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Abstract: In this paper, a three-parameter bounded unit distribution with a flexible hazard rate called 

the unit generalized log Burr XII (UGLBXII) distribution is derived. To show the importance of the 

proposed distribution, we establish some of its mathematical properties such as random number 

generator, ordinary moments, generalized TL moments, conditional moments, reliability and 

uncertainty measures. We characterize the UGLBXII distribution via innovative techniques. We also 

present the bivariate‐ and multivariate‐type distributions via Morgenstern (Mor) family and via 

Clayton family. Six estimation methods such as the maximum likelihood, maximum product 

spacings, least squares, weighted least squares, Cramer-von Mises and Anderson-Darling methods 

are adopted to estimate its unknown parameters. We perform simulation studies on the basis of the 

graphical results to see the performance of the above estimators. Two real data sets are considered to 

prove the empirical superiority of the proposed model. 

Keywords: generalized TL moments; maximum likelihood estimation; Pearson differential equation 

Mathematics Subject Classification: 60E05, 62E15, 62F10 

 

1. Introduction 

Statistical distributions bounded on (0,1) are useful tools to describe uncertainty phenomena. 

For modeling proportions, percentages, indices, rates and ratios measured on the unit interval, many 

new continuous unit distributions have been developed. In statistical literature, the most famous unit 
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distribution is the beta distribution, since it is a convenient and useful model in many areas of 

statistics. However, its data modeling ability may be insufficient to explain the data. So, there are 

some alternative distributions to beta distribution in the literature such as the Johnson SB distribution [1], 

Topp-Leone distribution [2], the unit-Gamma distribution [3,4], the Kumaraswamy distribution [5], the 

Arcsine distribution [6], the unit-Logistic distribution [7], the Simplex distribution [8], the 

unit-Birnbaum-Saunders distribution [9], the unit-Weibull distribution [10], the unit-Gompertz 

distribution [11], the unit-Lindley distribution [12], the unit-improved second-degree Lindley 

distribution [13], the unit-inverse Gaussian distribution [14], the unit half normal distribution [15], 

the logit slash distribution [16], the arc-secant hyperbolic normal distribution [17] and the TURQ 

distribution [18]. Many of the above mentioned distributions have been obtained via transforming of 

the base distribution and they have given better results than beta distribution in terms of the data 

modeling. 

We aim to propose a new unit distribution with many sub-models on (0,1) interval in order to 

obtain flexible density function with various shapes and skewed forms in the unit interval. The 

UGLBXII distribution is important due to (i) it has simple and closed form expressions for the 

cumulative distribution function and quantile function; (ii) it can provide increasing, bathtub, 

N-shaped and bimodal hazard rate and (iii) it can provide better fits than other well-known 

distributions defined on the unit interval. Further, We focus on the following motivations: (i) to 

develop distributions with various density shaped model as well as high kurtosis; (ii) to have 

monotone and non-monotone failure rate function; (iii) to derive mathematical properties such as 

random number generator, sub-models, ordinary moments, generalized TL moments, conditional 

moments, reliability measures, uncertainty measures and characterizations; (iv) to present the 

bivariate and multivariate‐type distributions; (v) to estimate the precision of the different estimators 

via simulation studies; (vi) to illustrate the potentiality of the UGLBXII model; (vii) to employ as the 

preeminent substitute model to the other existing models and (viii) to deliver a better fit model than 

other models. 

The content of the article is prepared as follows. In Section 2, we derive the UGLBXII 

distribution. We also study basic structure related properties like random number generator and 

sub-models. Section 3 presents certain mathematical properties such as ordinary moments, 

generalized TL moments, conditional moments, reliability and uncertainty measures. We also present 

the bivariate‐ and multivariate‐type distributions. Section 4 provides certain characterizations of the 

UGLBXII distribution via innovative techniques. In Section 5, we adopt six estimation methods to 

estimate its unknown parameters. We carry out simulation studies on the basis of the graphical 

results to see the performance of the above estimators. In Section 6, we consider two applications to 

illustrate the potentiality of the UGLBXII model. Concluding remarks are given in Section 7. 

2. The UGLBXII distribution 

We derive the probability density function (pdf) of the UGLBXII distribution and discuss its 

basic structural properties. 

2.1. Development of the UGLBXII distribution 

In this sub-section, we derive the pdf of the UGLBXII distribution using the Pearson differential 
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equation given by 
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2.2. Relationship between the exponential and gamma variable 

Here, we derive the UGLBXII distribution from a relationship between the exponential and 

gamma random variables, i.e., ( )1 ~ exp 1W and ( )2 ~ ,1W gamma  . 𝑊1 𝑎𝑛𝑑  𝑊2  independently 

distributed 

Lemma (i). Let ( )1 ~ exp 1W  and ( )2 ~ ,1W gamma   𝑏𝑒  independently distributed, then for 
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which is the UGLBXII density. 

2.3. Structural properties 

If X~ UGLBXII ( ), ,   , the survival function, failure rate function, cumulative hazard function, 

reverse hazard function and elasticity are given, respectively, by 
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The quantile function of the UGLBXII distribution for  0 1q   is 
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The random number generator of the UGLBXII distribution for U ~Uniform (0,1) is given by 
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2.4. Sub models of the UGLBXII distribution 

i). For 1 = , the UGLBXII distribution reduces to the unit log Burr XII (ULBXII) distribution. 

ii). For 0.5 = , the UGLBXII distribution reduces to the unit log Lomax (ULL) distribution. 

iii). For 
1

2,   → = , the UGLBXII distribution becomes the unit log generalized Weibull 

(UGLW) distribution. 

iv). For 
1

2, , 0.5   → = = , the UGLBXII distribution becomes the unit log-exponential 

distribution. 

v). For 1X − , the UGLBXII distribution reduces to the generalized log Burr XII (GLBXII) 

distribution [19]. 

vi). For 1X − and 1 = , the UGLBXII distribution reduces to the log Burr XII (LBXII) distribution. 

2.5. Plots of the UGLBXII density and failure rate functions 

We plot the pdf and failure rate functions of the UGLBXII distribution to the selected 

parameters values. Figure 1 displays that the UGLBXII density can take various shapes such as 

decreasing, unimodal, U-shaped, decreasing-increasing-decreasing (inverse N-shaped) and the 

possible pdf’s regions of the UGLBXII density with 1 = . On the other hand, Figure 2 shows that 

failure rate function can be increasing, bathtub, N-shaped and bimodal. Therefore, the UGLBXII 

distribution is quite flexible and can be applied for numerous data sets. 
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Figure 1. Plots of pdf (left) and possible pdf’s regions (right) of the UGLBXII density. 

 

Figure 2. Plots of the hrf of the UGLBXII distribution. 

3. Mathematical properties 

We present some properties such as ordinary moments, generalized TL moments, conditional 

moments, reliability and uncertainty measures. We also present the bivariate and multivariate‐type 

distributions.

 

3.1. Moments 

The moments are significant tools for statistical analysis in pragmatic sciences. The rth ordinary 

moment of X is 
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The rth central moment ( )r , coefficients of skewness ( 1 ) and kurtosis ( 2 ) of X are 
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The numerical values for the mean ( )1 , median ( ) , standard deviation ( ) , skewness ( )1  and 

kurtosis ( )2  of the UGLBXII distribution for selected values of , ,    are listed in Table 1. Figure 3 

shows the skewness and kurtosis of the distribution for the selected parameters values with 1. =  

 

Figure 3． The skewness and kurtosis of the distribution for the selected parameters 

values with 1. =  
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Table 1. Quantities 1
 ,  ,  , 1  and 2 for the UGLBXII Distribution. 

, ,    
1
      1  2  

0.5,0.5,0.5 0.3775 0.2922 0.3591 0.3797 1.5973 

1,0.5,0.5 0.5457 0.6146 0.3339 −0.3394 1.7101 

2,0.5,0.5 0.7304 0.8124 0.2498 −1.1768 3.5946 

3,0.5,0.5 0.8171 0.8780 0.1841 −1.6584 5.8201 

4,0.5,0.5 0.8636 0.9095 0.1411 −1.9242 7.5996 

5,0.5,0.5 0.8919 0.9283 0.1131 −2.0745 8.8715 

0.5,1,0.5 0.4126 0.4261 0.2791 0.0165 1.7977 

0.5,2,0.5 0.4867 0.5175 0.1897 −0.5955 2.8520 

0.5,3,0.5 0.5253 0.5483 0.1368 −0.9260 4.1193 

0.5,4,0.5 0.5464 0.5633 0.1068 −1.0835 5.0818 

0.5,5,0.5 0.5592 0.5722 0.0839 −1.1494 5.6930 

0.5,0.5,1 0.3005 0.1479 0.3343 0.7676 2.1390 

0.5,0.5,2 0.1888 0.0134 0.2897 1.4922 3.9611 

0.5,0.5,3 0.1472 0.0022 0.2627 1.9055 5.5477 

0.5,0.5,4 0.0944 0.00001 0.2102 2.5542 8.7635 

0.5,0.5,5 0.0788 0.0000003 0.1934 2.8874 10.8041 

0.55,2,0.51 0.4975 0.5254 0.1817 −0.6169 3.0015 

0.5,1.0219,0.5 0.4145 0.4297 0.2766 0.0002 1.8111 

3.2. The generalized TL-moments 

Elamir and Seheult [20] developed generalized TL-moments. The expression for rth generalized 

TL-moment is 
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The kth moment about the origin of :r m r m nX + − + +  for the UGLBXII model is 
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( )

( )

( ):
0 0

1 , 2
2 2

1
! , 1

i
n i jk n

r m r m n j
j i

i i
B r m j

k
E X

i B r m n

+  + +
+ − + +

= =

 
+  + − + − − 

   
=  −

+ − + +
  . 

Mean of :r m r m nX + − + +  for the UGLBXII distribution is 

( ) ( ) ( )
( )

( ):
0 0

1 , 2
2 2

1
! , 1

in i j n
r m r m n j

j i

i i
B r m j

E X
i B r m n

+  + +
+ − + +

= =

 
+  + − + − − 

   
=  −

+ − + +
  . 

The rth generalized TL-moment is obtained as 

( ) ( ) ( )( )
( )

( )

1
, 1

0 0 0

1 , 2
2 2

1 , 1,2,3..., , 0,1,2..
! , 1

in r i jm n r n
r j

j i

i i
B r m j

r m n
r i B r m n

+  − + + − +

= = =

 
+  + − + − − 

    
 = − = =

+ − + +
    

The rth generalized TL-moment can be used to obtain the rth L-moment (0, 0), LL-moments (0, n), 

TL-moment (1, 1) and LH-moment (m, 0) for the UGLBXII distribution.  The first two moments 
( ),

1

m n
  and ( ),

2

m n
 are employed to compute the location and dispersion of the data, respectively. 

( )

( )

,

2

,

1

m n

m n
L CV




− =  is coefficient of variation.

( )

( )

,

,

2

m n

r
r m n





= , 3r  , 

( )

( )

,

3
3 ,

2

m n

m n





=  and 

( )

( )

,

4
4 ,

2

m n

m n





= are 

measures for skewness and kurtosis, respectively. 

3.2.1. The TL-moments (1,1) 

When only the extreme observations are trimmed from the array sample, then the rth generalized 

TL-moment befits rth TL-moment (m=n=1). The rth TL-moment is obtained as follows 
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( ) ( ) ( )( ) ( )

( )

1 1

1 1
1,1

0 0 0

1 , 1 2
1 2 2

, 1,2,3...
! 1, 2

r
i j i j

r

r
j i

i i
B r j

r
r i B r

− +
+ +

+  −

= = =

 
+  − + + − − 

−     
 = =

− + +
   . 

3.2.2. The L-moments [21] 

When no value is trimmed from the array sample, then the rth generalized TL-moment becomes 

rth L-moment (m=n=0). L-moments are used for estimation of the parameters. The rth L-moment for 

the UGLBXII distribution is 

( ) ( ) ( )( ) ( )

( )

1

1
0,0

0 0 0

1 , 2
1 2 2

, 1,2,3...
! , 1

r
i j i j

r

r
j i

i i
B r j

r
r i B r

−
+ +

 −

= = =

 
+  − + − − 

−     
 = =

− +
   . 

3.2.3. The LH-moments [22] 

When lowermost m values are trimmed from the array sample, then the rth generalized 

TL-moment becomes rth LH-moment (m, 0). The rth LH-moments (m, 0) gives more weight to the 

upper part of data. The rth LH-moment for the UGLBXII distribution is 

( ) ( ) ( )( )
( )

( )

1
,0 1

0 0 0

1 , 2
2 2

1 , 1,2,3..., 0,1,2...
! , 1

ir i jm r
r j

j i

i i
B r m j

r m
r i B r m

 − + + −

= = =

 
+  + − + − − 

    
 = − = =

+ − +
   . 

3.2.4. The LL-moments [23] 

When the uppermost n values are trimmed from the array sample, then the rth generalized 

TL-moment becomes rth LH-moment (0, n). The rth LL-moments (0, n) gives more weight to the 

lowermost part of data. The rth LL-moment for the UGLBXII distribution is 

( ) ( ) ( )( )
( )

( )

1
0, 1

0 0 0

1 , 2
2 2

1 , 1,2,3..., 0,1,2...
! , 1

in r i jn r n
r j

j i

i i
B r j

r n
r i B r n

+  − + + − +

= = =

 
+  − + − − 

    
 = − = =

− + +
   . 

3.3. Conditional moments 

The rth conditional moment of X is ( )
( )

( )1k k
X zE X X z E X

S z


  =
 

. The kth incomplete upper 

moment about the origin for X is 

( )
( )

( )
0

;1 ,
! 2 2

i

k
X z

i

k i i
E X B w z

i




=

−   
=  + − 

  
 , 
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where ( )S z  is survival function and ( );.,.B z  is the incomplete beta function. The kth conditional 

moment of X is 

( )
( )

( )
( )

0

;1 ,
! 2 2

i

k

i

k i i
E X X z B w z

S z i



=

−   
 = + − 

  
 . 

The rth reversed conditional moment of X is ( )
( )

( )1k k
X zE X X z E X

F z


  =
 

. The kth incomplete 

lower moment about the origin for X is 

( ) ( )
( )

( )
0

1 , ;1 , ,
! 2 2 2 2

i

k
k X z

i

k i i i i
M z E X B B w z

i




=

 −      
 = =  + − − + −    

        
       (6) 

where ( )F z is cdf and ( );.,.B z  is the incomplete beta function. The kth reversed conditional moment 

of X is 

( )
( )

( )
( )

0

1 , ;1 ,
! 2 2 2 2

i

k

i

k i i i i
E X X z B B w z

F z i



=

 −       
 = + − − + −    

        
 . 

The mean deviation about the mean ( )1 E X = −  and about the median ( )2 E X = − can be written as 

( ) ( )1 12 2F M    = − and ( )2 12M  = − , respectively, where ( )E X =  and 0.5x = .The quantities 

( )1M  and ( )1M  can be obtained from (6). For specific probability p, Lorenz and Bonferroni curves 

are computed as 
( )1

( )
M q

L p



=


 and B( ) ( )p L p p= , where ( )q Q p= . 

3.4. Reliability in multicomponent stress-strength model 

Consider a system with  identical elements, out of which s elements are operative. Let 

X , 1, 2...i i =   represent strengths of   elements with the cdf F while, the stress Y enforced on the 

elements has the cdf G. The strengths 𝑋𝑖 and stress Y are independently and identically distributed 

(i.i.d.). The probability that system operates properly, is the reliability of the system, i.e.,
 
 

, [at the minimum" " (X , 1,2... ) ].s iR P s of i exceed Y = =   

Then, we can write this probability (from [24]) as follows: 

, [1 ( )] [ ( )] ( ).s
s

R F y F y dG y


−


= −

 
= − 

 
   

Let X~UGLBXII ( )1, ,   , Y~ UGLBXII ( )2 , ,   with unknown 1 2and  , common ,   where X and 

Y are independently distributed. The reliability in multicomponent stress-strength model for the 

UGLBXII distribution is 
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( )
1 1 22 2 21

,
0

ln ln ln
1 1 1   1s

s

y y y
R d

 −
− − −

  



=

                  = − + − + − + −                                         

  . 

Setting 

22
ln

1
y

−
  

 = + −  
   

, we obtain ( ) ( )
1

,
0

1 ,s
s

R d
   −


=

 
= −   

 
   where 1

2


 =


. 

Letting ,u =   

( )( )
11 1

,
0

1
1   s

s

R u u u du
 −− 


=

 
= − 

  
   

,

1 1
, 1s

s

R B



=

   
=  +  −  +   

   
 ,                 (7) 

The probability in (7) is called the reliability in a multicomponent stress-strength model. 

For s= 𝜅=1, the multicomponent stress-strength model reduces to the stress-strength model [25] 

as 

𝑅1,1 = 𝑃𝑟(Y < X) =
𝛼1

(𝛼1+𝛼2)
, 

 

where 𝛼1 + 𝛼2 > 0. 

3.5. Uncertainty measures 

The measure of uncertainty of a random variable (rv) is called entropy. Rényi entropy 

generalizes Hartley, Min, Shannon and collision entropies. Entropies are useful to study daily 

temperature instabilities (climatic), abnormal diffusion, DNA structures, information content gestures, 

heart rate variability (HRV) and cardiac autonomic neuropathy (CAN). Here, we study Shannon 

entropy, Awad entropy, Rényi, Q, Havrda, Chavrat and Tsallis-entropies. 

Claude Shannon [26] measured expected information in a message. Shannon entropy is given 

by 

( ) ( )( ) ( ) ( )
1

0

ln lnh X E f X f x f x dx= − = −  

( )
( ) ( ) ( ) ( )1 1
2 1 2 2 1 21

0

2 ln ln 2 ln ln
ln 1 1

x x x x
h X dx

x x

− + − +
−  −                

= − − + − − + −                                  

 , 

( )
( ) ( )

( ) ( )
1 2 1 1 1 2

1 1, ln
2 2 2

h X B
 + −    

 = +   − − +  − −          
, 

where ( )  ln
d

dp
  =   is the digamma function. 

Awad and Alawneh [27] provided the extension of Shannon entropy as 
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( ) ( )
( )

1

ln
f x

A X f x dx


= −


 . 

For X~UGLBXII ( ), , ,    the Awad entropy is given by 

( )
( ) ( )

( ) ( )
1 2 1 1 1 2

ln 1 1, ln
2 2 2

A X B
 + −    

 =  + +   − − +  − −          
. 

For X~UGLBXII ( ), , ,   Rényi entropy [28] is given by 

1
( ) log( ( ( )) ) 1, 0.

1

v
vH X f x dx v v

v



−

=  
−

  

Now taking 

( )
( ) ( )1
2 1 21 1

0 0

2 ln ln
1

x x
f x dx dx

x


− +

− 


         = − + −                

  , 

( )

( )1
2 21 1

0 0

2 ln ln
1 ,

x x
f x dx dx

x

− + 
−   



 

      
  = − + −             
   

( )
( ) ( )( )

( )( )

1
2 2

0

11ln ln
1

! 1

vx x

v

− + 
 



=

    + +−   
+ − = −    

   +     

  

( )
( ) ( )( )

( )( )

2 21 1

00 0

112 ln ln

! 1

vx x
f x dx dx

vx

−    

 
=

 + +−     
  = − −       +    

  , 

( )
( ) ( )( )

( )( )

2 21 1 1

00 0 0

112 ln

! 1

v x
f x dx x dx

v

 + −    −


=

 + +−   
  = −     +  

   , 

Considering 
2 21

0

ln x
x dx

 + −
−  

− 
 

  and letting 
ln x

w
b

 
− = 
 

, we arrive at 

( )
 

2 21

2 2 1
0

ln
2 2 1

1

x
x dx

v

 + −
−

 + −+

 
− =   +  − + 

    − 

  

( ) ( )( )
( )( )

 

( )
1 2 2 1

0

1 2 2 111 2
( ) log

1 ! 1 1
v

v
H X

v v

   

−  + −+
=

  + +   +  − +−  
=  

−  +    −   

 . 

The Q-entropy for the UGLBXII distribution is 
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( )
( ) ( )( )

( )( )
 

( )
1 2 2 1

0

1 2 2 111 2
log 1

1 ! 1 1

q q q

v q q q

q q q
H f

q q q



−  +  − +
=

  + +   +  − +−  
= − 

−  +    −   

 . 

The Havrda and Chavrat entropy [29] for the UGLBXII distribution is 

( ) ( )( )
( )( )

 

( )
1 2 2 1

0

1 2 2 111 2
log

1 ! 1 1
R

v
I

v v

   

−  + −+
=

  + +   +  − +−  
=  
 −  +    −   

 . 

The Tsallis-entropy [30] for the UGLBXII distribution is 

( )( )
( ) ( )( )

( )( )
 

( )
1 2 2 1

0

1 2 2 111 2
1

1 ! 1 1

q q q

q q q q

q q q
S f x

q q q



−  +  − +
=

  + +   +  − +−  
= − 

−  +    −   

 . 

3.6. Bivariate and multivariate extensions of the UGLBXII distribution 

Here, we derive the bivariate UGLBXII model via Morgenstern (Mor) family and via Clayton 

family [31]. 

3.6.1. Bivariate UGLBXII distribution via Mor family 

The cdf of the bivariate UGLBXII model via Mor family for random vector ( )1 2,W W  is 

( ) ( )  ( ) ( )1 2 1 1 2 2 1 1 2 2( , ) 1 1 1F w w F w F w F w F w    =  − − +    , 

where ( )

1
12

1
1 1

1

ln
1

w
F w

−
  

 = + − 
   

and ( )

2
22

2
2 2

2

ln
1 ,

w
F w

−
  

 = + − 
   

then we have seven dimension 

parameter model. 

3.6.2. Bivariate UGLBXII distribution via Clayton family 

The cdf of the bivariate UGLBXII model via Clayton family for random vector ( )U, V  is 

( ) ( )  ( )1 2 1 2 1 2

1

( , ) 1C u v u v
−

−  + −  +  += + − . 

Let 1W ~ UGLBXII ( )1 1 1, ,    and 2W ~ UGLBXII ( )2 2 2, ,   . Then, setting 

( )

1
12

1
1 1

1

ln
1 ,

w
u F w

−
  

 = = + − 
   

( )

2
22

2
2 2

2

ln
1 ,

w
v F w

−
  

 = = + − 
   

 

The cdf of the bivariate UGLBXII distribution via Clayton family for random vector (W1, W2) is 
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( ) ( ) ( )

( )

1 1 2 2 1 2 1 21 2

1 2

1

2 2

1 2
1 2

1 2

ln ln
( , ) 1 1 1 , 0

w w
H w w

        

 

 

−
+ + +

+

        
   = + − + + − −     
           

 

3.6.3. The multivariate extension 

Here, we derive the multivariate UGLBXII distribution. A straightforward d-dimensional 

extension from the above will be 

( ) ( )1 2 1 2

1

2

1 2

1

ln
( , ,..., ) 1 1

i
id

i
d

i i

w
H w w w d

    



−
+ +

=

    
 = + − + −  
     

 . 

In future works, we could study various characteristics of the bivariate and the multivariate 

extensions of the UGLBXII model. 

4. Characterizations 

In this section, we characterize the UGLBXII distribution via; (i) ratio of truncated moments; (ii) 

reverse hazard function and (iii) Elasticity function. 

4.1. Ratio of truncated moments 

We employ ratio of truncated moments of X using a Theorem due to Glänzel [32] to 

characterize the UGLBXII distribution. 

Proposition 4.1.1. Let ( )X: 0,1→  be a continuous rv and let 

( )

1
2

1
1

ln
1

x
x

+


−
  

 =  + −  
   

and ( )

( )1
2 2

1
2

ln ln
2 1

x x
x

+
 

−
    

 =  − + −    
      

, 0 1x  . 

According to the Glänzel Theorem, the rv X has pdf (4), iff the function ( )x  has the form 

( )
2

ln x
x






−

 
= − 
 

.

 

Proof. For the rv X with the pdf (4), we have 

( )
2

1

ln
[ X x]

x
E X


 

  = − 
 

 

( )
4

2

ln
[ X x]

x
E X


 

  = − 
 

, 
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( )

( )
( )

2
1

2

[ X x] ln

[ X x]

E X x
x

E X

−    
=  = − 

   
, 

( )
2 1

2 ln x
x

x

− −
  

 = − 
  

 

( )
( ) ( )

( ) ( ) ( )

1
2

2 1

4 lnx x x
s x

x x x x

−    
 = = − 

  −   
 

and 

( )
4

ln
ln , 0 1.

x
s x x





−

 
= −   

 
 

Therefore, in light of Theorem of Glänzel [32], X has pdf (4). 

Corollary 4.1.1. Let ( )X: 0,1→  be a continuous rv and let 

( )

( )1
2 2

1
2

ln ln
2 1

x x
x

+
 

−
    

 =  − + −    
      

. 

Then, X has pdf (4) iff the functions ( )x and ( )1 x  satisfy the differential equation 

( )

( ) ( ) ( )

( )1
2 1 2

2 1

2 ln ln
1 , 0 1.

x x x
x

x x x x

− +
− −       

= − + −      
  −         

             (8) 

Remark 4.1.1. The general solution of (8) is 

( ) ( ) ( )

( )1
4 2 1 2

1 1

ln 2 ln ln
1 ,

x x x
x x x dx D

x

− +
−  −          = − −  − + − +                   

  

where D is a constant.

 
4.2. Reverse Hazard function 

Definition 4.2.1. Let ( )X: 0,1→  be a continuous rv with a twice continuously differential cdf ( )F x . 

Then, the reverse hazard function Fr  satisfies the differential equation 

( )
( )

( )
( )ln

F
F

F

r xd
f x r x

dx r x


  = +  .                       (9) 
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Proposition 4.2.1. ( )Let X: 0,1→  be continuous rv. The pdf of X is (4) iff its reverse hazard 

function, Fr  satisfies the first order differential equation 

  

2
2 2 2 2

2

2 ln ln ln
xr ( ) r ( ) 1 2 1F F

x x x
x x

x

−
−           

 + = − + − −  + −        
              

.     (10) 

Proof. If X has pdf (4), then (10) holds. Now if (10) holds, then 

 

2 1

2

ln

2
xr ( )

ln
1

F

x

d d
x

dx dx x

−



 
  −     

=  
    

+ −        

, 

or 

1
2 1 2

2 ln ln
r ( ) 1 ,F

x x
x

x

−
−      

= − + −    
       

 

which is the reverse hazard function of the UGLBXII distribution. 

4.3. Elasticity function 

Definition 4.3.1. Let ( )X: 0,1→  be a continuous rv with a twice continuously differential cdf ( )F x . 

Then, the elasticity function ( )F x
 satisfies the differential equation 

( )
( )

( )( ) 1
ln

xd x
f x

dx x x x


  = + −  

.          (11) 

Proposition 4.3.1. Let ( )X: 0,1→  be continuous rv. The pdf of X is (4), if and only if its elasticity 

function, ( )F x  satisfies the first order differential equation 

  

2
2 2 2 2

2

2 ln ln ln
( ) 1 2 1F

x x x
x

x

−
−           

 = − + − −  + −        
              

.       (12) 

Proof. If X has pdf (4), then (12) holds. Now if (12) holds, then 

( ) 
1

2 1 2
2 ln ln

1F

d d x x
x

dx dx

−
−        

 = − + −     
         

, 

or 

1
2 1 2

2 ln ln
( ) 1F

x x
x

−
−      

 = − + −    
       

, 
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which is the elasticity function of the UGLBXII distribution. 

5. Different estimation methods 

In this section, we propose various estimators for estimating the unknown parameters of the 

UGLBXII distribution. We discuss maximum likelihood, maximum product spacings, least squares, 

weighted least squares, Cramer-von Mises and Anderson-Darling estimation methods and compare 

their performances on the basis of a simulated sample from the UGLBXII distribution. The details 

are as follows. 

5.1. Maximum likelihood estimation 

In this subsection we estimate the parameters of the UGLBXII distribution via the method of 

maximum likelihood estimation (MLE). Let 1 2, , nX X X  be a random sample from the UGLBXII 

distribution with observed values 1 2, , nx x x  and ( )Ξ , ,
T

=     be the vector of the model 

parameters. The log likelihood function for Ξ  may be expressed as 

( )

( ) ( ) ( )

1

2

1 1

Ξ ln 2 ln 2 ln 2 ln ln

ln
2 1 ln ln 1 ln 1 .

n

i
i

n n
i

i
i i

n n n n x

x
x

=



= =

= = + +  −   − +

  
  − − −  + + − 

   



 

   (13) 

The elements of the score vector, ( ) ( )Ξ
Ξ , ,

T

U    
   

= = , are given as 

2

1

ln
ln 1

n
i

i

xn


=

   
 = − + − 

     

 , 

( ) ( )

1
2

1 1

ln ln
2 ln 2 ln ln 2 1 ln 1

n n
i i

i
i i

x xn
n x

−
− 

= =

       
 = −  − − −  + − + −    

          

   

and 

( )
1

2

1

2 1 ln2
1

n
i

i

xn
−



=

    +    
 = − − + −  

        

 . 

We can obtain the estimates of the unknown parameters by setting the score vector to zero, 

( )Ξ̂ 0U = . Solving these equations simultaneously gives the MLEs, say ˆ
MLE , ˆ

MLE  and ˆ
MLE , of the 

,   and   parameters. Since, these equations include non-linear equation systems, they must be 

solved with numerically methods. The equation (13) can be directly maximized by the different 

packet programs such as R, S-Plus, Mathematica and SAS. 

Moreover, for the UGLBXII distribution, all the second order derivatives exist. The interval 
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estimation of the model parameters requires the 3 3  observed information matrix ( )  Ξ ijJ J= for 

, , ,i j =    . The multivariate normal ( )
1

3
ˆ0, ΞN J

− 
 
 

distribution, under standard regularity conditions, 

can be used to provide approximate confidence intervals for the unknown parameters, where ( )Ξ̂J  

is the total observed information matrix evaluated at Ξ̂ . Then, approximate ( )100 1 %−  confidence 

intervals for ,   and   can be determined by: /2
ˆˆ

MLE z J   , /2
ˆ ˆ

MLE z J   and /2
ˆ ˆ

MLE z J    

where / 2z  percentile of the standard normal model and The ˆ
iiJ s are the i th diagonal elements of 

the ( )
1

Ξ̂J
−

, which is the estimated variance-covariance matrix, for , ,i =   . The elements of the

( )Ξ̂J  and ( )
1

Ξ̂J
−

can be requested from the authors. 

5.2. Maximum product spacing estimates 

The maximum product spacing (MPS) method is an alternative method to MLE for parameter 

estimation. This method was proposed by Cheng and Amin [33,34] as well as independently 

developed by Ranneby [35] as an approximation to the Kullback-Leibler measure of information. 

This method is based on the idea that differences (spacings) between the values of the cdf at 

consecutive data points should be identically distributed. Let ( ) ( ) ( )1 2
, , ,

n
X X X  be ordered sample of 

size n from UGLBXII distribution. The geometric mean of the differences is given by 

1
1

1

n
n

i
i

GM D
+

+

=

=  , 

where, the difference iD  is defined as 

( )

( )

( )
1

, ? , 2, , 1
i

i

x

i
x

D f x dx i n

−

= =  + .             (14) 

The maximum product spacing estimates (MPSEs), say , ˆˆ
MPS MPS   and ˆ

MPS  of the ,  and   are 

obtained by maximizing the geometric mean of the differences. Substituting cdf of the UGLBXII 

distribution in Eq (14) and taking logarithm of the above expression, we have 

( ) ( )( ) ( )( )
1

1
1

lΞ
1

og
1

n

i i
i

MPS F x F x
n

+

−
=

 = −
  +

 ,           (15) 

where,
 ( )( )0

0F x =  and ( )( )1
1

n
F x

+
= . By maximizing ( )ΞMPS , the , ˆˆ

MPS MPS   and ˆ
MPS  can be 

obtained as the simultaneous solution of the following non-linear equations: 

( ) ( )( ) ( )( )
( )( ) ( )( )

1 1

1
1

Ξ 1
0,

1

n i i

i
i i

F x F xMPS

n F x F x

+   −

=
−

  −  
= =

  + −  

  
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( ) ( )( ) ( )( )
( )( ) ( )( )

1 1

1
1

Ξ 1
0

1

n i i

i
i i

F x F xMPS

n F x F x

+   −

=
−

  −  
= =

  + −  

  

and 

( ) ( )( ) ( )( )
( )( ) ( )( )

1 1

1
1

Ξ 1
0

1

n i i

i
i i

F x F xMPS

n F x F x

+   −

=
−

  −  
= =

  + −  

  

respectively, where 

( )
2 2

log log
1 log 1

x x
F x

−
 

  

       = − + − + −         
, 

( ) ( )
1

2 2
log log log

2 1 log
x x x

F x

−−
 

   

     = −  − + − −     
 

and 

( )
1

2 2
log log2 1

x x
F x

−−
 

   

     =  + − −     
. 

 

5.3. Least squares estimates 

Let ( ) ( ) ( )1 2
, , ,

n
X X X  be ordered sample of size n  from UGLBXII distribution. Then, the 

expectation of the empirical cumulative distribution function is defined as 

( )( ) ; 1,2, ,
1

i

i
E F x i n

n

  = = 
   +

. 

The least square estimates (LSEs) say, LSE , ˆˆ
LSE  and ˆ

LSE , of ,   and  are obtained by 

minimizing 

( ) ( )( )
2

1

Ξ
1

i

n

i

i
QLSE F x

n=

 
= − 

+ 
 .           (16) 

Therefore, LSE , ˆˆ
LSE  and ˆ

LSE  can be obtained as the simultaneous solution of the following 

non-linear equations: 
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( )
( )( ) ( )( ) 1

1

Ξ
0

n
i

i i n
i

LSE
F x F x +

=

  = − =
  

 , 

( )
( )( ) ( )( ) 1

1

Ξ
0

n
i

i i n
i

LSE
F x F x +

=

  = − =
  

  

and 

( )
( )( ) ( )( ) 1

1

Ξ
0

n
i

i i n
i

LSE
F x F x +

=

  = − =
  

 , 

where the ( )F x , ( )F x  and ( )F x   are defined before. 

5.4. Weighted least squares estimates 

Let ( ) ( ) ( )1 2
, , ,

n
X X X  be ordered sample of size n  from the UGLBXII distribution. The variance 

of the empirical cumulative distribution function is defined as 

( )( ) 2

( 1)
; 1,2, ,

( 2)( 1)
i

i n i
V F x i n

n n

− +  = = 
   + +

. 

Then, the weighted least square estimates (WLSEs) say, WLSE , ˆˆ
WLSE  and ˆ

WLSE ,  of ,   and are 

obtained by minimizing 

( )
( )( )

( )( )

2

1

1
.

i
i

n i

i
F x

n
QWLSE

V F x=

 
− 

+  =
 
  

              (17) 

Therefore, WLSE , ˆˆ
WLSE  and ˆ

WLSE   can be obtained as the simultaneous solution of the following 

non-linear equations: 

( ) ( )( )

( )( )
( )( ) 1

1

Ξ
0

n i
i

i n
i

i

F xWLSE
F x

V F x



+
=

  = − =
    

  

 , 

( ) ( )( )

( )( )
( )( ) 1

1

Ξ
0

n i
i

i n
i

i

F xWLSE
F x

V F x



+
=

  = − =
    

  

 , 

and 

( ) ( )( )

( )( )
( )( ) 1

1

Ξ
0

n i
i

i n
i

i

F xWLSE
F x

V F x



+
=

  = − =
    

  

 , 
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5.5. Anderson-Darling estimation 

This estimator is based on Anderson-Darling goodness-of-fits statistics which was introduced by 

Anderson and Darling [36]. The Anderson-Darling (AD) minimum distance estimates, AD AD, ˆ̂  and 

AD̂ , of ,   and   are obtained by minimizing 

( ) ( )( ) ( )( ) 1
1

2 1
log log 1 .

n

i n i
i

i
AD n F x F x

n
+ −

=

−   = − − + −
  

      (18) 

Therefore, AD AD, ˆ̂  and 
AD̂  can be obtained as the simultaneous solution of the following 

non-linear equations: 

( )
( )

( )( )
( )( )

( )( )
( )( )

1

1
1

Ξ
2 1 0

n i n i

i
i n i

F x F xAD
i

F x F x

  + −

=
+ −

    
= − − =

 
  

 , 

( )
( )

( )( )
( )( )

( )( )
( )( )

1

1
1

Ξ
2 1 0

n i n i

i
i n i

F x F xAD
i

F x F x

  + −

=
+ −

    
= − − =

 
  

  

and 

( )
( )

( )( )
( )( )

( )( )
( )( )

1

1
1

Ξ
2 1 0

n i n i

i
i n i

F x F xAD
i

F x F x

  + −

=
+ −

    
= − − =

 
  

 . 

5.6. The Cramer-von Mises estimations 

The Cramer-von Mises (CVM) minimum distance estimates, CVM CVM, ˆ̂  and 
CVM̂ , of ,   and 

  are obtained by minimizing 

( ) ( )( )
2

1

1 2 1
.

12 2

n

i
i

i
CVM F x

n n=

− 
 = + − 

 
              (19) 

Therefore, the CVM CVM, ˆ̂  and 
CVM̂  can be obtained as the simultaneous solution of the following 

non-linear equations: 

( )
( )( ) ( )( ) 2 1

2
1

Ξ
0

n
i

i i n
i

CVM
F x F x −


=

  = − =
  

 , 

( )
( )( ) ( )( ) 2 1

2
1

Ξ
0

n
i

i i n
i

CVM
F x F x −


=

  = − =
  

  

and 
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( )
( )( ) ( )( ) 2 1

2
1

Ξ
0

n
i

i i n
i

CVM
F x F x −


=

  = − =
  

 . 

We refer the interested readers to Chen and Balakrishnan [37] for AD and CVM goodness-of-fits 

statistics. To solve the above equations, Eqs (13), (15), (16)–(19) can be optimized either directly by 

using the R (optim and maxLik functions), SAS (PROC NLMIXED) and Ox package (sub-routine 

Max BFGS) or the non-linear optimization methods such as the quasi-Newton procedure to 

numerically optimize the ( )Ξ , ( )MPS Ξ , ( )LSE Ξ , ( )WLSE Ξ , ( )AD Ξ  and ( )CVM Ξ  functions. 

5.7. Simulation experiments 

In this Section, we perform a simulation study by using the UGLBXII to see the performance of 

the above estimators corresponding to this distribution and obtain the graphical results. We generate 

N=1000 samples of size n=20, 25, …, 1000 from the UGLBXII distribution with true parameter 

values 1, 3 =  =  and 0.5 = . The random numbers generation is obtained by its quantile function. In 

this simulation study, we calculate the empirical bias and mean square errors (MSEs) of all 

estimators to compare in terms of their biases and MSEs with varying sample size. The empirical 

bias and MSE are calculated by (for , ,h =    ) 

( )1

1 ˆN
h iiBias h h

N
== −  

and 

( )
2

1

1 ˆN
h iiMSE h h

N
== −  

respectively. We expect that the MSEs and biases are near zero. All results related to estimations 

were obtained using optim-CG routine in the R programme. 

The results of this simulation study are shown in Figures 4–6. These figures show that all 

estimators are to be consistent, since the MSE and biases decrease with increasing sample size. It is 

clear that the estimates of parameters are asymptotically unbiased. For all parameters estimations, the 

performances of all estimators are close. 

 

Figure 4. Simulation results of  . 
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Figure 5. Simulation results of  . 

 

Figure 6. Simulation results of  . 

6. Data Applications 

We verify the potentiality of the UGLBXII model via two real data sets. The first data set 

represents monthly water capacity [38, 39] for February (1991 to 2010) at Shasta reservoir 

(California, USA). The second data set is about the proportion of total milk production in the first 

birth of 107 cows (Carnaúba farm, Taperoá, Brazil) from SINDI race [40]. Both data sets are 

converted to the interval (0, 1) using a transformation ( ) ( )min max mindata data data data−  − . We compare 

the UGLBXII distribution with models such as unit Log Burr XII (ULBXII), unit Log Lomax 

(ULLOM), unit modified Burr XII (UMBXII), Kumaraswamy (Kum), unit Weibull (UW), unit 

inverse Weibull (UIW), unit Gompertz (UGP) and beta. For the selection of the best fit distribution, 

we compute the estimate of likelihood ratio statistic ( 2− ), Akaike information criterion (AIC), 

corrected Akaike information criterion (CAIC) and Bayesian information criterion (BIC) and 

Hannan-Quinn information criterion (HQIC) for all competing and sub-models. We also compute the 

MLEs along with their standard errors (SEs) in parentheses. Table 2 reports some descriptive 

measures for two data sets. 

Table 2 shows that the monthly water capacity data set is significantly left-skewed, with high 

positive kurtosis. About the proportions of total milk production data set, it is left-skewed, with 

somewhat positive kurtosis. 
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Table 2. Descriptive statistics. 

Data 

Sets 

n Min Max Mean Median Standard 

deviation 

Skewness Kurtosis 

Data I 20 0.338936 0.849868 0.7213 0.7758 0.1528 −1.453 3.7867 

Data II 107 0.0168 0.8781 0.4689 0.4741 0.1920 −0.3353 2.686 

Figure 7 shows that both data sets are left-skewed. The nature of the two data sets differs in 

numerous features. Here, we study the statistical analysis by total time on test (TTT) for the two data 

sets in Figure 8. 

In Figure 8, the TTT plots for both data sets are concave which suggests increasing failure 

intensity. So, the UGLBXII distribution is suitable to model these data sets. 

 

Figure 7． Boxplots of the (left) monthly water capacity (right) proportions of total milk 

production. 

 

Figure 8. TTT plots of the (left) monthly water capacity (right) proportions of total milk 

production. 

6.1. Data set I: water capacity 

Table 3 reports the MLEs, SEs (in parentheses) and measures W*, A*, K-S (p-values) for monthly 
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water capacity data. Table 4 displays measures 2− , AIC, CAIC, BIC and HQIC for water capacity data. 

From the results presented in Tables 3 and 4, we see that the UGLBXII distribution is 

considered as the best model for monthly water capacity data because the values of all statistics are 

smaller for the proposed model. Figure 9 confirms this claim via the graphical display of fitted pdf, 

estimated cdf and PP plots of the UGLBXII distribution. From this figure, we can infer that the 

proposed model is closely fitted to monthly water capacity data. 

Table 3. MLEs, SEs and W*, A*, K-S (p-values) for monthly water capacity data. 

Model         W A K-S 

(P-value) 

UGLBXII 0.00595 

(0.0044) 

138.1482 

(103.2172) 

0.1613 

(0.0018) 

--- 0.0463 0.2903 0.126 

(0.8702) 

ULBXII 5.8562 

(1.5496) 

0.8826 

(0.1269) 

1 --- 0.2953 1.7015 0.2255 

(0.2244) 

ULLOM 51316.49 

(11708.3169) 

18207.16 

(266.1377) 

 --- 0.2802 1.6219 0.3678 

(0.0062) 

UMBXII 0.0070 

(0.0075) 

3.9749 

(1.5535) 

--- 0.0045 

(0.0065) 

0.1166 0.7881 0.1752 

(0.5154) 

Kum 6.3476 

(1.5575) 

4.4894 

(2.0410) 

--- --- 0.2407 1.4245 0.2209 

(0.2447) 

UW 4.2070 

(1.1202) 

1.5704 

(0.2483) 

--- --- 0.3316  1.8739  0.2416 

(0.1638) 

UIW 0.0214 

(0.0172) 

2.6299 

(0.4846) 

--- --- 6.8111 40.1234  0.9827 (< 

2.2e-16) 

UG 1.6931 

(1.6268) 

1.1604 

(0.7679) 

--- --- 0.3678 2.0439  0.2965 

(0.047) 

Beta 7.3157 

(2.3181) 

2.9099 

(0.8755) 

--- --- 0.2796 1.6192 0.2359 

(0.1834) 

Table 4. 2− , AIC, CAIC, BIC and HQIC for monthly water capacity data. 

Model 
2−  

AIC CAIC BIC HQIC 

UGLBXII −42.8546 −36.8545 −35.3545 −33.8673 −36.2714 

ULBXII −23.4884 −19.4885 −18.7826 −17.4970 −19.0997 

LLOM −15.6196 −11.6197 −10.9138 −9.6282 −11.2309 

UMBXII −24.738 −18.7379 −17.2379 −15.7507 −18.1548 

Kum −26.9494 −22.9494 −22.2435 −20.9580 −22.5607 

UW −21.9138 −17.9139 −17.208 −15.9224 −17.5251 

UIW −36.1348 −32.1347 −31.4288  −30.1432 −31.7460 

UG −17.6978 −13.6977 −12.9918 −11.7063 −13.3090 

Beta −25.1238 −21.1239 −20.4180 −19.1324 −20.7351 
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Figure 9. Fitted pdf (left), cdf (center) and PP (right) plots of the UGLBXII model for 

monthly water capacity. 

6.1. Data set II: milk production 

Table 5 reports the MLEs, SEs (in parentheses) and measures W*, A*, K-S (p-values) for milk 

production data. Tables 6 displays measures 2− , AIC, CAIC, BIC and HQIC for proportions of total 

milk production data. 

Table 5. MLEs, SEs and W*, A*, K-S (p-values) for proportions of total milk production. 

Model         W A K-S 

(P-value) 

UGLBXII 0.8199 

(0.2677) 

1.5684 

(0.2397) 

0.6611 

(0.1096) 

---- 0.0214 0.1688 0.0385 

(0.9974) 

ULBXII 1.6588 

(0.1617)  

1.2105 

(0.0935) 

---- ---- 0.0843 0.5963 0.0623 

(0.8008) 

ULLOM 102862515 

(37978.33)  

--- 92487017 

(27408.50) 

---- 0.2293 1.4495 0.2418 

(7.369e-06) 

UMBXII 0.8651 

(0.1393) 

1.4843 

(0.1851) 

--- 0.2602 

(0.1925) 

0.0652 0.4222 0.0605 

(0.8287) 

Kum 2.1949 

(0.2224) 

3.4363 

(0.5820) 

---- ---- 0.1561 1.0090 0.0763 

(0.5626) 

UW 0.9845 

(0.1015) 

1.5620 

(0.1064) 

 ---- 0.3963 2.4245  0.1206 

(0.0889) 

UIW 0.3730 

(0.0521) 

1.6106 

(0.1091) 

--- ---- 33.072

4 

210.76

94   

1 (< 

2.2e-16) 

UG 2.1193 

(0.8683) 

0.3878 

(0.1145) 

--- ---- 0.5205 3.0945  0.1835 

(0.0015) 

Beta 2.4125 

(0.3145) 

2.8297 

(0.3744) 

--- --- 0.2083  1.3263  0.091 

(0.3384) 
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Table 6. 2− , AIC, CAIC, BIC and HQIC for proportions of total milk production. 

Model 
2−  

AIC CAIC BIC HQIC 

UGLBXII −58.0372 −52.0372 −51.8042 −44.0187 −48.7866 

ULBXII −54.2262 −50.2261 −50.1107 −44.8805 −48.0591 

LLOM −1.171 2.8291  2.9445 8.1748 4.9962 

UMBXII −56.856 −50.85609  −50.6231 −42.8376 −47.6055 

Kum −50.7894 −46.78936  −46.6740 −41.4437  −44.6223 

UW −33.8424 −29.8423 −29.7269 −24.4966 −27.6752 

UIW −39.621 −35.6210 −35.5056 −30.2753 −33.4539 

UG −10.9774 −6.9774  −6.8620 −1.6318 −4.8104 

Beta −23.7772 −43.55446 −43.43907 −38.2088 −41.3874 

From the results presented in Tables 5 and 6, we see that the UGLBXII distribution is 

considered as the best model for proportions of total milk production data because the values of all 

statistics are smaller for the proposed model. Figure 10 confirms this claim via the graphical display 

of fitted pdf, estimated cdf and PP plots of the UGLBXII distribution. From this figure, we can infer 

that the proposed model is closely fitted to proportions of total milk production data. 

 

Figure 10. Fitted pdf (left), cdf (center) and PP (right) plots of the UGLBXII model for 

milk production 

7. Conclusions 

We derive and study the UGLBXII distribution. Some mathematical properties such as random 

number generator, sub-models, ordinary moments, generalized TL moments, conditional moments, 

reliability, uncertainty measures and characterizations are presented. We employ six different 

estimation methods to estimate the model parameters. We perform simulation studies on the basis of 

the graphical results to see the performances of the estimators of the UGLBXII distribution. We 

verify the potentiality of the UGLBXII distribution via two applications. In conclusion, it is expected 

that the UGLBXII model is the best fit for the monthly water capacity and the proportions of total 

milk production data analysis. The potentiality of the UGBLXII model illustrates that it is flexible, 

competitive and parsimonious to other existing distributions. Therefore, it should be included in the 
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distribution theory to facilitate the researchers. Further, as perspective of future projects, we may 

consider several intensive subjects (i) statistical inferences using different sampling schemes such as 

simple random sampling (SRS) and rank set sampling (RSS); (ii) reliability analysis using SRS and 

RSS; (iii) Bayesian estimation of the UGLBXII parameters via SRS and RSS under different loss 

functions (iv) unit modified log Burr XII; (v) various characteristics of the bivariate and the 

multivariate extensions of the UGLBXII; (vi) Bayesian estimation of the UGLBXII parameters via 

complete and censored samples under different loss functions and (vi) the study of the complexity of 

the UGLBXII via Bayesian methods. 
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