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Abstract: In this paper, global exponential outer synchronization of coupled nonlinear systems with
general coupling matrices are investigated via pinning impulsive control. More realistic and more
general partially coupled drive-response systems are established, where the completely communication
channel matrix between coupled nodes may not be a permutation matrix. By using pinning impulsive
strategy involving pinning ratio and our generalised lower average impulsive interval method, a number
of novel and less restrictive synchronization criteria are proposed. In the end, a numerical example is
constructed to indicate the effectiveness of our theoretical results.
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1. Introduction

Complex network usually consists of interconnected nodes, where every node is a dynamical
network. Due to complicated links and interactions between nodes, it displays complicated dynamics
which may be completely differ from those of alone node. As far as we know, research on complex
networks originated in 1960 [1], where P. Erdȯs and A. Rénti advanced random graphical
mathematical model and utilized it to characterize topological feature of complex networks. Up to
now, complex networks have provoked extensive interest because of their widely existing in natural
world and universal applications in multidisciplinary field such as neural networks [2, 3], parallel
image processing [4], pattern recognition [5], social network [6], the world wide web [7] and so on.
Many results on delayed complex networks also have been reported [8–10].

As everyone knows, synchronization is one of very typical collective behaviors of complex
networks, which means that all the individual nodes with diverse initial values in the network
approach to a common state as time goes on. Synchronization is widely applied to multitudinous
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fields, such as information science, secure communication, flocking of birds, agreement of opinions,
biological systems, see [11–13] and so on. These years, people get a lot of significant research on
synchronization problem. For example, [14] investigated globally exponential synchronization of
coupled complex systems. [15] studied synchronization of coupled complex networks with hybrid
impulses. Note that time-delay is inevitable, thus, a great deal of interesting works consider effects of
time-delay to achieve synchronization of coupled complex networks [16, 17]. Recently, some results
about the synchronization were addressed for nonlinear discontinuous coupled dynamical networks,
see [18–20]. The bulk of the above mentioned research of complex networks concentrated around
inner synchronization, which considers that collective behavior amongst complete nodes in the same
network. In addition, outer synchronization among multiple complex networks is widespread in daily
life. Therefore, it is also very necessary to research how to achieve outer synchronization among
several complex network. Numerous meaningful results concerning outer synchronization have been
proposed. [21] investigated outer synchronization of both coupled complex networks with identical
topology. Thereafter, [22] studied outer synchronization about two coupled complex networks with
nonidentical topologies. [23] discussed generalized outer synchronization and [24] investigated
adaptive outer synchronization about two differ coupled complex networks.

Controller design is the core issue to realize synchronization of complex network. Until now, there
are a large amount of effective control methods including impulsive control [25–27], switching
control [28], feedback control [29], sampled-data control [30], intermittent control [31, 32], pinning
control [33, 34], sliding mode control [35], event-triggered control [36], fuzzy control [37], etc.
Among them, impulsive control strategy is widely used since it has a very straight forward structure
and only needs to be controlled discretely [38–40]. There are considerable number of valuable results
on synchronization of complex networks via impulsive control, see [41, 42] and so on. Furthermore,
controlling the whole nodes is difficult usually particularly when the system is composed of many
high-dimensional nodes. Because of these considerations, pinning control is proposed, which means
that nothing but a few part of nodes are controlled [43, 44]. To combine good points of pinning
strategy and impulsive control, pinning impulsive control method has been conceived. For
instance, [45] realized outer synchronization of partially coupled complex networks via pinning
impulsive control. In [45], the completely communication channel matrix explored between coupled
nodes is a unit matrix. Subsequently, based on regrouping method, some more realistic partially
coupled networks were investigated in [46], where the completely communication channel matrix
between coupled nodes is a permutation matrix. Such restriction also leads to more conservativeness.
In addition, [47] presented a more flexible method involving pinning ratio to achieve synchronization
of coupled complex networks via impulsive control.

Motivated by our previous discussion, in this paper, we investigate the outer synchronization
problem of coupled nonlinear systems with more general inner coupling matrices than in [45, 46] via
pinning impulsive control. Based on the impulse strategy involving pinning ratio and our generalised
lower average impulsive interval concept, a number of more flexible and less restrictive novel outer
synchronization criterion are proposed. The rest of this paper is structured as below: In Section 2, we
give fundamental model formulation, a few necessary definitions and assumptions. In Section 3, some
more widely applicable and less conservative criteria are proposed to obtain outer synchronization of
coupled systems. In Section 4, we cite a numerical example to show the effectiveness of derived
results. At the final part, a brief conclusion is given in Section 5.
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Notations. Let N represents the nonnegative integer set, In denotes the identity matrix of dimension
n. Let Y

1
2 (Y−

1
2 ) represents the arithmetic roots of positive matrix Y(Y−1), which means that Y

1
2 Y

1
2 =

Y(Y−
1
2 Y−

1
2 = Y−1). For a matrix A, let λmax(A) denotes the maximum eigenvalues of matrix A, and

A > 0(< 0) indicates A is a positive (negative) definite matrix. Rn denotes the Euclidean space of
dimension n, RN×N represents the linear space composed of real square matrices of order n . This
symbol T expresses the transpose of a matrix. ]D is the number of elements obtained in finite set D.
maxD denotes the maximum in finite set D.

2. Model description and preliminaries

Consider the complex network below consists of N partially coupled nodes:

ẋi(t) = Axi(t) + B f (xi(t)) + c
N∑

j=1, j,i

gi jRi j(x j(t) − xi(t)), (2.1)

where xi(t) = (xi1(t), · · · , xin(t))> ∈ Rn represents the state variable of the ith node;
A = diag{a1, a2, · · · , an} ∈ R

n×n, B ∈ Rn×n; f (xi(t)) = ( f1(xi(t)), · · · , fn(xi(t)))> is one non-linear
function of the ith node at time t satisfying f (0) = 0; c > 0 is the coupling strength of this complex
network. G = (gi j) ∈ RN×N denotes the outer coupling matrix which be assigned values according to
the following rules: if there exists one connection between node j and node i( j , i), gi j > 0; or else
gi j = 0. Ri j = (rkl

i j) ∈ R
n×n represents the channel matrix. In detail, rkl

i j is assigned value as below: if the
klth channel of the connection from the lth component of node j to the kth component of node i is
active, then rkl

i j > 0; otherwise, rkl
i j = 0. In view of the configuration of drive-response system, we take

the network (2.1) as drive system. Then, the corresponding response system is formulated by:

ẏi(t)= Ayi(t)+B f (yi(t))+c
N∑

j=1, j,i

gi jRi j(y j(t)−yi(t)) + ui(t), (2.2)

where yi(t) = (yi1(t), · · · , yin(t))> ∈ Rn is the state variable of the ith node for response system, and ui(t)
is the designed impulsive controller of the ith node.

Let Ci j = gi jRi j := (ckl
i j) ∈ R

n×n( j , i) and Cii = −
∑N

j=1, j,i Ci j, where ckl
i j = gi jrkl

i j .
Let ei(t) = yi(t) − xi(t), then we get the next error system:

ėi(t) = Aei(t) + B f̃ (ei(t)) + c
N∑

j=1

Ci je j(t) + ui(t),

where f̃ (ei(t)) = f (yi(t)) − f (xi(t)).
The following is the designed pinning impulsive controller:

ui(t) =


+∞∑
k=1

qkei(t)δ(t − tk), i ∈ Dk, ]Dk = sk

0, i < Dk

(2.3)

where the impulsive time sequence ζ = {tk, k ∈ N} satisfies 0 = t0 < t1 < t2 < · · · < tk < · · · , lim
k→+∞

tk =

+∞. δ(·) is the Dirac function. Let sk represents the number of pinned nodes, Dk = {i1, i2, · · · , isk} ⊆
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{1, 2, · · · ,N} is the set of pinned nodes and qk is the impulsive control gain at impulsive instant tk

respectively.
With the designed impulsive controller (2.3), the dynamical error system is expressed by: ėi(t) = Aei(t) + B f̃ (ei(t)) + c

N∑
j=1

Ci je j(t), t , tk,

ei(tk) = (1 + qk)ei(t−k ), i ∈ Dk, ]Dk = sk.
(2.4)

We assume that the solution of (2.4) satisfies ei(t+
k ) = ei(tk), k ∈ N.

We give the next definitions and assumption to derive main synchronization criteria.

Definition 1. We define the lower average impulsive interval Ta of impulsive sequence ζ = {tk, k ∈ N}
as below

Ta = lim
t→+∞

t − t0

Nζ(t0, t)
,

where Nζ(t0, t) represents the number of impulse occurrences of ζ in interval (t0, t).

Remark 1. This definition evolved from the concept of average impulsive interval [15]. Our the lower
limit of average impulsive interval Ta always exists for any impulsive sequence. Therefore, we present
a general less conservative concept which be able to characterize more broader impulsive sequences.

Definition 2. ( [47]).

ηk :=

∑
i∈D(tk)

eT
i (tk)ei(tk)

N∑
j=1

eT
j (tk)e j(tk)

, (2.5)

is called the pinning ratio of the system (2.4) at impulsive instant t = tk.

Definition 3. Response system (2.2) be called globally exponentially outer synchronized with drive
system (2.1), in other words error system (2.4) converges exponentially to zero, i.e. ∃ scalars ϑ >

0,M > 0 and T > 0, s.t. for arbitrarily ei(0)(i = 1, 2, · · · ,N), hold

‖ ei(t) ‖≤ Me−ϑt, t > T, i = 1, 2, · · · ,N.

Assumption 1. About non-linear function f (·), suppose that ∃ real numbers lik > 0(i, k = 1, 2, · · · , n)

satisfy | f (x1) − f (x2)| ≤
n∑

k=1
lik|x1k − x2k| for any x1, x2 ∈ R

n.

For the convenience of later use, let

L =


l11 l12 · · · l1n

l21 l22 · · · l2n
...

...
. . .

...

ln1 ln2 · · · lnn

 .
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3. Main results

In this section, a few pinning-controlled synchronization criterion of dynamical networks via
impulsive control will be deduced.

Theorem 1. Under Assumption 1, and assume that Ta of the sequence ζ is a finite real number. Then
response system (2.2) can be globally exponentially outer synchronized with drive system (2.1) if

ϑ =
lnξ
Ta

+ λ < 0, (3.1)

where ξ = lim
k→+∞

ξ1+ξ2+···+ξk
k > 0, ξk = q2

kηk + 2qkηk + 1, λ = λmax(A + AT ) + λmax(BBT ) + λmax(LT L) +

cN(1 + max{λmax(C>i jCi j)|i, j = 1, · · · ,N}).

Proof. We select Lyapunov function as below:

V(t) =

N∑
i=1

e>i (t)ei(t).

For any k ∈ N, t ∈ [tk, tk+1), we calculate the derivative of V(t) about t along the trajectory of error
system (2.4):

V̇(t) = 2
N∑

i=1

e>i (t)ėi(t)

= 2
N∑

i=1

e>i (t)[Aei(t) + B f̃ (ei(t)) + c
N∑

j=1

Ci je j(t)]

= 2
N∑

i=1

e>i (t)Aei(t) + 2
N∑

i=1

e>i (t)B f̃ (ei(t) + 2c
N∑

i=1

N∑
j=1

e>i (t)Ci je j(t). (3.2)

Note that

2
N∑

i=1

e>i (t)Aei(t) =

N∑
i=1

e>i (t)(A + A>)ei(t) ≤ λmax(A + AT )
∑N

i=1 e>i (t)ei(t). (3.3)

Under the premise of Assumption 1, one can see that

2
N∑

i=1

e>i (t)B f̃ (ei(t)) ≤
N∑

i=1

e>i (t)BB>ei(t) +

N∑
i=1

f̃ (ei(t))> f̃ (ei(t))

≤

N∑
i=1

e>i (t)BB>ei(t) +

N∑
i=1

ei(t)>L>Lei(t)

≤ (λmax(BBT ) + λmax(LT L))
N∑

i=1

e>i (t)ei(t). (3.4)
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In addition

2c
N∑

i=1

N∑
j=1

e>i (t)Ci je j(t) ≤ c
N∑

i=1

N∑
j=1

[e>i (t)ei(t) + e>j (t)C>i jCi je j(t)]

≤ cN(1 + max{λmax(C>i jCi j)|i, j = 1, · · · ,N}) ×
N∑

j=1

e>j (t)e j(t). (3.5)

Using inequalities (3.3)–(3.5) in (3.2), we obtain the following inequality V̇(t) ≤ λV(t).
Hence for t ∈ [tk, tk+1), we have

V(t) ≤ V(tk)eλ(t−tk). (3.6)

It follows from (2.4) and (2.5), we get

V(tk) =
∑
i∈Dk

e>i (tk)ei(tk) +
∑
i<Dk

e>i (tk)ei(tk)

= (1 + qk)2
∑
i∈Dk

e>i (t−k )ei(t−k ) +
∑
i<Dk

e>i (t−k )ei(t−k )

= [(1 + qk)2ηk + (1 − ηk)]
N∑

i=1

e>i (t−k )ei(t−k )

= ξkV(t−k ). (3.7)

For t ∈ [tk, tk+1), from inequalities (3.6)–(3.7), we have

V(t) ≤ V(tk)eλ(t−tk)

= ξkV(t−k )eλ(t−tk)

≤ ξkV(tk−1)eλ(t−tk−1)

= ξkξk−1V(t−k−1)eλ(t−tk−1)

· · ·

≤ (
k∏

i=1

ξi)V(0)eλ(t−t0)

≤ (
ξ1 + ξ2 + · · · + ξk

k
)keλ(t−t0)V(0)

= ekln ξ1+ξ2+···+ξk
k eλ(t−t0)V(0).

Using the definition of Ta, for ∀ϑ1, ϑ < ϑ1 < 0,∃ T > 0, s.t. for ∀t > T, we conclude

V(t) ≤ e( lnξ
Ta

+ϑ1−ϑ)(t−t0)eλ(t−t0)V(0)
≤ eϑ1(t−t0)V(0).

Note that ϑ1 < 0. Consequently, response system (2.2) is exponentially outer synchronized with drive
system (2.1). Theorem 1 is proved. �
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Remark 2. [46] designed impulsive controller based on a fixed weighted-norm to pinning those nodes
which have biggest norm values. Different from this result, the pinning impulsive strategy of Theorem 1
above based on pinning ratio ηk. In this case, it is possible that a node with smaller norm value can be
selected to save cost. Thus, the pinning impulsive strategy in Theorem 1 is more flexible and effective.

Especially, if we select the completely communication channel matrix R to be a permutation matrix,
and note that permutation matrices are all orthogonal matrices, we could obtain the next corollary
immediately.

Corollary 1. Suppose that Ri j = diag(r1l1
i j , r

2l2
i j , · · · , r

nln
i j )R, where (l1, l2, · · · , ln) is a permutation of

(1, 2, · · · , n), R is a permutation matrix. Under Assumption 1, response system (2.2) is globally
exponentially outer synchronized with drive system (2.1) if

ϑ =
lnξ
Ta

+ λ < 0, (3.8)

where ξ = lim
k→+∞

ξ1+ξ2+···+ξk
k > 0, ξk = q2

kηk + 2qkηk + 1, λ = λmax(A + AT ) + λmax(BBT ) + λmax(LT L) +

cN(1 + max{(gi jr
klk
i j )2|i, j, k = 1, · · · ,N}).

Remark 3. Note that in [45] and [46], their completely channel matrix R = (rkl) is assumed to be a
unit matrix or permutation matrix. However, these simplifications do not conform to the characteristics
of many real networks. In fact, there may be more than one communication from the components of
node j to the kth component of node i, and R may be different for a distinct pair of nodes i, j in many
real networks. In this paper, these restrictions are removed, thus our system are broader and in line
with the real circumstances.

In addition, if the impulsive control gain is an invariant constant, then we have the following more
specific version criterion.

Corollary 2. Suppose that qk ≡ q,∀k ∈ N, k ≥ 1. Under Assumption 1, response system (2.2) is
globally exponentially outer synchronized with drive system (2.1) if

η = lim
k→+∞

η1 + η2 + · · · + ηk

k
>

e−λTa − 1
q2 + 2q

, (3.9)

where λ = λmax(A+AT )+λmax(BBT )+λmax(LT L)+cN(1+max{λmax(C>i jCi j)|i, j = 1, · · · ,N}), q2+2q < 0.

Proof. Note that ξk = (q2 + 2q)ηk + 1, we have ξ = 1 + (q2 + 2q) lim
k→+∞

η1+η2+···+ηk
k . Then we can derive

Corollary 2 from Theorem 1 immediately. �

4. Numerical simulations

In this section, we propose one numerical simulation to reveal the effectiveness of theoretical results
obtained above.
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Example 1. We discuss a drive-response system with n = 3 and N = 3. The coupling parameters of
this model are taken as below:

A =


0.2 0 0
0 −0.4 0
0 0 0.1

 , B =


−0.08 0 0.1

0 −0.02 0
0.05 0 0.1

 ,G =


−1.2 1 0.2
0.1 −1.1 1
1 0 −1

 , c = 1.

We take the channel matrices as follows:

R12 =


0 0 0
0 0 0.3
0 0.2 0

 ,R13 =


0 0.1 0.3
0 0 0
0 0.2 0

 ,R21 =


0 0 0.5
0 0 0
0 0.2 0

 ,
R23 =


0 0 0.5

0.3 0 0
0 0 0

 ,R31 =


0 0 0.5

0.1 0 0
0 0.2 0

 .
Clearly, our channel matrices do not satisfy the conditions in [45] and [46], so results in [45] and [46]
cannot guarantee synchronization of this drive-response system in Example 1. Set

f (xi) = (tanh(xi1), tanh(xi2), tanh(xi3))T , L = diag{1, 1, 1}.

The initial values e1(0), e2(0), e3(0) of this drive-response system are selected uniformly and randomly
in the interval [−100, 100].

It follows from the simulation that error system is not scynchronized if there is no control input, see
Figure 1 (a).

0 2 4 6 8 10 12
t0

200

400

600

800

1000

1200

1400

 |e
i|, 

i=
1,

2,
3

|e
1
|

|e
2
|

|e
3
|

a

0 0.5 1 1.5 2 2.5 3
t0

5

10

15

20

25

 |e
i|, 

i=
1,

2,
3

|e
1
|

|e
2
|

|e
3
|

Impulse
instants

1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

b

Figure 1. (a) The trajectories of synchronization errors |ei(t)| without control; (b) The trajectories of
synchronization errors |ei(t)| with the pinning impulsive control.

By calculation, we get λ = 0.5869. Set qk ≡ −1.4, tk = 0.1k, k ∈ N, then Ta = 0.1. The pinning
ratio needs to meet ηk > 0.4917, we set ηk = 0.5. It can be verified soon that they meet the whole
requirements of Theorem 1. As indicated in Figure 1 (b), one can see that response system (2) becomes
synchronized with drive system (1) via such a sort of pinning impulsive controller. In addition, Figure 2
(a)–(c) show that the trajectories for the components of error state of the drive-response system under
the pinning impulsive control. We can also see from Figure 2 that the synchronization is obtained
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based on our pinning control strategy. The numerical simulations have testified the effectiveness of our
results.
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Figure 2. The trajectories for the components of error state with the pinning impulsive control.

5. Conclusions

In this paper, we mainly investigate outer synchronization problem of coupled dynamical systems
with general coupling matrices. By using the pinning impulsive strategy involving pinning ratio and our
generalised lower average impulsive interval concept, a few novel and less restrictive synchronization
criteria are proposed to obtain the globally exponential outer synchronization of complex networks. A
numerical example has been proposed to indicate the effectiveness of these theoretical results. Later,
we will research synchronization problem for fractional-order coupled dynamical networks and the
finite time synchronization of partially coupled complex networks with time-varying delay.
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