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1. Introduction

Totally real submanifolds are one of the typical classes of submanifolds of Kaehler manifold.
In 1974, B. Y. Chen and K. Ogiue [10] started the study of the totally real submanifolds from the point
of view of their curvatures. Due to its geometrical importance, many geometers studied totally real
submanifolds from the different point of views and various results were obtained in different ambient
spaces [6,9,13,18]. Kaehler product manifold also attracts the attention of geometers toward itself [24].
S.Y. Cheng and S. T. Yau [11] obtained many well-known results introducing a self-adjoint differential
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operator O defined by

Of = ) (Hs;; - I i, (1.1)

ij=1

where f € C*(N),(f;,) is Hessian of f, H mean curvature, and {fj“ is the coefficients of second
fundamental form Z.

Using this differential operator H. Li [15] obtained a rigidity result for hypersurfaces in space forms
with constant scalar curvature. In 2013, X. Gua and H. Li [17] extended the use of the operator for
submanifolds and obtained interesting results for submanifolds with constant scalar curvature in a unit
sphere.

Motivated by X. Gua and H. Li, we study the totally real submanifolds of Kaehler product manifold
with constant scalar curvature using self-adjoint differential operator O and obtain a characterization
result.

Further, we study d—invariant totally real submanifolds in same setting and prove some results.

2. Preliminaries

Let (/Vm, Jms &m) and (Np, J,, gp) are Kaehler manifolds of complex dimension m and complex

dimension p respectively. Let J,, and g, be almost complex structure and metric tensor on N"
respectively and J, and g, almost complex structure and metric tensor on N’ respectively. Further, let
us assume Nm(cl) and /Vp(cz) are complex space forms with constant holomorphic sectional curvatures
c1 and ¢, respectively.

We suppose N(cl, ) = Nm(c D xﬁp(cz) the Kaehlerian product manifold with complex dimension
(m + p). Let us denote by P and Q the projection operators of the tangent space of N(cy, c;) to the
tangent spaces of N" (cy) and N (cy) respectively. Then,

P=P, @=Q PQ=QP=0.

By setting F = # — Q, it can be easily shown that Fi = [. Thus, F is an almost product structure on
N(cy, c2) . Moreover, for a Riemannian metric g on N(cy, ¢;) we have [20]

g(E,F) = g,(PE,PF) + g,(QE,QF),
for all vector fields E, F on N(cl, ¢>) . We also have
g(FE,F)=g(FF,E).
If we assume JE = J,PE + J,QE for any vector field E of /V(cl, ¢») . Then from [20], we see that
J.P=PJ, J,Q=QJ, FJ]=JF,
J?=—1, g(JE,JF)=g(E,F), ViJ =0.

Therefore, J is a Kaehleri@ structure on N(cl, ¢;). Let R be the Riemannian curvature tensor of a
Kaehler product manifold N(cy, ¢;). Then [24]

— 1
R(Ean G9 W) = E(Cl + CZ)[g(Fa G)g(Ea W) - g(Ea G)g(F9 W)
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+g(JF,G)g(JE,W) - g(JE,G)g(JF, W)
+28(JE,F)g(JG, W)+ 2g(FF,G)g(FE, W)
—g(FE,G)g(FF,W) + g(FJF,G)g(FJE, W)
—g(FJE,G)g(FJF,W) +2g(FE,JF)g(FIG,W)]

1
+ E(C1 - CZ)[g(FF’ G)g(E9 W) - g(FE9 G)g(F9 W)
+ g(FJF,G)g(JE,W) — g(FJE,G)g(JF, W)

+g(JF,G)g(FJE,W) - g(JE,G)g(FJF, W)
+2¢(FE,JF)g(JG,W) +2g(E, JF)g(FJG, W)], (2.1

for any vector fields E, F and G on }T/(cl, c) .

Definition 2.1. Let NV be a real n—dimensional Riemannian manifold isometrically immersed in a (m +
P)—« dimensional Kaehlerian product manifold N(cy, ¢;). Then N is said to be totally real submanifold
of N(cy,¢p) if JT.(N)LT(N) for each x € N where T,(N) denotes the tangent space to N at x € N.

_ Let g be the metric tensor field on NLCl, c;) as well as that induced on NV. Also, we denote by
V(resp. V) the Levi-Civita connection on N(cy, c2)(resp. N). Then the Gauss and Weingarten formulas
are given by

ViF = ViF + {(E, F), (2.2)

VN = —AyE + VN, (2.3)

for all E, F tangent to N and vector field N normal to N, where ¢,V and Ay denote the second
fundamental form, normal connection and shape operator respectively. The relation between the second
fundamental form and the shape operator is given by

8W(E,F),N) = g(ANE, F). (2.4)

We choose a local field of orthonormal frames ey, ..., e, €ur1, ..., empieix = Jey, ..., e = Je,;
emrtyr = Jewiislmmapr = Jeyi, In /T/(cl,cz) in such a way that restricted to N, the
vectors ej,...,e, are tangent to N. With respect to this frame field of N(cl,cz), let
WDt o™ o W o™ w™ P be the field of dual frames. Unless
otherwise stated, we use the following conventions over the range of indices:

AB,C,D=1,....m+p,1*,...,(m+ p)*;
L, k,,t,s=1,...,n;
a,B,y=n+1,....m+p;1*,....(m+ p)*;
Lu,v=n+1,...,m+p.

Then the mean curvature vector H is defined as

@ O _ 1 10
H = ;H s where HY = - Z{ii. (2.5)
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Also, the structure equations of N(cl, c,) are given by [24]

A_ _ A B A B _
dw wRw", wy +wy =0,
W +w =0 W = W, W=
jTwi = j T W j T Wi
A _ ,2* o
w4+ =0 W, = W, w, = o
i 1 _ i Y
W' +wi =0, W, = W, W = w;,
dwy = Wi + ¢, ¢y = IRBCDa)C A wP

Restricting these forms to NV, we have

i k i
da)j— a)k/\wj+Qj,

Since 0 = dw® = —w? A &', by Cartan’s Lemma we get

w; = o, &=
@ a @ 1 104 k l
dﬁ:—w /\a) +Q Qﬁ:ERﬁ,da) Aw'.
From (2.6) and (2.11) we find
T R o
fjk = ,-Jk = gij -

The covariant derivative of {i* is given by

gi(.ljk:dgq {lw - l/ l+{5wﬁ

The Laplacian AZ7; of £ is defined as
A Z = Z §7jkk’
k

where we have put {"klw = d{llk {llkw llkw - {jkw
Now, from [17] we have a trace-free linear map ®* : TN — T N given by

8(@"E,F) = g(A"E,F) — H(E, F),

AIMS Mathematics

(2.6)

2.7)

(2.8)

(2.9)

(2.10)

(2.11)

(2.12)

(2.13)

(2.14)

(2.15)
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where x € N and the shape operator A“ of e, is given by
A(e) = - Z g(geiea’ ej)ej = Z é?,-ej,
J J

and @ is a bilinear map ® : TN X TN — TN defined by

m+p

O(E,F) = Z ¢(®°E, F)e,.
a=n+1
Then we have |O)* = |A]> — nH?, where H> = Y ,(H%)>.

The Gauss equation is given by
Riju = Riju + Z((lk 0= G-
From (2.1) and Gauss equation, we obtain
27 — %(c1 +en(n + 1) = n?H* — |AP,

where 7 is scalar curvature.
The Codazzi and the Ricci equation are respectively

éfj,k = gg{,l’

a/ﬁz] Z(g kgkj kgkl

Then, by using Codazzi equation one can easily see that the operator O is self-adjoint. That is

f Ofdv =0, f € C3(N).
N
Since we have constant scalar curvature, Eq (2.18) implies that
IVA* = n’|VH?|.
We can choose a unit normal vector field e,,; which is parallel to H. Hence we have [16]

H"™' = H, HY =0 m+2<a<m+p),
ot =g —Hesy;,  Of =5, (n+2<a<m+p).
Now, we quote the following lemmas for later use.

Lemma 2.2. [19] Let B : R" — R" be a symmetric linear map such that trB = 0, then
n-—

—2
——|B| <trB < —

Vn(n —1) vn(n—1)

B,

where |B|* = trB?, and the equality holds if and only if at least n — 1 eigenvalues of B are equal.

(2.16)

(2.17)

(2.18)

(2.19)

(2.20)

(2.21)

(2.22)

(2.23)

(2.24)
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Lemma 2.3. [2]] Let C, B : R" — R" be a symmetric linear map such that [C, B] =

0, then
"2 _\CPIBI < 1r(C2B) < — =2 _|cPiB).
—_— <tr
vn(n —1) Vn(n — 1)

Lemma 2.4. [14] Let B',B>,. .., B", be symmetric (n X n)—matrices.
Set S5 = tr(BBP),S o = S 40sS = 3., S, then

Z IB°BP — BPB°? + Z S2, < (Z Sa).

ap

3. Main Theorem

This section is devoted to the proof of main result.

Oand trC = trB =

Theorem 3.1. Let N" be a totally real submanifold in Kaehlerian product manifold N(c,c) =
N(c) XN g(cz), c1, ¢ > 0, with constant scalar curvature. If trF vanishes, then N is totally geodesic.

For proving that result, we need to prove the following preliminary Lemmas. Since F is symmetric

and J is skew-symmetric, following result is obvious.

Lemma 3.2. Let N be a totally real submanifold in Kaehler product manifold
N(cy, ) = Ny (cp) X Ng(cz), then trFJ = trJF = 0.

Lemma 3.3. Let N be a totally real submanifold in Kaehler product manifold
Ner,c2) = Ni(er) x Ni(c2), then

—A|A| = VAP + > Z8dies

a,i, jk

+ 11—6(c1 +¢2) za: [(n+ 9 + 6(trF)*)trA2 — (3 + (trF)?)]

+ 1—16((:l - ) Za: [(n + D)(trF)trA? — 2(trF)(trA,)*]

+ 1—16(c1 + ) Z‘ [(4(trF)* — 2)trA? — (1 + (trF)*)(trA,)?]

+ i(cl ) Z [2(trF)trA? — 2(trF)(trA,)*]
- Z (Rwﬂu Z(gtlgkl) + Z nH'B{kléU]l jk*
a,B,i,j

Proof. From [12], we have

Z {HAL = Z (ffjflgkij - Rijﬁfiajfkk + 4Rﬁkl§ % jk

a,i,j ai, jk

Y o a g o a g
Ryl jfiﬁj + 2Ry 8583 + 2R 3 i 83

3.1
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Dl - LG -

a Bkl
a v o A a pa of
Z Gijusiia + Z gjigkigkj{ﬁ- (3.2)
a Bkl @B,k
On the other hand, one has
1
A = SAIAF ~ [VAP. (3.3)
a,i,j

By using Eqgs (2.5), (2.20) and (3.3) in (3.2), we obtain

—A|A| = [VAP + Z g;;gkkz]

a,i, jk

+ Z (_Rijﬁgijgkk + 4R,3kz§ﬂ gﬂ - Rkﬁkgiaj ij

@i, jik

+ 2Rk1k§ é/zj + 2Rl]k§ {L‘]) Z (Ra/ﬂl]

a,B,i,]

= D@D+ ) nHPE (34)
B ap

Using (2.1) and Lemma 3.2, we now compute the values of curvature terms involving R of the Eq (3.4)
as follows:

R 0500 = g(R(ej eper, e) L,
_ 1 2 2
= et o)l Zal A2 -3 Z(m\,)

=33 (rFYarA) = Y (rFYA(trA,)’]
+ 1—16(c1 — )| - 2(trF) ;(era)2
- Z 6(trF)(trA,)*]. (3.5)

Similarly we obtain,
F’Zm(ﬁ " = g(R(ew €)ep, ea)lfk{,-”}
1
= e+ o)l Z(m\f) - Z(m\,f + Za:(m\i)

+ ) (P rA) = > (PP (rA,)]

+ 1—16(61 — )2 Z(sz)(m\f) _2 Z(rrF)(trA,)z], (3.6)
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Rig L2l = g(R(eg, ep)er, e) (0L
- %(c1 +e)(n-1) ;“’Ai) + Z 6(trA2)

+2 ) () (trAd)

+ 1—16(c1 —e)[(m+ 1) Zal(trF)(trAi)

+ ) 6rF)(trAd)], (3.7)

ol s §5) @ g
Rid13¢i; = 8(R(ei, exex, el

= %(c1 +c)| Z n(trAl) + Za: 2(trF)(trAy)

a

+ ;(m\g)] + %(c1 —e)n Zg](trF)(trAi)
= D (rF)(rAd), (3.8)
and
R, L50 = g(Riej, een eDLals
1
= (e +e)l za:(m\j) _ Zg:(m\a)z

+ ) WP (rAl) = Y (P rA.)]

1
+oeler -2 Zal(trF)(trAg)
=2 > (rF)trA.)]. (3.9)
Thus, making use of Eqgs (3.5)—(3.9) in (3.4), we get (3.1). O
Proof of Theorem 3.1. From (1.1) and (2.22), we obtain
1
O(nH) = §A|A|2 — n?|VH[? - Z néH,. (3.10)

Now, using (3.1) in the above equation, we get

O(mH) = VAP + 3 £k,

a,i,jk

+ %(cl +¢) Z‘ [(n+9 + 6(trF)trA2 — (3 + (trF))]
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+ 1—16((:1 —-¢)) Z‘ [(n + D)(trF)trA% — 2(trF)(trAy)?]

+ 1—16(c1 +¢)) Z [(4(trF)* — 2)trA? — (1 + (trF)*)(trA,)?]

+ i(c1 = ¢2) ) [20rF)irA} = 2trF)(erA,)’]

B Z (Raﬂu B Z(gngl)Q + Z nHﬁ{fl{?l Jak
af B

a,B,i,]
~ w2 \VHP = )" ngijHij,

which implies
O(nH) = %(c1 +03) Zg: [(n + 9 + 6(trF)))trA2 — (3 + (trF)?)]
N %(cl ) Za: [(n + D(rF)rA2 = 2(trF)(trA )]
+ 1—16(c1 +¢2) Z [(4(trFY? = 2)irA? = (1 + (trF))(er A, )]

+ i(cl = 2) ) [20rF)irA} = 2trF)(erA,)’]

B Z (Raﬁu B Z(;‘jg’fl)z + Z nHﬁgilgf] ﬁ
af ap

aB.i.j

A direct computation gives
DA = )Ll = 0 H
(07 07
Moreover, it is easy to see that
Dara2y =Y g = 10F + ni?
(07 @

and

DAl = IR,
where gl; :g(g(ei’ej)aet*) and{u ngea{*

Also we have
Z({Z,gkp + Y Ry = ) [rAAP)]
a,B,i,] a.fB

+ Z (Raﬁl J) .

a#n+1,B#n+1,i,j

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)
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Using Lemma 2.4 in (3.15), we get
Z(QJ{Z) + Z (Raﬁlj) < tr(An+1An+1)]

aBi.j

+2 Z(trA"“Aﬁ) + Z CEuE

B#n+1 ﬁ¢n+1
5
— 5|(,.Dn+1|4 + 2nH2|®n+1|2 + n2H4
+2 Z (Zr®n+1®B)2 _ 2(tr®n+1®n+l)2
B#n+1

+ §|®|4 _3|012/O"
< §|®n+1|4 + 2nHA@™ ' + n2H
+ 20" PIOP - [P + %|®|4
_310P10" P
_ %|®n+l|4 +2nH2\O" ' P + nH*
— ORI + §|®|4.

Taking into account the Eq (2.24), we derive

Z Hﬁ(klgﬂgjk Z H n+l jl{]k
B0, ).k a,l,j.k
= Htr(@"") + 3H*(@"")? + nH*
m+p
+30r0" H + ) HO
a=n+2
m+p

DI CRCACH

a=n+2 i,jk
Taking Lemma 2.2 and Eq (3.17) into account, we have
> HGOG > — 2o+ 3ER0
@B jk n(n — 1)
+nH* + ( Z H2|®a|2 _ H2|®n+1|2)

a=n+2
+ Z Htr(@™1)(©%)2.

a=n+2

Which by virtue of Lemma 2.3 and (3.18), yields

2
Z Hﬁéfflgllé«jk > _—|®n+l|3|H| + 3H2|®n+1|2 + nH4
a,B,i, ]k (I’l— 1)

(3.16)

(3.17)

(3.18)
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-2
+HYOP - ———— " |&"!|e"P|H]

vl’l(l’l - 1) a=n+2
= 2H*|®@"'? + H*®)? + nH*
n-—2
- 1@"|0PH]. 3.19
ml IO |H] (3.19)

Now, substituting (3.12)—(3.14), (3.16) and (3.19) in (3.11), we find
1
ao(nH) > E(c1 +c)[(n + 9 + 6(trF)*) (O + nH?) — 3 — (trF)*]
1
+ E(c1 — &)[trF) (O — n*H? + |01 + nH?)]

1
+ 1eler+ )[4y = DI
n-—2
vn(n —1)
1 3
+ nH2|®|2 _ 5|(9n+1|4— + |®|2|®n+1|2 _ §|®|4

1
+ E(Cl — )2trP)IC*IP] - 10" |O*||H|
= %(c1 +c)[(n+ 9 + 6(trF)»)(1OF + nH?) — 3 — (trF)?]
+ %(q — e)[(trF)(n|®F — n’H? + |0 + nH?)]

1
+ E(Cl + )[(A@rF)? = 2)II* 1P

1
+ (e - e)[2arF)IC*IP]

-2
" |®|2[ S \e||H] + nH? - |®|2]

Vn(n —1)
-2
@ _ ®n+l n— @2H
+ (8110}~ Z=fof
1
- 3001 - 10" 1(e] +10")’| (3.20)
It is known that [17],
(101 - 10" )| =2 |0PIH] - ~(6] - [©"* (0] + 19" )2] = 0
Vn(n=1) 2 -

Therefore, from (3.20) we have
1
o(nH) > E(c1 +c)[(n + 9 + 6(trF)*) (1O + nH?) — 3 — (trF)*]
1
+ E(c1 — &)|[trF) (O — n*H? + |01 + nH?)]

1
+ 2(en + e[ (4GrF) = DI IP]

AIMS Mathematics Volume 7, Issue 1, 104-120.



115

1
+ (e = e 26 ]
-2
Op| - —L=Z_|@|H| + nH? - |O]]. >
+16F| - —====IOIlH| + nH’ - [©) 20

Since, ¢y, c; > 0 and trF = 0. Then the above inequality implies the following inequality

1
D(nH) 2 Je(cr + e)[(n +9)(IOF + nH?) — 3 - 2/|*|?]

-2
+ @2[—”—(9 H| +nH* — |0

(0] ml IH| [0

1
> e+ c)[(n + 9)(OF + nH?)] + nH*|O*. (3.22)

From (2.21) we have f v O(nH)dv = 0. Thus we have following two cases:

Case 1:
O +nH?> =0 and nH* O =0

which yields A = 0 and H = 0. Thus, the submanifold is totally geodesic.
Case 2: |
g+ )+ (6 + nH*) = —nH?*|0

which implies that A = 0 and H = 0. It is again totally geodesic.

Hence, we have our assertion. O

Now, we give an example in the support of the Theorem 3.1.

Example. It is known that the real projective space IRP"(1) is totally geodesic submanifold of the
complex projective space CP"(4) [3]. Also from [23] we know that, if N, is any submanifolds of
Kaehler manifold M; and N, is any submanifold of Kaehler manifold M,, then the natural product
N = N; XN, is a submanifold of the Kaehler product manifold M = M, X M,. Hence, RP"(1) x RP"(1)
is a submanifolds of the Kaehler product manifold CP"(4) x CP"(4), which satisfies all the hypothesis
of the Theorem 3.1 and indeed totally geodesic.

Remark 3.4. In the above example, it can be noticed that ¢7F vanishes, due to the fact that the projection
operators £ and Q coincide.

4. o—invariant totally real submanifold in Kaehler product manifold
Let NV be a Riemannian manifold and K () denotes the sectional curvature of N of the plane section

mC TN atapoint x € N. Let {ey,...,e,} and {e,,1, ..., €xpm+p} be the orthonormal basis of 7, N and
TN atany x € N, then the scalar curvature 7 at that point is given by

T(x) = Z K(e; Nej).

1<i<j<n
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If we consider that L is an r-dimensional subspace of TN, r > 2, and {e;, e, . .., e,} is an orthonormal
basis of L. Then the scalar curvature of the r-plane section L is given as

()= ) Kle,Aep),  1<yp<r (4.1)

1<y<p<r
forn > 3 and k > 1. Let us assume S(n, k) the finite set consisting of k—tuples (ny, ..., n;) of integers
satisfying
2<n,....,mpy<nand n;+---+n < n.

Also denote by S(n) the union | ;- S(n, k).
For each (ny,...,n) € S(n) and each point x € N, B. Y. Chen [8] introduced a Riemannian invariant

o(ny,...,n)(x) defined by
o(ny,...,m)x)=1(x)—inf{r(Ly) + -+ 1(Ly)}, 4.2)

where Ly, ..., L; run over all kK mutually orthogonal subspaces of T, N such that dimL; = Y n;, j =
1,...,k
We recall the following Lemma [7]:

Lemma 4.1. Let a,,...,a,,a,. ben+ 1 real numbers such that
(> @) =(=1an + ) a). 4.3)
i=1 i=1

Then 2a,a; > a1, with equality holding if and only ifay + a, = a3 = --- = a,.
In this section we state and prove the following.

Theorem 4.2. Let N be a totally real submanifold in Kaehler product manifold Nci,¢r) = K/T(cl) X
N g(cz) and if trP coincides with trQ, then

nn+k-1 —an)H2

o(ny,...,m) <
(el < )
1 k
+ 3—2[n(n +1) - ]Z:; nj(n; + 1)](c1 + ), (4.4)
and the equality holds in (4.4) if and only if at a point x € N there exists an orthonormal basis
€1, ..., exmrp) At x such that the shape operator of N in N(c, c;) at x takes the forms:
A0
RN 0
A, = - ,r=n+1,...,2(m+ p), 4.5)
0 ... A
0 url

where Q is a null matrix, I is an identity matrix and each A’ is a symmetric n;Xn; submatrix such that
tr(A)) = - =tr(A}) = p,. 4.6)
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Proof. We put

nmn+k-1 —an)H2
2(n+k—-Y ny) '

1
e=21- 1—6(c1 +ceonn+1) —

By combining (2.18) and (4.7), we obtain
nH = (n+k= ) n)(e+IAP).

With respect to the orthonormal basis, the last equation can be written as

(DG = k= Yo+ Y@
- 2(m+p) nl:l
O DG,

i#j r=n+2 i,j=1

which implies that

(ZH: a,-)2 =(n+k- Z n;)(e + Zn:(ai)z

2(m+p) n
1,2 2
+ QG Y D @),
i#] r=n+2 i,j=1

Now, let us set

A

Il
—
[a—
M

comb L A=+ + 1,0 np sy,

and

51 :a1,522a2+--~+an1,
az = Qp41t -t Quiangs oo o5 Qi1 = Ayt +1 T+ Ay

A2 = Apytotm+1s - -+ > Auikt1-Yn; = G-

Then Eq (4.9) is equivalent to

n+k+1-3n; n+k+1-3n;
—\2 —\2
(D, @'=m+k=-) n)e+ D, @
i=1 i=1
2(m+p) n
1\2 2
O > G
i+ r=n+2 i,j=1
- Z Aoy g, — Z Ao, dp,
2<a1#B1<n a1 #P1

4.7)

(4.8)

4.9)
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‘“"25“%@% (4.10)

@ # Py

where a’g,ﬁz eEN,, ..., ak,,Bk € A;.
Using Lemma 4.1 in (4.10) yields

Z GonApy — Z Aoy dpy =~ Z oy A,

@1<Bi @2<f k<P
e 2(m+[7) n
1
> Y LY Y@ (4.11)
i*] r=n+2 i,j=1

where a;,8, € Aj,j=1,... k.
Furthermore, combining (4.1) with the Gauss equation, we obtain

2(m+p)

(L) = 32n](n] + D(c) +¢) + Z Z (Qy]a,{/;]g, (§a,ﬂ,) ).

r=n+1 a;<B;

4.12)
Combining (4.11) and (4.12) gives
| &
T(Ly)+---+7(ly) = = + ﬁ nin;+ 1)(ci + ¢2)

2(m+p) 2(m+p) k

Z DG+ Z PO

r=n+1 (aﬁ)gAZ r=n+2 j=1 QJEA
€, | 413
_§+3—2;nj(nj+ )y + ), (4.13)

where A = A U"‘UAk,Az = (Al XAl)U"‘U(AkXAk).

Thus, Eqgs (4.2), (4.7) and (4.13) imply (4.4).

Moreover, equality in (4.11) and (4.13) holds at a point x, if it holds for (4.4) at a point x. In this
case from Lemma 4.1 and Eqs (4.10)—(4.13), we have (4.5) and (4.6). A straightforward computation
yields the converse part. O

Example. Due to the fact that the real hyperbolic space H"(1) can be isometrically embedded in
the complex hyperbolic space CH"(—4) as a totally real totally geodesic submanifold of minimal
codimension [22]. It follows that N = RP"(1) x RP"(1) is a totally real submanifold of M =
HP"(4)x HP"(4). This submanifold satisfies all hypotheses of Theorem 4.2. In this case the inequality
is satisfied with equality at all points.

Theorem 4.2 yields the following obstruction result.

Corollary 4.3. Let N be a totally real submanifold in Kaehler product manifold N (c1,60) =N n(cl) X
No ,(¢2) and if trF vanishes, then for ¢ + c; = 0, N can not be minimally immersed in N (c1,¢2).
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5. Conclusions

We characterized totally real submanifold using self-adjoint differential operator. The self-adjoint
differential operators are mainly used in functional analysis and quantum mechanics. In quantum
mechanics their importance lies in the Drac-Von Neumann formulation of quantum mechanics in which
momentum, angular momentum and spin are represented by self-adjoint operators on Hilbert space. A
self-adjoint differential operator is an important class of unbounded operators. Therefore, we can use
such operator for infinite dimensional cases and we resemble the finite dimensional case. Thus, use of
the operator for such characterization may open a new path to link results in differential geometry with
quantum mechanics as well as well with functional analysis.
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