Pn

n∑
i=1

piyi


⊇

 n∏
i=1

[F (xi, yi)]h
( pi
Pn

)
,

n∏
i=1

[F (xi, yi)]h
( pi
Pn

)
=

n∏
i=1

[F (xi, yi)]h
( pi
Pn

)
.

This completes the proof. �

Next, we prove the Hermite-Hadamard type inequalities for coordinated log-h-convex IVFs.

Theorem 9. Let F : 4 → R+
I

and h : [0, 1]→ R+ be continuous. If F ∈ S X(log -ch,4,R+
I
), then[

F

(
a + b

2
,

c + d
2

)] 1
4h2( 1

2 )

⊇ exp

 1

4h
(

1
2

)  1

2h
(

1
2

)
(b − a)

∫ b

a
lnF

(
x,

c + d
2

)
dx

+
1

2h
(

1
2

)
(d − c)

∫ d

c
lnF

(
a + b

2
, y

)
dy




⊇ exp
[

1
(b − a)(d − c)

∫ b

a

∫ d

c
lnF (x, y)dxdy

]
⊇ exp

[
1
2

∫ 1

0
h(ϑ)dϑ

(
1

b − a

∫ b

a
lnF (x, c)dx +

1
-
¯

a

∫ b

a
lnF (x, d)dx

+
1

d − c

∫ d

c
lnF (a, y)dy +

1
d − c

∫ d

c
lnF (b, y)dy

)]
⊇ [F (a, c)F (a, d)F (b, c)F (b, d)]

(∫ 1
0 h(ϑ)dϑ

)2

.

(3.4)

Proof. Since F ∈ S X(log -ch,4,R+
I
), we have

Fx

(
c + d

2

)
= Fx

(
ϑc + (1 − ϑ)d + (1 − ϑ)c + ϑd

2

)
⊇ [Fx(ϑc + (1 − ϑ)d)]h( 1

2 ) [Fx((1 − ϑ)c + ϑd)]h( 1
2 ) .
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That is,

lnFx

(
c + d

2

)
⊇ h

(
1
2

)
ln [Fx(ϑc + (1 − ϑ)d)Fx((1 − ϑ)c + ϑd)] .

Moreover, we have

1

h
(

1
2

) lnFx

(
c + d

2

)

⊇

[∫ 1

0
lnFx(ϑc + (1 − ϑ)d)dϑ +

∫ 1

0
lnFx((1 − ϑ)c + ϑd)dϑ

]
=

[∫ 1

0
lnF x(ϑc + (1 − ϑ)d)dϑ,

∫ 1

0
lnF x(ϑc + (1 − ϑ)d)dϑ

]
+

[∫ 1

0
lnF x((1 − ϑ)c + ϑd)dϑ,

∫ 1

0
lnF x((1 − ϑ)c + ϑd)dϑ

]
= 2

[
1

d − c

∫ d

c
lnF x(y)dy,

1
d − c

∫ d

c
lnF x(y)dy

]
=

2
d − c

∫ d

c
lnFx(y)dy.

Similarly, we get

1
d − c

∫ d

c
lnFx(y)dy ⊇ ln [Fx(c)Fx(d)]

∫ 1

0
h(ϑ)dϑ.

Then

1

2h
(

1
2

) lnFx

(
c + d

2

)
⊇

1
d − c

∫ d

c
lnFx(y)dy ⊇ ln [Fx(c)Fx(d)]

∫ 1

0
h(ϑ)dϑ.

That is,

1

2h
(

1
2

) lnF
(
x,

c + d
2

)
⊇

1
d − c

∫ d

c
lnF (x, y)dy ⊇ ln [F (x, c)F (x, d)]

∫ 1

0
h(ϑ)dϑ.

Integrating over [a, b], we have

1

2h
(

1
2

)
(b − a)

∫ b

a
lnF

(
x,

c + d
2

)
dx

⊇
1

(b − a)(d − c)

∫ b

a

∫ d

c
lnF (x, y)dxdy

⊇

[
1

b − a

∫ b

a
lnF (x, c)dx +

1
b − a

∫ b

a
lnF (x, d)dx

] ∫ 1

0
h(ϑ)dϑ.
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Similarly, we have

1

2h
(

1
2

)
(d − c)

∫ d

c
lnF

(
a + b

2
, y

)
dy

⊇
1

(b − a)(d − c)

∫ b

a

∫ d

c
lnF (x, y)dxdy

⊇

[
1

d − c

∫ d

c
lnF (a, y)dy +

1
d − c

∫ d

c
lnF (b, y)dy

] ∫ 1

0
h(ϑ)dϑ.

Finally, we obtain

1

4h2
(

1
2

) lnF
(
a + b

2
,

c + d
2

)

=
1

4h
(

1
2

)  1

2h
(

1
2

)
(b − a)

∫ b

a
lnF

(
x,

c + d
2

)
dx +

1

2h
(

1
2

)
(d − c)

∫ d

c
lnF

(
a + b

2
, y

)
dy


⊇

1
(b − a)(d − c)

∫ b

a

∫ d

c
lnF (x, y)dxdy

⊇
1
2

∫ 1

0
h(ϑ)dϑ

[
1

b − a

∫ b

a
lnF (x, c)dx +

1
b − a

∫ b

a
lnF (x, d)dx

+
1

d − c

∫ d

c
lnF (a, y)dy +

1
d − c

∫ d

c
lnF (b, y)dy

]
⊇

1
2

(∫ 1

0
h(ϑ)dϑ

)2

[lnF (a, c) + lnF (a, d) + lnF (b, c) + lnF (b, d)

+ lnF (a, c) + lnF (a, d) + lnF (b, c) + lnF (b, d)]

⊇

(∫ 1

0
h(ϑ)dϑ

)2

[lnF (a, c)F (a, d)F (b, c)F (b, d)] .

This concludes the proof. �

Remark 3. If F = F and h(ϑ) = ϑ, then Theorem 9 reduces to Corollary 3.1 of [13].

Example 1. Let [a, b] = [c, d] = [2, 3], h(ϑ) = ϑ. We define F : [2, 3] × [2, 3]→ R+
I

by

F (x, y) =

[
1
xy
, e
√

x+
√

y

]
.

From Definition 2, F (x, y) ∈ S X(log -ch,4,R+
I
).
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Since [
F

(
a + b

2
,

c + d
2

)] 1
4h2( 1

2 )
=

[
4

25
, e
√

10
]
,

exp

 1

4h
(

1
2

)  1

2h
(

1
2

)
(b − a)

∫ b

a
lnF

(
x,

c + d
2

)
dx

+
1

2h
(

1
2

)
(d − c)

∫ d

c
lnF

(
a + b

2
, y

)
dy


 =

[
8e

135
, e

√
10
2 +2

√
3− 4

√
2

3

]
,

exp
[

1
(b − a)(d − c)

∫ b

a

∫ d

c
lnF (x, y)dxdy

]
=

[
16e2

729
, e

4
3 (3
√

3−2
√

2)
]
,

exp
[
1
2

∫ 1

0
h(ϑ)dϑ

(
1

b − a

∫ b

a
lnF (x, c)dx +

1
b − a

∫ b

a
lnF (x, d)dx

+
1

d − c

∫ d

c
lnF (a, y)dy +

1
d − c

∫ d

c
lnF (b, y)dy

)]
=

2
√

6e
81

, e
15
√

3−5
√

2
6

 ,
and

[F (a, c)F (a, d)F (b, c)F (b, d)]
(∫ 1

0 h(ϑ)dϑ
)2

=

[
1
6
, e
√

2+
√

3
]
.

It follows that[
4

25
, e
√

10
]
⊇

[
8e

135
, e

√
10
2 +2

√
3− 4

√
2

3

]
⊇

[
16e2

729
, e

4
3 (3
√

3−2
√

2)
]
⊇

2
√

6e
81

, e
15
√

3−5
√

2
6

 ⊇ [
1
6
, e
√

2+
√

3
]

and Theorem 9 is verified.

Theorem 10. Let F : 4 → R+
I

and h : [0, 1]→ R+ be continuous. If F ∈ S X(log -ch,4,R+
I
), then

[
F

(
a + b

2
,

c + d
2

)] 1
4h3( 1

2 )

⊇ exp

 1

4h2
(

1
2

)
(b − a)

∫ b

a
ln

(
F

(
x,

c + d
2

))
dx

+
1

4h2
(

1
2

)
(d − c)

∫ d

c
ln

(
F

(
a + b

2
, y

))
dy


⊇ exp

 1

4h
(

1
2

)
(b − a)

∫ b

a
ln

(
F

(
x,

3c + d
4

)
F

(
x,

c + 3d
4

))
dx

+
1

4h
(

1
2

)
(d − c)

∫ d

c
ln

(
F

(
3a + b

4
, y

)
F

(
a + 3b

4
, y

))
dy


⊇ exp

[
2

(b − a)(d − c)

∫ b

a

∫ d

c
lnF (x, y)dxdy

]

(3.5)
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⊇ exp
[

1
2(b − a)

∫ b

a
ln

(
F (x, c)F (x, d)F 2 (x, f racc + d2)

)
dx

∫ 1

0
h(ϑ)dϑ

+
1

2(d − c)

∫ d

c
ln

(
F (a, y)F (b, y)F 2

(
a + b

2
, y

))
dy

∫ 1

0
h(ϑ)dϑ

]
⊇ exp

[(
1
2

+ h
(
1
2

))
1

b − a

∫ b

a
ln [F (x, c)F (x, d)] dx

∫ 1

0
h(ϑ)dϑ

+

(
1
2

+ h
(
1
2

))
1

d − c

∫ d

c
ln

[
F (a, y)F (b, y)

]
dy

∫ 1

0
h(ϑ)dϑ

]
⊇

[
F (a, c)F (a, d)F (b, c)F (b, d)F

(
a + b

2
, c

)
F

(
a + b

2
, d

)

× F

(
a,

c + d
2

)
F

(
b,

c + d
2

)][ 1
2 +h( 1

2 )]
(∫ 1

0 h(ϑ)dϑ
)2

⊇ [F (a, c)F (a, d)F (b, c)F (b, d)]2[ 1
2 +h( 1

2 )]2
(∫ 1

0 h(ϑ)dϑ
)2

.

Proof. Since F ∈ S X(log -ch,4,R+
I
), by using Theorem 6 and (2.3), we have

1

4h2
(

1
2

) ln
[
Fy

(
a + b

2

)]
⊇

1

4h
(

1
2

) ln
[
Fy

(
3a + b

4

)
Fy

(
a + 3b

4

)]

⊇
1

b − a

∫ b

a
lnFy(x)dx

⊇
1
2

ln
[
Fy(a)Fy(b)F 2

y

(
a + b

2

)] ∫ 1

0
h(ϑ)dϑ

⊇

[
1
2

+ h
(
1
2

)]
ln

[
Fy(a)Fy(b)

] ∫ 1

0
h(ϑ)dϑ.

That is,

1

4h2
(

1
2

) ln
[
F

(
a + b

2
, y

)]
⊇

1

4h
(

1
2

) ln
[
F

(
3a + b

4
, y

)
F

(
a + 3b

4
, y

)]

⊇
1

b − a

∫ b

a
lnF (x, y)dx

⊇
1
2

ln
[
F (a, y)F (b, y)F 2

(
a + b

2
, y

)] ∫ 1

0
h(ϑ)dϑ

⊇

[
1
2

+ h
(
1
2

)]
ln

[
F (a, y)F (b, y)

] ∫ 1

0
h(ϑ)dϑ.
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Moreover, we have

1

4h2
(

1
2

)
(d − c)

∫ d

c
ln

[
F

(
a + b

2
, y

)]
dy

⊇
1

4h
(

1
2

)
(d − c)

∫ d

c
ln

[
F

(
3a + b

4
, y

)
F

(
a + 3b

4
, y

)]
dy

⊇
1

(b − a)(d − c)

∫ b

a

∫ d

c
lnF (x, y)dxdy

⊇
1

2(d − c)

∫ d

c
ln

[
F (a, y)F (b, y)F 2

(
a + b

2
, y

)]
dy

∫ 1

0
h(ϑ)dϑ

⊇

[
1
2

+ h
(
1
2

)]
1

d − c

∫ d

c
ln

[
F (a, y)F (b, y)

]
dy

∫ 1

0
h(ϑ)dϑ.

Similarly, we have

1

4h2
(

1
2

)
(b − a)

∫ b

a
ln

[
F

(
x,

c + d
2

)]
dx

⊇
1

4h
(

1
2

)
(b − a)

∫ b

a
ln

[
F

(
x,

3+̧d
4

)
F

(
x,

c + 3d
4

)]
dx

⊇
1

(b − a)(d − c)

∫ b

a

∫ d

c
lnF (x, y)dxdy

⊇
1

2(b − a)

∫ b

a
ln

[
F (x, c)F (x, d)F 2

(
x,

c + d
2

)]
dx

∫ 1

0
h(ϑ)dϑ

⊇

[
1
2

+ h
(
1
2

)]
1

b − a

∫ b

a
ln [F (x, c)F (x, d)] dx

∫ 1

0
h(ϑ)dϑ.

We also from (2.2),

1

2h
(

1
2

) lnF
(
a + b

2
,

c + d
2

)
⊇

1
b − a

∫ b

a
lnF

(
x,

c + d
2

)
dx,

1

2h
(

1
2

) lnF
(
a + b

2
,

c + d
2

)
⊇

1
d − c

∫ d

c
lnF

(
a + b

2
, y

)
dy.

Again from (2.3),

1
b − a

∫ b

a
lnF (x, c) dx ⊇ 1

2 ln
[
F (a, c)F (b, c)F 2

(
a+b

2 , c
)] ∫ 1

0
h(ϑ)dϑ

⊇
[

1
2 + h

(
1
2

)]
ln [F (a, c)F (b, c)]

∫ 1

0
h(ϑ)dϑ,

1
b − a

∫ b

a
lnF (x, d) ds ⊇ 1

2 ln
[
F (a, d)F (b, d)F 2

(
a+b

2 , d
)] ∫ 1

0
h(ϑ)dϑ

⊇
[

1
2 + h

(
1
2

)]
ln [F (a, d)F (b, d)]

∫ 1

0
h(ϑ)dϑ,
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1
d − c

∫ d

c
lnF (a, y) dy ⊇ 1

2 ln
[
F (a, c)F (a, d)F 2

(
a, c+d

2

)] ∫ 1

0
h(ϑ)dϑ

⊇
[

1
2 + h

(
1
2

)]
ln [F (a, c)F (a, d)]

∫ 1

0
h(ϑ)dϑ,

1
d − c

∫ d

c
lnF (b, y) dy ⊇ 1

2 ln
[
F (b, c)F (b, d)F 2

(
b, c+d

2

)] ∫ 1

0
h(ϑ)dϑ

⊇
[

1
2 + h

(
1
2

)]
ln [F (b, c)F (b, d)]

∫ 1

0
h(ϑ)dϑ

and proof is completed. �

Example 2. Furthermore, by Example 1, we have

[
F

(
a + b

2
,

c + d
2

)] 1
4h3( 1

2 )
=

[
16

625
, e2

√
10
]
,

exp

 1

4h2
(

1
2

)
(b − a)

∫ b

a
ln

(
F

(
x,

c + d
2

))
dx

+
1

4h2
(

1
2

)
(d − c)

∫ d

c
ln

(
F

(
a + b

2
, y

))
dy

 =

[
64e2

18225
, e

4(3
√

3−2
√

2)
3 +

√
10
]
,

exp

 1

4h
(

1
2

)
(b − a)

∫ b

a
ln

(
F

(
x,

3+̧d
4

)
F

(
x,

c + 3d
4

))
dx

+
1

4h
(

1
2

)
(d − c)

∫ d

c
ln

(
F

(
3a + b

4
, y

)
F

(
a + 3b

4
, y

))
dy

 =

[
256e2

72171
, e

4(3
√

3−2
√

2)
3 + 3+

√
11

2

]
,

exp
[

2
(b − a)(d − c)

∫ b

a

∫ d

c
lnF (x, y)dxdy

]
=

[
256e4

531441
, e

8(3
√

3−2
√

2)
3

]
,

exp
[

1
2(b − a)

∫ b

a
ln

(
F (x, c)F (x, d)F 2

(
x,

c + d
2

))
dx

∫ 1

0
h(ϑ)dϑ

+
1

2(d − c)

∫ d

c
ln

(
F (a, y)F (b, y)F 2

(
a + b

2
, y

))
dy

∫ 1

0
h(ϑ)dϑ

]
=

16
√

6e2

10935
, e

12
√

3−8
√

2+3
√

10
6

 ,
exp

[(
1
2

+ h
(
1
2

))
1

b − a

∫ b

a
ln [F (x, c)F (x, d)] dx

∫ 1

0
h(ϑ)dϑ

+

(
1
2

+ h
(
1
2

))
1

d − c

∫ d

c
ln

[
F (a, y)F (b, y)

]
dy

∫ 1

0
h(ϑ)dϑ

]
=

[
8e2
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, e
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√

3−5
√

2
3

]
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F (a, c)F (a, d)F (b, c)F (b, d)F
(
a + b

2
, c

)
F

(
a + b

2
, d

)

× F

(
a,

c + d
2

)
F

(
b,

c + d
2

)][ 1
2 +h( 1

2 )]
(∫ 1

0 h(ϑ)dϑ
)2
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 √6
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3
√
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√
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√
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and

[F (a, c)F (a, d)F (b, c)F (b, d)]2[ 1
2 +h( 1

2 )]2
(∫ 1

0 h(θ)dθ
)2

=

[
1

36
, e2

√
3+2
√

2
]
.

It follows that [
16

625
, e2

√
10
]
⊇

[
64e2

18225
, e

4(3
√

3−2
√

2)+3
√

10
3

]
⊇

[
256e2

72171
, e

4(3
√

3−2
√

2)
3 + 3+

√
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]
⊇

[
256e4
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, e

8(3
√

3−2
√

2)
3

]
⊇

16
√

6e2

10935
, e
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√

3−8
√

2+3
√

10
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 ⊇ [
8e2
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, e
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√

3−5
√

2
3
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⊇

 √6
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, e
3
√

3+3
√

2+
√

10
2

 ⊇ [
1

36
, e2

√
3+2
√

2
]

and Theorem 10 is verified.

4. Conclusions

We introduced the coordinated log-h-convexity for interval-valued functions, some Jensen type
inequalities and Hermite-Hadamard type inequalities are proved. Our results generalize some known
inequalities and will be useful in developing the theory of interval integral inequalities and interval
convex analysis. The next step in the research direction investigated inequalities for fuzzy-interval-
valued functions, and some applications in interval nonlinear programming.
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22. A. Flores-Franulič, Y. Chalco-Cano, H. Román-Flores, An Ostrowski type inequality for interval-
valued functions, In: IFSA World Congress and NAFIPS Annual Meeting IEEE, 35 (2013), 1459–
1462. doi: 10.1109/ifsa-nafips.2013.6608617.

23. H. Román-Flores, Y. Chalco-Cano, W. Lodwick, Some integral inequalities for interval-valued
functions, Comput. Appl. Math., 37 (2016), 1306–1318. doi: 10.1007/s40314-016-0396-7.

24. D. Zhao, M. Ali, G. Murtaza, On the Hermite-Hadamard inequalities for interval-valued
coordinated convex functions, Adv. Differ. Equ., 570 (2020). doi: 10.1186/s13662-020-03028-7.

25. D. Zhao, T. An, G. Ye, W. Liu, Chebyshev type inequalities for interval-valued functions, Fuzzy
Set. Syst., 396 (2020), 82–101. doi: 10.1016/j.fss.2019.10.006.

26. Y. Guo, G. Ye, D. Zhao, W. Liu, Some integral inequalities for log-h-convex interval-valued
functions, IEEE Access, 7 (2019), 86739–86745. doi: 10.1109/access.2019.2925153.

27. Z. Zhang, M. Ali, H. Budak, M. Sarikaya, On Hermite-Hadamard type inequalities for
interval-valued multiplicative integrals, Commun. Fac. Sci. Univ., 69 (2020), 1428–1448. doi:
10.31801/cfsuasmas.754842.

© 2022 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 7, Issue 1, 156–170.

http://creativecommons.org/licenses/by/4.0

	Introduction
	Preliminaries
	Main results
	Conclusions

