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Abstract: Due to its unique performance of high efficiency, fast heating speed and low power
consumption, induction heating is widely and commonly used in many applications. In this paper,
we study an optimal control problem arising from a metal melting process by using a induction
heating method. Metal melting phenomena can be modeled by phase field equations. The aim of
optimization is to approximate a desired temperature evolution and melting process. The controlled
system is obtained by coupling Maxwell’s equations, heat equation and phase field equation. The
control variable of the system is the external electric field on the local boundary. The existence and
uniqueness of the solution of the controlled system are showed by using Galerkin’s method and Leray-
Schauder’s fixed point theorem. By proving that the control-to-state operator P is weakly sequentially
continuous and Fréchet differentiable, we establish an existence result of optimal control and derive the
first-order necessary optimality conditions. This work improves the limitation of the previous control
system which only contains heat equation and phase field equation.
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1. Introduction

As a fairly new processing technology, induction heating is widely and commonly used in many
applications, for example, induction melting, induction heat treatment, and so on (see [1]). The similar
mathematical model is described by partial differential equations (see [2]). The metal materials is
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heated by the eddy current which is produced by electromagnetic induction. The solid phase of the
material begins to melt when the temperature achieves its melting point.

In this paper, we use bold letter represents a vector or vector function in three space dimensions.
For convenience, a product space Bn is often simply written as B, such as, L2(Ω) := [L2(Ω)]3. Suppose
that a fixed time T > 0 is given and a metal material occupies a bounded C2-domain Ω ⊂ R3. The
electric filed E and the magnetic field H in Ω satisfy the Maxwell’s equations (see [3, 4]):

{
εEt + σE(x, t) = ∇ ×H, (x, t) ∈ QT ,

µHt + ∇ × E = 0, (x, t) ∈ QT ,

where QT = Ω × (0,T ], ε, µ and σ are the electric permittivity, magnetic permeability, and electric
conductivity, respectively. Since the induction material is highly conductive, the displacement current
Jd = εE is very weak in comparison with the eddy currents Je = σE and is negligible (ε = 0) [5].
Hence, Maxwell’s equations become a single system with respect to H(x, t):

µHt + ∇ × [ρ∇ ×H] = 0, (x, t) ∈ QT ,

where ρ = 1
σ

represents the electric resistivity, the permeability µ = µ1 − iµ2, µ1 > 0, µ2 > 0 is a
complex constant.

During the heating process, the local density of Joule’s heat is described as (see [5, 6])

Q(x, t) = E · J∗ = ρ|∇ ×H|2, (x, t) ∈ QT ,

where J∗ is the complex conjugate of J.
When the metal material is heated, it will melt. Therefore, solid and liquid coexist in the heated

object during induction heating. This process can be modeled as system of phase field equations. A
solid-liquid coexistence region which is usually described by using the interface with finite thickness ξ
(See [2]). Let function u be the temperature and phase function φ describe the degree of melting. Then,
in the process of induction heating, the phase change phenomena can be modeled by a strong coupling
system as follows (a similar model can refer to the literature [2]):

{
ut + 1

2 lφt − ∇ · (k(x)∇u) = ρ|∇ ×H|2, (x, t) ∈ QT ,

τφt − ξ
24φ − 1

2 (φ − φ3) = 2u, (x, t) ∈ QT ,

where l, τ and k(x) are the latent heat (per unit mass), relaxation time and the thermal conductivity,
respectively.

Since magnetic field is more difficult to measure and control than electric field in engineering
practice, we consider the boundary control problem of electric field. In addition, some parts of the
boundary are insulated for ease of operation in the specific induction heating and melting process.
Therefore, a part of the boundary is adiabatic, the other part is used to control magnetic field by
electric field. After imposing the initial boundary value and normalizing certain physical parameters,
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we present the following system of phase field arising from inductive heating:

Ht + ∇ × ∇ ×H = 0, (x, t) ∈ QT , (1.1)

ut − ∇ · (k(x)∇u) = |∇ ×H|2 −
1
2

lφt, (x, t) ∈ QT , (1.2)

φt − 4φ −
1
2

(φ − φ3) = 2u, (x, t) ∈ QT , (1.3)

n ×H = 0, (x, t) ∈ S Γ1 = Γ1 × (0,T ], (1.4)
n × [∇ ×H(x, t)] = n ×G(x, t), (x, t) ∈ S Γ2 = Γ2 × (0,T ], (1.5)
H(x, 0) = H0(x), x ∈ Ω, (1.6)
(un, φn) = (0, 0), (x, t) ∈ S Γ = ∂Ω × (0,T ], (1.7)
(u(x, 0), φ(x, 0)) = (u0(x), φ0(x)), x ∈ Ω, (1.8)

where the boundary ∂Ω = Γ1∪Γ2 is split into two disjoint measurable subsets Γ1 and Γ2, both of which
are nonempty, n is the outward unit normal on ∂Ω, un = ∇u · n is the normal derivative on ∂Ω and G
is the electric field generated by external optoelectronic devices which will be considered as a control
variable.

In order to obtain optimal strategy for the electric field action such that the temperature profile at the
final stage has a relative uniform distribution and minimum energy consumption, we state our optimal
control problem as follows.

Optimal control problem (P): Assume that the temperature uT (·) and degree of melting φT (·) are
given in L2(Ω), we would like to find an optimal control G∗ ∈ Uad such that the cost functional

J(G; H, φ, u) =
1
2

∫
Ω

|u(x,T ) − uT (x)|2dx +
1
2

∫
Ω

|φ(x,T ) − φT (x)|2dx

+
λ

2

∫ T

0

∫
Γ2

|G(x, t)|2dsdt (1.9)

achieves its minimum at (H∗, φ∗, u∗) under the state equations by coupled systems (1.1)–(1.8), where
λ > 0 is a typical regularization parameter, G(·, ·) belongs to the following admissible control set:

Uad =
{
G ∈ L2(0,T ; L2(Γ2)) : ‖G‖L2(0,T ;L2(Γ2)) ≤ A0 < +∞

}
,

where A0 is a known constant.
For optimal control problems of the system coupled by Maxwell’s equations with nonlinear heat

equation in microwave heating, there are several papers dealing with in recent years. Wei and Yin
[7] discussed the existence and necessary conditions of the optimal control on the boundary electric
field control. Further, they proved the regularity of weak solutions of coupled nonlinear systems and
gave necessary conditions for uniform microwave heating when microwave acts in three directions in
the paper [8]. The problem of realizing uniform microwave heating through frequency control was
considered (see, for examples, Yin [9] and Liao [10]). The Bang-Bang properties for time optimal
controls on microwave heating was also discussed in [11]. But the controlled system in researches
above does not contain the phase field process.

Without Maxwell’s equations, the research on the qualitative theory and optimal control of phase
field equations is a very active topic from the 1980s. On phase field model, one can refer to Temam’s
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related references [12] and Caginalp [2]. In order to more accurately express the subtle physical
characteristics, some authors studied the phase field equations with corresponding parameters [13–16].
However, it is worth mentioning that, based on Caginalp’s phase field model [2], Hoffman and Jiang
[15] generalized the model and obtained the well-posedness of the solution for controlled system and
necessary conditions for related optimal problem. In addition, the solidification or melting models of
some metal alloys with multiple crystals were described. For the two kinds of crystallization [16],
the well-posedness of the phase field equation was studied, and the maximum principle is deduced by
using Dubovitskii-Milyutin method [17]. Limited by mathematical techniques, the well-posedness of
the phase field equations of three crystals was studied only in one dimension [18]. Later, Colli studied
the distributed optimal control problem of this kind of system to supplement this analysis [19]. There
are abundant articles on several numerical simulation aspects of phase field model, such as [20–25].
However, the previous work did not involve the phase field coupling system (1.1)–(1.8) in the induction
heating process. There exist some difficulties in this study. Firstly, the boundary conditions (1.4)
and (1.5) are mixed. Secondly, the heat source |∇ × H|2 is required in L2(QT ). Finally, the Fréchet
differentiability of state variables H, u and φ on control variable G is also a complicated problem.

The rest of this article is organized as follows. In Section 2, some symbols and assumptions used
in this paper are given, and we showed that there is unique solution for the controlled system. In
Section 3, we prove several important properties of the control-to-state operator. Section 4 is devoted
to the existence and necessary condition for optimal control problem. Some concluding remarks are
given in Section 5.

2. Existence and uniqueness of solution for the underlying system

2.1. Existence of a weak solution for Maxwell’s equations

For the sake of convenience, we recall some function spaces associated with Maxwell’s equations.
Let

V(curl,Ω) = {M ∈ L2(Ω) : ∇ ×M ∈ L2(Ω)}, X = {M ∈ L2(Ω) : ∇ ×M ∈ L2(Ω),n ×M = 0 on Γ1}.

Then, V(curl,Ω) and X are Hilbert spaces equipped with inner product

(M,N) =

∫
Ω

[(∇ ×M) · (∇ × N∗) + M · N∗],

where N∗ represents the complex conjugate of N. Obviously, X is a linear subspace of V(curl,Ω). A
norm on V(curl,Ω) and X is given by ‖ · ‖V(curl,Ω) =

√
(·, ·).

To take account of the boundary conditions, we introduce two trace mappings Υt : V(curl,Ω) →
Y(∂Ω) and ΥT : V(curl,Ω) → Y ′(∂Ω) (the dual space of Y(∂Ω)) defined by Υt(M) = n ×M|∂Ω and
ΥT (M) = n × (n ×M|∂Ω), respectively, where n is the above description and Y(∂Ω) is a Hilbert space
(see [26]) as follow

Y(∂Ω) = {f ∈ H−
1
2 (Ω) : there exists M ∈ V(curl,Ω) with Υt(M) = f},

with norm
‖f‖Y(∂Ω) = inf

M∈V(curl,Ω),Υt(M)=f
‖M‖V(curl,Ω).
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We begin with some basic assumptions.
A(2.1) The vector function H0(·) ∈ L2(Ω) is given and nonnegative.
A(2.2) For almost every t ∈ (0,T ), the function G(·, t) is defined on Γ2 with an extension such that
G(·, t) ∈ V(curl,Ω) with extended function Ḡ(·, t) satisfies

‖Ḡ(·, t)‖V(curl,Ω) ≤ C0‖G(·, t)‖L2(Γ2),

where C0 is a constant that depends only on Ω.
For convenience, we shall denote the extended function Ḡ(·, t) by G(·, t) with G(·, t) ∈ V(curl,Ω).

Lemma 1. Under the assumptions A(2.1) and A(2.2), there is a unique weak solution H ∈ L2(0,T ; X)
for the parabolic problem (1.1) and (1.4)–(1.6). The weak solution H ∈ L2(0,T ; X) is defined by

−

∫ T

0

∫
Ω

H ·Φtdxdt +

∫ T

0

∫
Ω

(∇ ×H) · (∇ ×Φ)dxdt

=

∫
Ω

H0 ·Φ(x, 0)dx −
∫ T

0
〈n ×G,ΥT (Φ)〉Γ2dt,

for any function Φ ∈ H1(0,T ; X) with Φ(x,T ) = 0 a.e. x ∈ Ω. Moreover, there are constants C1 ≥ 0
and C2 ≥ 0, which depend only on known data, such that

sup
t∈[0,T ]

‖H(·, t)‖L2(Ω) + ‖H‖L2(0,T ;V(curl,Ω)) ≤ C1
(
‖G‖L2(0,T ;L2(Γ2)) + ‖H0‖L2(Ω)

)
, (2.1)

‖∇ ×H(·, t)‖6L6(Ω) ≤ C2‖G(·, t)‖2L2(Ω), a.e. t ∈ [0,T ]. (2.2)

Proof. Since (1.1) is a linear equations with conditions (1.4)–(1.6), the existence and uniqueness of the
solution can be proved by Galerkin’s method (see [27]). Meanwhile, estimates (2.1) are also derived
(see [27], Chapter III, Theorem 2.2). According to E = ∇ × H in Section 1 and Lemma 3 in [7], we
find that ∇×H = E ∈ H1(Ω) and ‖∇×H‖H1(Ω) ≤ C2‖G‖2L2(Ω). Finally, by virtue of Sobolev’s embedding
theorem with N = 3, we can derive the desired estimate (2.2). �

Remark 1. Note that the boundary condition (1.4) gives no information about n× [∇×H] on S Γ1 . We
eliminate this portion of the integral by taking test functionΦ such that ΥT (Φ) = 0 on S Γ1 . Hence, the
variational problem of Lemma 1 leaves only the integral term on S Γ2 .

Next, a stability result is established which will be useful for deriving the first-order necessary
optimality conditions for Problem (P) in Section 1.

Lemma 2. In addition to the assumptions A(2.1) and A(2.2), assume that H1 and H2 are two weak
solutions of the system (1.1) and (1.4)–(1.6) corresponding to G1 and G2, respectively. Then the
following stability estimate holds:

‖H1 −H2‖L2(0,T ;V(curl,Ω)) ≤ C‖G1 −G2‖L2(0,T ;L2(Γ2)),

where the constant C depends only on known data in A(2.2).
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Proof. Define G = G1 − G2 and H = H1 − H2. Then, in the sense of weak solution, H ∈ L2(0,T ; X)
solves the system 

Ht + ∇ × ∇ ×H = 0, (x, t) ∈ QT ,

n ×H = 0, (x, t) ∈ S Γ1 ,

n × [∇ ×H(x, t)] = n ×G(x, t), (x, t) ∈ S Γ2 ,

H(x, 0) = 0, x ∈ Ω.

By means of similar estimates in (2.1), it can then be shown that the required estimate holds. �

2.2. Existence and uniqueness of solution for phase field equations

With the weak solution H ∈ L2(0,T ; X) of problem (1.1) and (1.4)–(1.6), we now turn to study the
problem (1.2), (1.3) and (1.6)–(1.8) (i.e., the phase field problem). Let us list some Banach spaces:

W(0,T ) =
{
u ∈ L2(0,T ; H1(Ω)) : ut ∈ L2(0,T ; H−1(Ω))

}
,

W2,1
2 (QT ) = {u ∈ L2(QT ) : uxi , uxi x j , ut ∈ L2(QT ), i = 1, 2, 3},
W2

4 (Ω) = {u ∈ L4(Ω) : uxi , uxi x j ∈ L4(Ω), i = 1, 2, 3}.

We impose some basic assumptions which ensure the well-posedness of controlled system:
A(2.3) (a) Let u0(·), uT (·) ∈ L2(Ω) be nonnegative.

(b) The function k : Ω→ R is given with 0 < k1 ≤ k(x) ≤ k2 for constants k1 and k2.
A(2.4) Function φ0(·) ∈ W2

4 (Ω) satisfying ∂φ0
∂n |∂Ω = 0 and φT (·) ∈ L2(Ω) is nonnegative.

In order to study the phase field model, we state some lemmas.

Lemma 3. (Lions-Peetre’s embedding theorem [28])The embedding W2,1
2 (QT ) ↪→ L10(QT ) is

continuous. Moreover, whenever 2 ≤ p̃ < 10, the embedding W2,1
2 (QT ) ↪→ L p̃(QT ) is compact.

Lemma 4. Assume that v ∈ L2(QT ) and ψ0 ∈ W2
4 (Ω) with ∂ψ0

∂n |∂Ω = 0. Then the following problem
ψt − 4ψ −

1
2 (ψ − ψ3) = v(x, t), (x, t) ∈ QT ,

ψn(x, t) = 0, (x, t) ∈ S Γ,

ψ(x, 0) = ψ0(x), x ∈ Ω,

(2.3)

has a unique strong solution ψ ∈ W2,1
2 (QT ) satisfying

‖ψ‖W2,1
2 (QT ) ≤ C

(
‖ψ0‖W2

4 (Ω) + ‖v‖L2(Ω) + C0
)
, (2.4)

where C0 = maxy∈R(3
2y2 − 1

4y4) and C is a constant only depends on Ω and T .

Proof. The proof is given by applying Leray-Schauder’s fixed point theorem (see [29]). To this end,
let B = L6(QT ) and consider the mapping Tσ : B→ B, which is given by

Tσ(η) = ψ,
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where σ ∈ [0, 1] and ψ is the unique solution of the following linear system:
ψt − 4ψ = σ[1

2 (η − η3) + 2v(x, t)], (x, t) ∈ QT ,

ψn(x, t) = 0, (x, t) ∈ S Γ,

ψ(x, 0) = ψ0(x), x ∈ Ω.

(2.5)

It is not hard to know that σ[1
2 (η − η3) + 2v] ∈ L2(QT ). By using the Lp-theory of parabolic equation,

the system (2.5) has a unique solution ψ ∈ W2,1
2 (QT ). From Lemma 3, mapping Tσ is compact on B.

Next, let ψ ∈ B be a fixed point of Tσ for some σ ∈ [0, 1]. Thus, ψ solves the following problem
ψt − 4ψ = σ[1

2 (ψ − ψ3) + 2v(x, t)], (x, t) ∈ QT ,

ψn(x, t) = 0, (x, t) ∈ S Γ,

ψ(x, 0) = ψ0(x), x ∈ Ω.

(2.6)

Multiplying Eq (2.6) by ψ, integrating on (0, t) × Ω with t ∈ [0,T ], integrating by parts and applying
Young’s inequality, it follows that∫

Ω

ψ2(t)dx +

∫ t

0

∫
Ω

|∇ψ|2dxdt +

∫ t

0

∫
Ω

|ψ|4dxdt

≤C1

[ ∫ T

0

∫
Ω

v2dxdt +

∫
Ω

ψ2
0(x)dx + max

y∈R
(
3
2

y2 −
1
4

y4)
]
, (2.7)

where C1 only depends on Ω and T .
Multiplying Eq (2.6) by ψt and making the similar operation as before, it is not hard to get that∫

Ω

ψ4(t)dx +

∫
Ω

|∇ψ|2dxdt +

∫ t

0

∫
Ω

ψ2
t dxdt

≤C2

( ∫
Ω

|∇ψ0|
2dxdt +

∫ t

0

∫
Ω

v2dxdt +

∫
Ω

ψ4
0dxdt +

∫
Ω

ψ2(t)dx
)
, (2.8)

where C2 only depends on T .
Multiplying Eq (2.6) by −4ψ and performing the similar calculation, it yields that∫

Ω

|∇ψ(t)|2dx +

∫ t

0

∫
Ω

|4ψ|2dxdt +

∫ t

0

∫
Ω

ψ2|∇ψ|2dxdt

≤C3

( ∫
Ω

|∇ψ0|
2dxdt +

∫ t

0

∫
Ω

v2dxdt +

∫ t

0

∫
Ω

|∇ψ|2dxdt
)
, (2.9)

where C3 only depends on T .
According to (2.7)–(2.9), we take C = max(C1,C2,C2) ≥ 0 which depends on Ω and T , such that

‖ψ‖W2,1
2 (QT ) ≤ C

(
‖ψ0‖W2

4 (Ω) + ‖v‖L2(Ω) + C0
)
, (2.10)

where C0 = maxy∈R
(3

2y2 − 1
4y4).

By the compact embedding W2,1
2 (QT ) ↪→ L6(QT ), we get

‖ψ‖B ≤ C‖ψ‖W2,1
2 (QT ) ≤ C′.
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where the positive constant C′ does not depend on σ.
By Leray-Schauder’s fixed point theorem, there exists a fixed point ψ ∈ L6(QT ) ∩W2,1

2 (QT ) for the
operator T1, i.e., ψ = T1ψ.

The rest of the work is to prove the uniqueness of the solution. Let v ∈ L2(QT ) and ψ1, ψ2(i = 1, 2)
be two solutions of problem (2.3). Then Ψ := ψ1 − ψ2 satisfies the following problem

Ψt − 4Ψ = D(ψ1, ψ2)Ψ, (x, t) ∈ QT ,

Ψn(x, t) = 0, (x, t) ∈ S Γ,

Ψ(x, 0) = 0, x ∈ Ω,

(2.11)

where D(ψ1, ψ2) = 1
2 [1 − (ψ2

1 + ψ1ψ2 + ψ2
2)] ∈ L5(QT ) by applying Lemma 3 and D(ψ1, ψ2) ≤ 1

2 .
Testing the equation in (2.11) by e−tΨ(x, t), integrating by parts, it holds that∫

Ω

Ψ2(t)e−tdx +

∫ t

0

∫
Ω

|∇Ψ|2e−tdxdt =

∫ t

0

∫
Ω

(
−

1
2

+ D
)
Ψ2e−tdxdt ≤ 0.

Therefore, one can obtain that∫
Ω

Ψ2(t)e−tdx =

∫ t

0

∫
Ω

|∇Ψ|2e−tdxdt = 0,

which implies that Ψ = 0 a.e. x ∈ Ω for every t ∈ [0,T ]. �

Lemma 5. [30, p175–177] Under assumption A(2.3), for any given function f ∈ L2(QT ), the following
problem: 

ut − ∇ · (k(x)∇u) = f (x, t), (x, t) ∈ QT ,

un(x, t) = 0, (x, t) ∈ S Γ,

u(x, 0) = u0(x), x ∈ Ω

has a unique weak solution u ∈ W(0,T ). Moreover, there exists a positive constant C which depends
on known data, such that

‖u‖W(0,T ) ≤ C
(
‖u0‖L2(Ω) + ‖ f ‖L2(QT )

)
. (2.12)

It follows from Lemmas 4 and 5 that there is a unique solution for the problem (1.2)–(1.3) and
(1.7)–(1.8).

Lemma 6. Under the assumptions A(2.1)–A(2.4), the coupled system (1.2)–(1.3) with the initial
boundary condition (1.7)–(1.8) has at least one solution (u, φ) ∈ W(0,T ) × W2,1

2 (QT ) for any given
H ∈ L2(0,T ; X). Moreover, the following estimates hold:

‖u‖W(0,T ) + ‖φ‖W2,1
2 (QT ) ≤ C(‖φ0‖W2

4 (Ω) + ‖u0‖L2(Ω) + ‖G‖2L2(0,T ;L2(Γ2)) + C′0), (2.13)

where the positive constants C and C′0 depend on known data.
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Proof. Let B = L2(QT ). Define a mapping Tσ : B→ B by

Tσv = u,

where σ ∈ [0, 1] and u is the unique solution of the following problem:
ut − ∇ · (k(x)∇u) = |∇ ×H|2 − 1

2 lφt, (x, t) ∈ QT ,

φt − 4φ −
1
2 (φ − φ3) = 2σv, (x, t) ∈ QT ,

(un(x, t), φn(x, t)) = (0, 0), (x, t) ∈ S Γ,

(u(x, 0), φ(x, 0)) = (u0(x), φ0(x)), x ∈ Ω.

(2.14)

The first equation of (2.14) has a unique solution by Lemma 4. Combining Lemma 1, we can get
|∇ × H(x, t)|2 − 1

2 lφt(x, t) ∈ L2(QT ). It follows from Lemma 5 that the second equation of (2.14) has
a unique solution u ∈ W(0,T ). Note that W(0,T ) ↪→ L2(QT ) are compact by Aubin’s Lemma ( [30],
p148). Therefore, the mapping Tσ is well defined and compact from B into B.

It remains to estimate all fixed points of Tσ. Assume that u ∈ B is a fixed point, i.e., Tσu = u. Then,
ut − ∇ · (k(x)∇u) = |∇ ×H|2 − 1

2 lφt, (x, t) ∈ QT ,

φt − 4φ −
1
2 (φ − φ3) = 2σu, (x, t) ∈ QT ,

(un(x, t), φn(x, t)) = (0, 0), (x, t) ∈ S Γ,

(u(x, 0), φ(x, 0)) = (u0(x), φ0(x)), x ∈ Ω.

(2.15)

Multiplying the first equation of (2.15) by u + 1
2 lσφ, integrating over Ω × (0, t) with 0 ≤ t ≤ T ,

integrating by parts, using Young’s inequality, we know that

1
2

(1 − σlε′)
∫

Ω

u2(t)dx +
1
2

( l2σ2

4
− σlC(ε′)

) ∫
Ω

φ2(t)dx

+ k1

(
1 −

lσ
2
ε′′

) ∫ t

0

∫
Ω

|∇u|2dxdt −
lk1σ

2
C(ε′′)

∫ t

0

∫
Ω

|∇φ|2dxdt

≤C
( ∫ t

0

∫
Ω

u2dxdt +

∫ t

0

∫
Ω

φ2dxdt + ‖u0‖
2
L2(Ω) + ‖φ0‖

2
L2(Ω) + ‖G‖4L2(0,T ;L2(Γ2))

)
, (2.16)

where ε′ and ε′′ are two sufficiently small parameters, C(ε′) and C(ε′′) are sufficiently large constants
corresponding to ε′ and ε′′, respectively.

Multiplying the first equation of (2.15) by φ and acting the similar process as before, it yields that

1
2

∫
Ω

φ2(t)dx +

∫ t

0

∫
Ω

|∇φ|2dxdt +
1
4

∫ t

0

∫
Ω

φ4dxdt

≤C
[

max
y∈R

(x,t)∈QT

(1
2

y2 −
1
4

y4
)

+ ‖φ0‖
2
L2(Ω) +

∫ t

0

∫
Ω

u2dxdt +

∫ t

0

∫
Ω

φ2dxdt
]
. (2.17)

Multiplying (2.17) by A > 0 and adding it to (2.16). It can be easily deduced that

1
2

(1 − σlε′)
∫

Ω

u2(t)dx +
1
2

(
A +

l2σ2

4
− σlC(ε′)

) ∫
Ω

φ2(t)dx + k1

(
1 −

lσ
2
ε′′

) ∫ t

0

∫
Ω

|∇u|2dxdt

+

(
A −

lk1σ

2
C(ε′′)

) ∫ t

0

∫
Ω

|∇φ|2dxdt +
A
4

∫ t

0

∫
Ω

φ4dxdt
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≤C
[ ∫ t

0

∫
Ω

(u2 + φ2)dxdt + ‖u0‖
2
L2(Ω) + ‖φ0‖

2
L2(Ω) + ‖G‖4L2(0,T ;L2(Γ2)) + C′0

]
, (2.18)

where C′0 = maxy∈R( 1
2y2 − 1

4y4) and A ∈ R is an arbitrary parameter. Choosing the appropriate A, ε′ and
ε′′, it can be ensured that all the integrals on the left side of (2.18) are positive. This means that there
exists a constant C > 0 such that∫

Ω

[u2(t) + φ2(t)]dx ≤
∫

Ω

[u2(t) + φ2(t)]dx +

∫ t

0

∫
Ω

(|∇u|2 + |∇φ|2 + φ4)dxdt

≤C
[ ∫ t

0

∫
Ω

(u2 + φ2)dxdt + ‖u0‖
2
L2(Ω) + ‖φ0‖

2
L2(Ω) + ‖G‖4L2(0,T ;L2(Γ2)) + C′0

]
. (2.19)

By Gronwall’s inequality, it implies that∫
Ω

[u2(t) + φ2(t)]dx ≤ C
(
‖u0‖

2
L2(Ω) + ‖φ0‖

2
L2(Ω) + ‖G‖4L2(0,T ;L2(Γ2)) + C′0

)
,

Substituting the previous inequlity into (2.19), it produces that∫
Ω

[u2(t) + φ2(t)]dx +

∫ t

0

∫
Ω

(|∇u|2 + |∇φ|2 + φ4)dxdt

≤2C
(
‖u0‖

2
L2(Ω) + ‖φ0‖

2
L2(Ω) + ‖G‖4L2(0,T ;L2(Γ2)) + C′0

)
(2.20)

for all t ∈ [0,T ].
Multiplying the second equation of (2.14) respectively by φt and −4φ and performing the similar
calculation, one can get∫

Ω

[φ4(t) + |∇φ(t)|2]dx +

∫ t

0

∫
Ω

φ2
t dxdt ≤ C

(
‖∇φ0‖

2
L2(Ω) + ‖φ‖2L2(Ω) + ‖φ0‖

4
L4(Ω) + ‖u‖2L2(QT )

)
(2.21)

and ∫
Ω

|∇φ(t)|2dx +

∫ t

0

∫
Ω

(|4φ|2 + φ2|∇φ|2)dxdt ≤ C
(
‖∇φ0‖

2
L2(Ω) + ‖∇φ‖2L2(QT ) + ‖u‖2L2(QT )

)
. (2.22)

Combining (2.20)–(2.22), one can obtain

‖φ‖W2,1
2 (QT ) ≤ C

(
‖φ0‖W2

4 (Ω) + ‖u0‖L2(Ω) + ‖G‖2L2(0,T ;L2(Γ2)) + C′0
)
. (2.23)

Invoking (2.12) in Lemma 5, one have the following estimate∫ t

0
‖ut‖H−1(Ω)dt ≤ C

(
‖u0‖L2(Ω) + ‖φt‖L2(QT ) + ‖G‖2L2(0,T ;L2(Γ2))

)
. (2.24)

Estimates (2.20) and (2.24) yield to

‖u‖W(0,T ) ≤ C
(
‖u0‖L2(Ω) + ‖φ0‖L2(QT ) + ‖G‖2L2(0,T ;L2(Γ2)) + C′0

)
. (2.25)

It follows from (2.25) and the embedding W(0,T ) ↪→ L2(QT ) that all fixed points of Tσ are uniformly
bounded in B. By Leray–Schauder’s fixed point theorem, there exists a fixed point u ∈ L2(QT )∩W(0,T )
of the operator T1, i.e., u = T1u. �
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Next, we will establish a stability result.

Lemma 7. Suppose that Hi(i = 1, 2) are two weak solutions of the system (1.1) and (1.4)–(1.6)
corresponding to Gi(i = 1, 2) and (ui, φi)(i = 1, 2) are two solutions of the phase equations (1.2),
(1.3), (1.7) and (1.8). Then the following stability estimate holds.

‖u1 − u2‖W(0,T ) + ‖φ1 − φ2‖W2,1
2 (QT ) ≤ C‖G1 −G2‖L2(0,T ;L2(Γ2)), (2.26)

where the constant C depends only on known data in A(2.2).

Proof. Define H = H1−H2, u = u1−u2 and φ = φ1−φ2. Then (u, φ) ∈ W(0,T )×W2,1
2 (QT ) is a solution

of the following problem.
ut − ∇ · [k(x)∇u] = ∇ × (H1 + H2) · ∇ ×H − 1

2 lφt, (x, t) ∈ QT ,

φt − 4φ = D(φ1, φ2)φ + 2u, (x, t) ∈ QT ,

(un(x, t), φn(x, t)) = (0, 0), (x, t) ∈ S Γ,

(u(x, 0), φ(x, 0)) = (0, 0), x ∈ Ω,

(2.27)

where D(φ1, φ2) = 1
2

[
1 − (φ2

1 + φ1φ2 + φ2
2)
]
≤ 1

2 and D(φ1, φ2) ∈ L5(QT ).
Multiplying the second equation of (2.27) by e−tφ, integrating on Ω × (0, t), one can obtain that∫

Ω

φ2(t)dx +

∫ t

0

∫
Ω

|∇φ|2dxdt ≤ C
( ∫ t

0

∫
Ω

u2dxdt +

∫ t

0

∫
Ω

φ2dxdt
)
. (2.28)

Gronwall’s inequality implies that∫
Ω

φ2(t)dx +

∫ t

0

∫
Ω

|∇φ|2dxdt ≤ C
∫ T

0

∫
Ω

u2dxdt. (2.29)

Testing the first equation of (2.27) by u + l
2φ, integrating by parts and using Young’s, Hölder’s and

Cauchy’s inequalities, we get

1 − lε′

2

∫
Ω

u2(t)dx +

( l
8
−

lC(ε′)
2

) ∫
Ω

φ2(t)dx +

(
k1 −

l
2

k2ε
′′

) ∫ t

0

∫
Ω

|∇u|2dxdt

−
lk2C(ε′′)

2

∫ t

0

∫
Ω

|∇φ|2dxdt

≤
1
2

( ∫ t

0

∫
Ω

|∇ × (H1 + H2)|4dxdt
) 1

4
[( ∫ t

0

∫
Ω

|∇ ×H|4dxdt
) 1

2

+

∫ t

0

∫
Ω

|u|2dxdt
]
. (2.30)

Mltiplying (2.28) by a parameter A > 0 and adding it to (2.30), next, choosing suitable parameters
A, ε′, ε′′ such that the coefficients of

∫
Ω

u2dx,
∫

Ω
φ2dx,

∫ t

0

∫
Ω
|∇u|2dxdt and

∫ t

0

∫
Ω
|∇φ|2dxdt are all

nonnegative, then there exists a constant C such that∫
Ω

[u2(t) + φ2(t)]dx +

∫ t

0

∫
Ω

(|∇u|2 + |∇φ|2)dxdt

≤ C
[( ∫ t

0

∫
Ω

|∇ ×H|4dxdt
) 1

2

+

∫ t

0

∫
Ω

(|u|2 + |φ|2)dxdt
]
.
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Using the Gronwall’s inequality, one obtains∫
Ω

[u2(t) + φ2(t)]dx +

∫ T

0

∫
Ω

(|∇u|2 + |∇φ|2)dxdt ≤ C
( ∫ T

0

∫
Ω

|∇ ×H|4dxdt
) 1

2

. (2.31)

Similarly, testing the second equation of (2.27) by φt, integrating by parts and using Young’s, Hölder’s
and Cauchy’s inequalities, we get∫ t

0

∫
Ω

φ2
t dxdt +

∫
Ω

|∇φ(t)|2dx ≤ C′
[ ∫ t

0

∫
Ω

u2dxdt +

( ∫ t

0

∫
Ω

φ
10
3 dxdt

) 3
5
]
, (2.32)

where C′ depends on ‖D‖L5(QT ).
Finally, testing the second equation of (2.27) by −4φ, integrating by parts and using Young’s, Hölder’s
and Cauchy’s inequality, we get∫ t

0

∫
Ω

|4φ|2dxdt +

∫
Ω

|∇φ(t)|2dx ≤ C′′
[ ∫ t

0

∫
Ω

|u|2dxdt +

( ∫ t

0

∫
Ω

φ
10
3 dxdt

) 3
5
]
, (2.33)

where C′′ depends on ‖D‖L5(QT ).
Combining (2.31)–(2.33), we find that

‖φ‖W2,1
2 (QT ) ≤ C

(
‖φ‖

L
10
3 (QT )

+ ‖∇ ×H‖L4(QT )
)
. (2.34)

Since W2,1
2 (QT ) ↪→ L

10
3 (QT ), the following interpolation inequality holds

‖φ‖
L

10
3 (QT )

≤ ε‖φ‖W2,1
2 (QT ) + C(ε)‖φ‖L2(QT ). (2.35)

Substituting (2.35) in (2.34), choosing the appropriate ε and invoking (2.33), it follows that

‖φ‖W2,1
2 (QT ) ≤ C‖∇ ×H‖L4(QT ) ≤ C‖G1 −G2‖L2(0,T ;L2(Γ2)). (2.36)

By Lemma 5, we also have

‖ut‖L2(0,T ;H−1(Ω)) ≤ C‖G1 −G2‖L2(0,T ;L2(Γ2)). (2.37)

Finally, estimates (2.31) and (2.37) yield

‖u‖W(0,T ) ≤ C‖G1 −G2‖L2(0,T ;L2(Γ2)).

�

Corollary 1. Under the assumptions A(2.1)–A(2.4), the solution (u, φ) ∈ W(0,T )×W2,1
2 (QT ) in Lemma

6 is unique.

With Lemmas 1, 6 and 7, we can obtain the following theorems.

Theorem 1. Under the assumptions A(2.1)–A(2.4), the coupled system (1.1)–(1.8) has a unique
solution (H, u, φ) ∈ L2(0,T ; X) × W(0,T ) × W2,1

2 (QT ). Meanwhile, there exists a constant K1 such
that

sup
t∈[0,T ]

‖H(·, t)‖L2(Ω) + ‖H‖L2(0,T ;V(curl,Ω)) + ‖u‖W(0,T ) + ‖φ‖W2,1
2 (QT ) ≤ K1. (2.38)
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3. The control-to-state operator

Definition 1. The mapping

P : L2(0,T ; L2(Γ2))→ L2(0,T ; X) ×W(0,T ) ×W2,1
2 (QT ),G 7→ P(G) = (H, u, φ),

defined by Theorem 1 is called the control-to-state operator.

In this section, we give and show several important properties of P, which will be very useful in
proving the existence of optimal control and deriving optimality conditions.

Theorem 2. Under the assumptions A(2.1)–A(2.4), the operator P is weakly sequentially continuous.

Proof. Taking {Gm}
∞
m=1 ⊂ L2(0,T ; L2(Γ2)) such that

Gm → G∗ weakly in L2(0,T ; L2(Γ2)), whenever m→ +∞. (3.1)

Assuming that (Hm, um, φm) is the solution of (1.1)–(1.8) associated with Gm for m = 1, 2, · · ·, i.e.,

P(Gm) = (Hm, um, φm).

We will show that there exists (H∗, u∗, φ∗) ∈ L2(0,T ; X) ×W(0,T ) ×W2,1
2 (QT ) such that

P(Gm)→ P(G∗) = (H∗, u∗, φ∗)

weakly in L2(0,T ; X) ×W(0,T ) ×W2,1
2 (QT ), as m→ ∞.

According to the definition of P, it follows that∫ T

0

∫
Ω

Hm ·Φtdxdt +

∫ T

0

∫
Ω

∇ ×Hm · ∇ ×Φdxdt

=

∫
Ω

H0(x) ·Φ(x, 0)dx −
∫ T

0
〈n ×Gm,ΥT (Φ)〉Γ2dt, (3.2)∫ T

0

∫
Ω

umvtdxdt +

∫ T

0

∫
Ω

k∇um · ∇vdxdt

=

∫
Ω

u0(x)v(0, x)dx +

∫ T

0

∫
Ω

|∇ ×Hm|
2vdxdt −

l
2

∫ T

0

∫
Ω

(φm)tvdxdt, (3.3)∫ T

0

∫
Ω

φmηtdxdt +

∫ T

0

∫
Ω

∇φm · ∇ηdxdt +
1
2

∫ T

0

∫
Ω

(φm − φ
3
m)ηdxdt

=

∫
Ω

φ0(x)η(x, 0)dx − 2
∫ T

0

∫
Ω

umηdxdt, (3.4)

for any v ∈ H1(QT ) with v(T, x) = 0, Φ ∈ H1(0,T ; X) with Φ(x,T ) = 0 and η ∈ W2,1
2 (QT )

with η(x,T ) = 0. By Theorem 1, the sequence {(Hm, um, φm)} is bounded in reflexive space
L2(0,T ; V(curl,Ω))×W(0,T )×W2,1

2 (QT ). Thus, there is a subsequence of {(Hm, um, φm)}, again denoted
by {(Hm, um, φm)}, such that

Hm → H∗ weakly in L2(0,T ; V(curl,Ω)), (3.5)
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um → u∗ weakly in L2(QT ), (3.6)
∇um → ∇u∗ weakly in L2(0,T ; L2(Ω)), (3.7)

∇ ×Hm → ∇ ×H∗ weakly in L2(0,T ; L2(Ω)), (3.8)
φm → φ∗ weakly in W2,1

2 (QT ). (3.9)

It follows from Eq (3.2) and (3.5), (3.8) that∫ T

0
〈n ×Gm,ΥT (Φ)〉Γ2dt →

∫
Ω

H0(x) ·Φ(x, 0)dx −
∫ T

0

∫
Ω

H∗ ·Φtdxdt −
∫ T

0

∫
Ω

∇ ×H∗ · ∇ ×Φdxdt

as m→ ∞. It can be verified from (3.1) that∫ T

0

∫
Ω

H∗ ·Φtdxdt +

∫ T

0

∫
Ω

∇ ×H∗ · ∇ ×Φdxdt

=

∫
Ω

H0(x) ·Φ(x, 0)dx −
∫ T

0
〈n ×G∗,ΥT (Φ)〉Γ2dt (3.10)

From the compact embedding W2,1
2 (QT ) ↪→ L6(Ω) , we obtain

φm → φ∗strongly in L6(QT ). (3.11)

It follows from Eqs (3.4) and (3.6), (3.9), (3.11) that∫ T

0

∫
Ω

φ∗ηtdxdt +

∫ T

0

∫
Ω

∇φ∗ · ∇ηdxdt +
1
2

∫ T

0

∫
Ω

(φ∗ − (φ∗)3)ηdxdt

=

∫
Ω

φ0(x)η(x, 0)dx − 2
∫ T

0

∫
Ω

u∗ηdxdt. (3.12)

Since ∇ ×Hm(·, t) ∈ L6(Ω) and ‖∇ ×H‖6
L6(Ω)
≤ ‖G‖2L2(Γ2), we have

∇ ×Hm(·, t)→ ∇ ×H∗(·, t) weakly in L6(Ω). (3.13)

It follows from Eqs (3.4) and (3.6), (3.7), (3.13) that∫ T

0

∫
Ω

u∗vtdx +

∫ T

0

∫
Ω

k(x)∇u∗ · ∇vdx

=

∫
Ω

u0(x)v(0, x)dx +

∫ T

0

∫
Ω

|∇ ×H∗|2vdx −
l
2

∫ T

0

∫
Ω

φ∗t vdxdt, (3.14)

Equations (3.10), (3.12) and (3.14) imply that (H∗, u∗, φ∗) is a weakly solution of problem (2.1)
corresponding to G∗. That is P(G∗) = (H∗, u∗, φ∗). The above statement shows that every subsequence
has a subsequence converging to the same (H∗, u∗, φ∗). Hence, the entire sequence (Hm, um, φm)
converges weakly to (H∗, u∗, φ∗). �

With Lemmas 2 and 7, one can easily see that P is Lipschitz continuous.
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Theorem 3. Under the assumptions A(2.1)–A(2.4), the operator P is Lipschitz continuous, that is,
there exists a constant L > 0 such that

‖H1 −H2‖L2(0,T ;V(curl,Ω)) + ‖u1 − u2‖W(0,T ) + ‖φ1 − φ2‖W2,1
2 (QT ) ≤ L‖G1 −G2‖L2(0,T ;L2(Γ2)),

whenever Gi ∈ L2(0,T ; L2(Γ2)) and (Hi, ui, φi) = P(Gi), i = 1, 2.

Theorem 4. Under the assumptions A(2.1)–A(2.4), the operator P is Fréchet differentiable. Its
directional derivative at G ∈ Uad in the direction Ḡ is given by

P′(G)Ḡ = (H̄, ū, φ̄),

where the triple of functions (H̄, ū, φ̄) denotes the weakly solution of the following linear system at
(H, u, φ) = P(G) : 

H̄t + ∇ × ∇ × H̄ = 0, (x, t) ∈ QT ,

ūt − ∇ · [k(x)∇ū] = 2∇ ×H · ∇ × H̄ − 1
2 lφ̄t, (x, t) ∈ QT ,

φ̄t − 4φ̄ −
1
2 φ̄(1 − 3φ2) = 2ū, (x, t) ∈ QT ,

n × H̄ = 0, (x, t) ∈ S Γ1 ,

n × (∇ × H̄) = n × Ḡ, (x, t) ∈ S Γ2 ,

H̄(x, 0) = 0, x ∈ Ω.

(ūn(x, t), φ̄n(x, t)) = (0, 0), (x, t) ∈ S Γ,

(ū(x, 0), φ̄(x, 0)) = (0, 0), x ∈ Ω.

(3.15)

Proof. We present the proof in the following steps.
Step 1: We show that the operator P is Gâteaux differentiable for each G ∈ Uad.
Set Gε = G + εḠ with a sufficiently small parameter ε > 0 such that G + εḠ ∈ Uad. Moreover,

assume that (Hε, uε, φε) is the solution of (1.1)–(1.8) corresponding to Gε. Define

H̄ε =
Hε −H

ε
, ūε =

uε − u
ε

, φ̄ε =
φε − φ

ε
.

It is easily shown that (H̄ε, ūε, φ̄ε) satisfies

(H̄ε)t + ∇ × ∇ × H̄ε = 0, (x, t) ∈ QT ,

(ūε)t − ∇ · [k(x)∇ūε] = [∇ × (Hε + H)] · ∇ × H̄ε −
1
2 l(φ̄ε)t, (x, t) ∈ QT ,

(φ̄ε)t − 4φ̄ε −
1
2 φ̄ε[1 − (φ2

ε + φεφ + φ2)] = 2ūε, (x, t) ∈ QT ,

n × H̄ε = 0, (x, t) ∈ S Γ1 ,

n × (∇ × H̄ε) = n × Ḡ, (x, t) ∈ S Γ2 ,

H̄ε(x, 0) = 0, x ∈ Ω.

((ūε)n(x, t), (φ̄ε)n(x, t)) = (0, 0), (x, t) ∈ S Γ,

(ūε(x, 0), φ̄ε(x, 0)) = (0, 0), x ∈ Ω.

(3.16)

Under assumptions A(2.2) and A(2.3), by using similar estimates as Theorem 3, we can derive the
following estimates:

‖H̄ε‖L2(0,T ;V(curl,Ω)) + ‖ūε‖W(0,T ) + ‖φ̄ε‖W2,1
2 (QT ) ≤ C‖Ḡ‖L2(0,T ;L2(Γ2)), (3.17)
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‖Hε −H‖L2(0,T ;V(curl,Ω)) + ‖uε − u‖W(0,T ) + ‖φε − φ‖W2,1
2 (QT ) ≤ C′‖εḠ‖L2(0,T ;L2(Γ2)), (3.18)

where C and C′ depend only on known data. It follows from (3.17) that there exists a subsequence of
(H̄ε, ūε, φ̄ε) (still denoted by (H̄ε, ūε, φ̄ε)) and (H̄, ū, φ̄) ∈ L2(0,T ; V(curl,Ω))×W(0,T )×W2,1

2 (QT ) such
that

H̄ε → H̄ weakly in L2(0,T ; V(curl,Ω)), (3.19)
ūε → ū weakly in L2(QT ), (3.20)
∇ūε → ∇ū weakly in L2(0,T ; L2(Ω)), (3.21)

∇ × H̄ε → ∇ × H̄ weakly in L2(0,T ; L2(Ω)), (3.22)

φ̄ε → φ̄ weakly in W2,1
2 (QT ), (3.23)

as ε→ 0.
It is easy to show that ∇ × H̄ε(·, t) ∈ L6(Ω) and ‖∇ × H̄ε‖

6
L6(Ω)
≤ ‖Ḡ‖2L2(Γ2). Therefore,

∇ × H̄ε(·, t)→ ∇ × H̄(·, t) weakly in L6(Ω). (3.24)

By the compact embedding W2,1
2 (QT ) ↪→ Li(QT )(i = 2, 3, · · ·, 9) and (3.18)–(3.24), taking the limits

of (3.16) as ε→ 0, we obtain that (H̄, ū, φ̄) satisfies the problem (3.15).
The uniqueness of solution for the system (3.15) is easy to prove because it is linear. The

calculations above means that the control-to-state operator P is Gâteaux differentiable at G, that is,

DP(G; Ḡ) =
(
H̄, ū, φ̄

)
(G; Ḡ).

Step 2: We show that DP(G; Ḡ) is a linear bounded operator with respect to Ḡ.
Obviously, DP(G; Ḡ) is linear. Similar to Lemmas 2 and 7, it can be concluded from (3.15) that

‖H̄‖L2(0,T ;V(curl,Ω)) + ‖ū‖W(0,T ) + ‖φ̄‖W2,1
2 (QT ) ≤ C‖K‖L2(0,T ;L2(Γ2)),

which means that DP(G; Ḡ) is bounded with respect to Ḡ. Hence, one has

DP(G; Ḡ) =
(
H̄, ū, φ̄

)
(G; Ḡ) = P′(G)Ḡ,

where P′(G) is a bounded and linear operator.
Step 3: We verify that P′(G) is continuous with G.
Choosing G1,G2 ∈ Uad, for any K ∈ Uad with ‖K‖L2(0,T ;L2(Γ2)) = 1, define

(H̃, ũ, φ̃) := (H̄, ū, φ̄)(G1; K) − (H̄, ū, φ̄)(G2; K).

It is easy to verify that (H̃, ũ, φ̃) ∈ L2(0,T ; X) ×W(0,T ) ×W2,1
2 (QT ) satisfies the following system

in weakly sense. 

H̃t + ∇ × ∇ × H̃ = 0, in QT ,

ũt − ∇ · [k(x)∇ũ] = f1 −
1
2 lφ̃t, in QT ,

φ̃t − 4φ̃ =
( 1

2 −
1
3φ

2(G2)
)
φ̃ + f2 + 2ũ, in QT ,

n × H̃ = 0, in S Γ1 ,

n × (∇ × H̃) = 0, in S Γ2 ,

H̃(x, 0) = 0, in Ω,

(̃un(x, t), φ̃n(x, t)) = (0, 0), in S Γ,

(̃u(x, 0), φ̃(x, 0)) = (0, 0), in Ω,

(3.25)
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where

f1 = 2
[
∇ ×H(G1) · ∇ × H̄(G1; K) − ∇ ×H(G2) · ∇ × H̄(G2; K)

]
,

f2 = −
1
3
φ̄(G1; K)

(
φ(G1) + φ(G2)

)(
φ(G1) − φ(G2)

)
.

Obviously, (3.25) implies H̃ = 0 which directly means H̄(G1; K) = H̄(G2; K). Therefore, (3.25) can
be simplified as the following system

ũt − ∇ · [k(x)∇ũ] = 2∇ ×H(G1,K) · ∇ × (H(G1) −H(G2)) − 1
2 lφ̃t, in QT ,

φ̃t − 4φ̃ =
(1

2 −
1
3φ

2(G2)
)
φ̃ + f2 + 2ũ, in QT ,

(̃un(x, t), φ̃n(x, t)) = (0, 0), in S Γ,

(̃u(x, 0), φ̃(x, 0)) = (0, 0), in Ω.

Similar to Lemma 7, the following estimates can be derived

‖̃u‖W(0,T ) + ‖φ̃‖W2,1
2 (QT ) ≤ C(‖ f2‖L2(QT ) + ‖∇ × (H(G1) −H(G2))‖L4(QT ))

≤ C‖G1 −G2‖L2(0,T ;L2(Γ2))‖K‖L2(0,T ;L2(Γ2)).

In addition, we also have estimates:

‖H̃‖L2(0,T ;V(curl,Ω)) + ‖̃u‖W(0,T ) + ‖φ̃‖W2,1
2 (QT ) ≤ C‖G1 −G2‖L2(0,T ;L2(Γ2))‖K‖L2(0,T ;L2(Γ2)).

This completes the proof. �

4. Existence and necessary conditions for optimal control problem

4.1. Existence of an optimal control

In this section, we will show the existence of an optimal control for problem (P).
Theorem 5. Under the assumptions A(2.1)–A(2.4), there exists an optimal control for the problem (P).

Proof. Owing to P(G) = (H, u, φ) , we can eliminate H, u and φ from J to obtain the reduced cost
functional

J(G; H, u, φ) = J(G; P(G)) =: f (G).

Since f (G) ≥ 0, there exists the infimum

j := inf
G∈Uad

f (G) ∈ R,

and there is a minimizing sequence {Gm}
∞
m=1 ⊂ Uad such that lim

m→∞
f (Gm) = j.

It follows from {Gm}
∞
m=1 ⊂ Uad and ‖Gm‖L2(0,T ;L2(Γ2)) < ∞ that there exists a subsequence of

{Gm}
∞
m=1 ⊂ Uad, again denoted by {Gm}

∞
m=1 ⊂ Uad, such that

Gm → G∗ weakly in L2(0,T ; L2(Γ2)).

Moreover, the closeness of set Uad implies that G∗ ∈ Uad.
Observe that f is weakly sequentially lower semi-continuous and the control-to-state operator P is

weakly sequentially continuous by Theorem 2. Consequently,

j = lim
m→∞

f (Gm) ≥ f (G∗) ≥ j.

Therefore, G∗ is an optimal control. �
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4.2. Existence of solution for the adjoint equation

Using the Lagrange technique, we can deduce the adjoint system of (1.1)–(1.8) as follows:



Nt − ∇ × ∇ × N = −∇ × [2p∇ ×H0], (x, t) ∈ QT ,

pt + ∇ · [k(x)∇p] = −2ψ, (x, t) ∈ QT ,

ψt + 4ψ + 1
2ψ[1 − 3(φ0)2] = −1

2 lpt, (x, t) ∈ QT ,

n × N = 0, (x, t) ∈ S Γ1 ,

n × (∇ × N) = n × [2p∇ ×H0], (x, t) ∈ S Γ2 ,

N(x,T ) = 0, x ∈ Ω,

(pn(x, t), ψn(x, t)) = (0, 0), (x, t) ∈ S Γ,

(p(x,T ), ψ(x,T )) = (u0(T ) − uT , φ
0(x,T ) − φT (x) − 1

2 lp(x,T )), x ∈ Ω,

(4.1)

where (H0, u0, φ0) is a solution of (1.1)–(1.8) corresponding to G0 ∈ Uad.
The equations for the adjoint states N, p and ψ run backwards in time.

Theorem 6. In addition to the assumptions A(2.1)–A(2.4), assume that (H0, u0, φ0) is the optimal
solution of the system (1.1)–(1.8) corresponding to the optimal control G0 ∈ Uad. Then the adjoint
system (4.1) has a unique solution (N, p, ψ) ∈ L2(0,T ; X) ×W(0,T ) ×W2,1

2 (QT ).

Proof. By taking t = T − τ with τ ∈ [0,T ], the functions N, p, ψ,H0, u0 and φ0 are transformed into
Ñ, p̃, ψ̃, H̃0, ũ0 and φ̃0, respectively. Consequently, the solution of (4.1) is equivalent to the solution to
the (forward) parabolic initial-boundary value problem:

Ñτ + ∇ × ∇ × Ñ = ∇ × [2p̃∇ × H̃0], (x, τ) ∈ QT ,

−p̃τ + ∇ · [k(x)∇ p̃] = −2ψ̃, (x, τ) ∈ QT ,

−ψ̃τ + 4ψ̃ + 1
2 ψ̃[1 − 3(φ̃0)2] = 1

2 lp̃τ, (x, τ) ∈ QT ,

n × Ñ = 0, (x, τ) ∈ S Γ1 ,

n × (∇ × Ñ) = n × (2 p̃∇ × H̃0), (x, τ) ∈ S Γ2 ,

Ñ(x, 0) = 0, x ∈ Ω,

( p̃n(x, τ), ψ̃n(x, τ)) = (0, 0), (x, τ) ∈ S Γ,

( p̃(x, 0), ψ̃(x, 0)) = (ũ0(0) − uT , φ̃
0(0) − φT (x) − 1

2 lp̃(x, 0)), x ∈ Ω.

(4.2)

Note that this is a linear parabolic system, the existence and uniqueness of solution are easily proved.
�

4.3. First-order necessary optimality conditions

Theorem 7. In addition to the assumptions A(2.1)–A(2.4), suppose that (H0, u0, φ0) is the optimal
solution of the system (1.1)–(1.8) corresponding to the optimal control G0 ∈ Uad. Then there exists
(N, p, ψ), which satisfies the adjoint system (4.1). Moreover, the following inequality is satisfied:∫ T

0

∫
Γ2

[−n × (G −G0) · ΥT (N) + λG0 · (G −G0)]dsdt ≥ 0,∀G ∈ Uad.

Proof. Substituting P(G0) = (H0, u0, φ0) into (1.9) , one can obtain the reduced cost functional f ,

J(G0; H0, u0, φ0) = J(G0; P(G0)) =: f (G0).
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By Theorem 5, the Fréchet derivative of f (G) is given by

f ′(G0)(G −G0)

=

∫
Ω

[
u0(T ) − uT

]
ū(T )dx +

∫
Ω

[
φ0(T ) − φT

]
ψ̄(T )dx + λ

∫ T

0

∫
Γ2

G0 · (G −G0)dsdt, (4.3)

where (H̄, ū, ψ̄) is the solution of the problem (3.15) with Ḡ = G −G0

Multiplying the second equation of problem (3.15) by the adjoint state p, integrating over Ω× [0,T ]
and integrating by parts, one can find that∫

Ω

[u0(T ) − uT ]ū(T )dx −
∫ T

0

∫
Ω

[pt + ∇ · [k(x)∇p]]ūdxdt

=

∫ T

0

∫
Ω

2∇ × H̄ · ∇ ×H0 pdxdt −
l
2

∫
Ω

φ̄(T )p(T )dxdt +
l
2

∫ T

0

∫
Ω

φ̄ptdxdt. (4.4)

Substituting the second equation in (4.1) into (4.4), it can be seen that∫
Ω

[u0(x,T ) − uT ]ū(T )dx

=

∫ T

0

∫
Ω

(
2∇ × H̄ · ∇ ×H0 p +

l
2
φ̄pt − 2ψū

)
dxdt −

l
2

∫
Ω

φ̄(T )[u0(T )) − uT ]dxdt. (4.5)

Multiplying the first equation in (4.1) and the first equation of (3.15) by H̄ and N, respectively,
integrating over Ω × [0,T ] and integrating by parts, we obtain∫ T

0

∫
Ω

N · H̄tdxdt +

∫ T

0

∫
Ω

∇ × N · ∇ × H̄dxdt =

∫ T

0

∫
Ω

2p∇ ×H0 · ∇ × H̄dxdt (4.6)

and ∫ T

0

∫
Ω

N · H̄tdxdt +

∫ T

0

∫
Ω

∇ × N · ∇ × H̄dxdt = −

∫ T

0

∫
Γ2

n × (G −G0) · ΥT (N)dsdt. (4.7)

From (4.5)–(4.7), one has∫
Ω

[u0(x,T ) − uT ]ū(T )dx

=

∫ T

0

∫
Ω

[
l
2
φ̄pt − 2ψū]dxdt −

l
2

∫
Ω

φ̄(T )[u0(T )) − uT ]dxdt −
∫ T

0

∫
Γ2

n × (G −G0) · ΥT (N)dsdt.

Now we turn to the integral
∫

Ω
(φ0(T )) − φT )ψ̄(T )dx. Analogously, multiplying the third of (3.15)

by ψ and then integrating by parts, it yields that∫
Ω

[
φ0(T )) − φT

]
ψ̄(T )dx

=

∫ T

0

∫
Ω

[
φ̄ψt + φ̄∆ψ +

1
2
φ̄(1 − 3(φ0)2)ψ + 2ūψ

]
dxdt +

l
2

∫
Ω

P(T )φ̄(T )dx. (4.8)
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Multiplying the third equation in (4.1) by φ̄ and integrating over Ω × [0,T ], we have∫ T

0

∫
Ω

[
φ̄ψt + φ̄∆ψ +

1
2
φ̄(1 − 3(φ0)2)ψ

]
dxdt = −

l
2

∫ T

0

∫
ω

ptφ̄dxdt. (4.9)

Substituting (4.9) into (4.8), we see that∫
Ω

[
φ0(T )) − φT

]
ψ̄(T )dx =

∫ T

0

∫
Ω

(
2ūψ −

l
2

ptφ̄
)
dxdt +

l
2

∫
Ω

P(T )φ̄(T )dx.

Recall that p(T ) = u0(T ) − uT in (4.1). Therefore,∫
Ω

[
u0(T )) − uT

]
ū(T )dx +

∫
Ω

[
φ0(T )) − φT

]
ψ̄(T )dx = −

∫ T

0

∫
Γ2

n × (G −G0) · ΥT (N)dsdt. (4.10)

Note that (H0, u0, φ0) is the optimal solution of the system (1.1)–(1.8) corresponding to the optimal
control G0 ∈ Uad. Therefore, it can be concluded from (4.3) and (4.10) that

0 ≤ f ′(G0)(G −G0)

=

∫ T

0

∫
Γ2

[−n × (G −G0) · ΥT (N) + λG0 · (G −G0)]dsdt,∀G ∈ Uad.

The proof is completed. �

5. Conclusions

In this paper, we study an optimal control problem arising from a metal melting process by using
a induction heating method. The controlled system is a nonlinear coupled system given by Maxwell’s
equations, heat equation and phase field equation. The goal of optimal control is to find the electric
field action on a part of the boundary such that the temperature profile at the final stage has a relative
uniform distribution and minimum energy consumption. The new existence and uniqueness theorem
on the solution of controlled system is established in the case that the resistivity ρ(x, t) = 1 or ρ does
not depend on x. By defined a control-to-state operator P and studied its properties, we showed that
there is at least one optimal control and derived the first order optimality condition.

When the resistivity ρ(x, t) depends on position x, the heat source generated by the electromagnetic
field is ρ|∇×H|2 ∈ L1(QT ), which cannot be guaranteed the requirement L2(QT ) in proof of the existence
of solutions for heat equation. This is a challenging problem. We intend to further work on this, as
well as make a numerical simulation for the problem, in the near future.
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