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Abstract: In this paper, the problem of synchronization for neutral-type quaternion-valued neural
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1. Introduction

In recent years, with the expansion of the number field, artificial neural networks mainly include
real-valued neural networks (RVNNs), complex-valued neural networks (CVNNs) and
quaternion-valued neural networks (QVNNs). RVNNs and CVNNs have been widely used in
combinatorial optimization, pattern recognition and quantum communication. As is well-known,
compared with RVNNs, the advantage of CVNNs is that they can directly deal with two-dimensional
data [1–5]. However, we will inevitably encounter high-dimensional data in real life, such as color
images, body images, wind direction prediction and so on [6–9]. Although we can transform the
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QVNNs into two CVNNs or four RVNNs to address these problems, the decomposition method
increases the dimension of the system, which brings difficulties to mathematical analysis [10–15].
Fortunately, quaternion, as an extension of complex number theory in a sense, plays great advantages
in these aspects. Some authors have found that the use of quaternions can directly encode and process
high-dimensional data, and greatly improve processing efficiency. At present, QVNNs have shown
good application prospects in color image compression and satellite attitude control [16–20].
Therefore, it is necessary to study the QVNNs corresponding to quaternion field.

Moreover, in both artificial and biological neural systems, time delays are inevitable because of the
finite transmission speed of signal output or input between two neurons. The existence of time delays
in neural networks can affect stability and lead to complex dynamical behaviors such as instability,
oscillations and chaos [21–25]. The neutral system is an important type of time-delay system. This
kind of time-delay system is not only related to the past motion state, but also to the rate of change
of the past motion state. Compared with the lag-type time-delay system, the neutral-type time-delay
system can describe the dynamic law of things more accurately, so that the study of the system can
provide good theoretical support for solving practical problems [26–31]. Most time-delay systems can
be regarded as special cases of neutral systems. Many conclusions of neutral time-delay systems can
be easily extended to standard time-delay systems. Therefore, the study of neutral time-delay systems
has important theoretical value and practical significance.

Since Pecora and Carollt proposed the concept of drive-response synchronization in 1990, the
synchronization of neural networks in real and complex fields has been extensively investigated. For
example, in [32], the global synchronization of CVNNs without time delay is studied. In [33], the
global µ-synchronization of impulsive CVNNs with leakage and mixed time-varying delays is
investigated by using Newton Leibniz formula, inequality technique and free weighted matrix
method. In [34], the sufficient conditions for global synchronization of QVNNs with mixed delays are
obtained by using drive-response synchronization and inequality techniques.In [35], the concept of
the Filippov solution for IMQVNNs is introduced by applying differential inclusion theory, and the
author designed a nonlinear feedback controller to discuss the global exponential synchronization for
delayed inertial memristor-based quaternion-valued neural networks with impulses.

In addition, in some practical situations, synchronization should be achieved in finite time. So,
it is necessary to make a study for finite-time synchronization. At present, some results have been
achieved in the synchronization of neural networks in finite time. In [36], by dividing the system under
investigation into four real-valued parts, the finite-time synchronization problem of quaternion neural
networks is studied. In [37], the authors proposed the finite-time synchronization of neural networks
with stochastic perturbation term and mixed time delays by using the Ito formula and p-norm. These
studies have achieved good results, however, the research on the neutral-type quaternion-valued neural
networks with mixed delays has few results.

Motivated by the issues discussed above, a class of neutral-type quaternion-valued neural networks
with mixed delays is proposed in this paper. Different form the published papers about global
synchronization of QVNNs, the research target of this paper is NQVNNs. Due to the existence of the
neutral term, the study of this kind of model is more complicated and difficult than the usual delayed
QVNN model, and the results obtained have a wider application range and more research value. The
advantage of this paper is the establishment of a linear feedback controller and a novel nonlinear
feedback controller, We construct a new Lyapunov–Krasovskii functional and a nonlinear feedback
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controller that employs the information of the time-delayed state. Based on the synchronization
method of drive-response, the sufficient conditions of the global synchronization and finite-time
synchronization are derived. In addition, The global synchronization criterion is expressed as a set of
linear matrix inequalities, which can be readily tested by using the Matlab LMI toolbox.

The remaining part of the paper is organized as follows. In Section 2, some preliminaries are briefly
given. Some sufficient conditions to ensure NQVNNs synchronization are obtained in Section 3. In
Section 4, two examples are supplied to substantiate the validity of the obtained results. In last section,
conclusion is given.

2. Preliminarise

2.1. Quaternion Algebra

A quaternion can be written in the form x = xr + xii + x j j + xkk∈ Q, where xr, xi, x j, xk∈ R are real,
i, j, k are imaginary unites and obey the following rules:

i j = − ji = k
jk = −k j = i
ki = −ik = j
i2 = k2 = j2 = i jk = −1

From the rules it follows immediately that the quaternion multiplication is not commutative.
For a quaternion x = xr+xii+x j j+xkk∈ Q, then the conjugate of x is defined as x̄ = xr−xii−x j j−xkk,

and the modulus of x is defined as:

|x| =
√

xx̄ =
√

(xr)2 + (xi)2 + (x j)2 + (xk)2.

For another quaternion y = yr + yii + y j j + ykk, the multiplication of x and y is defined as:

xy = yx = (xryr − xiyi − x jy j − xkyk)
+(xryi + xiyr + x jyk − xky j)i
+(xry j + x jyr − xiyk + xkyi) j
+(xryk + xkyr + xiy j − x jyi)k

Furthermore, for b = (b1, b2, · · · , bn)T∈ Qn, the vector formed by the modulus of bi is denoted as |b|
and |b| = (|b1|, |b2|, · · · , |bn|)T∈ Rn. The norm of b is defined as ‖ b ‖=

√∑n
i=1 |bi|

2. The notation AT

and A∗ stand for the transpose and the conjugate transpose of the matrix A, respectively. In addition,
the notation A > B(A ≥ B) means that A − B is positive definite (positive semidefinite). For a positive
definite Hermitian matrix C∈ Qn×n, λmax(C) and λmin(C) are defined as the largest and the smallest
eigenvalues of C, respectively.

2.2. Model formulation and basic lemmas

The following NQVNNs model with mixed time delays is considered in this article:

ẋ(t) = − Dx(t) + A f (x(t)) + B f (x(t − τ1)) + Hẋ(t − δ) + C
∫ t

t−τ2(t)
f (x(s))ds + J, t ≥ 0. (2.1)
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where x(t) = (x1(t), x2(t), · · · , xn(t))T∈ Qn is the state vector of the NQVNNs with n neurons at time t.
f (x(t)) = ( f1(x1(t)), f2(x2(t)), · · · , fn(xn(t)))T∈ Qn is the quaternion-valued activation function without
time delays. D = diag{d1, d2, · · · , dn}∈ Rn×n with di > 0, i = 1, 2, · · · , n is the self-feedback connection
weight matrix. A = (ai j)n×n∈ Qn×n, B = (bi j)n×n∈ Qn×n,C = (ci j)n×n∈ Qn×n,H = (hi j)n×n∈ Qn×n are the
connection weight matrices, J = [J1 J2 · · · Jn]T∈ Qn is the external input vector; τ1, δ, and τ2(t)
denotes the discrete delay, neutral delay and distributed time-varying delay respectively. Suppose there
exist a positive constant τ2, let 0 ≤ τ2(t) ≤ τ2.

The initial value of the NQVNNs (2.1) is:

x(s) = ϕ(s), s∈ [−τ, 0].

where ϕ(s) is bounded and continuous in [−τ, 0], τ = max{τ1, δ, τ2}. ϕ(s) = (ϕ1(s), ϕ2(s), · · · , ϕn(s))T

∈ Qn, The norm of ϕ(s) is defined as

‖ ϕ(s) ‖= sup
s∈[−τ,0]

√∑n
i=1 |ϕi(t)|2.

Consider system (2.1) as the drive system, then choose the response system as below:

ẏ(t) = − Dy(t) + A f (y(t)) + B f (y(t − τ1)) + Hẏ(t − δ) + C
∫ t

t−τ2(t)
f (y(s))ds + J + µ(t), t ≥ 0. (2.2)

Choose the initial state of system (2.2) as y(s) = ψ(s), s ∈ [−τ, 0], µ(t) is the appropriate controller
to be designed. Then let m(t) = (m1(t),m2(t), · · · ,mn(t)) be the synchronization error, where m(t) =

x(t)−y(t), g(m(t)) = f (x(t))− f (y(t)). Now, the state feedback controller is designed as µ(t) = −K1m(t),
where K1∈ Qn×n is control gain matrix. Thus, the following error system is achieved:

ṁ(t) =(K1 − D)m(t) + Ag(m(t)) + Bg(m(t − τ1)) + Hṁ(t − δ) + C
∫ t

t−τ2(t)
g(m(s))ds, t ≥ 0. (2.3)

with initial condition m(s) = φ(s) = ϕ(s) − ψ(s), s ∈ [−τ, 0].
Throughout this paper, we assume that the activation functions satisfy the following condition.

Assumption 1. For i = 1, 2, · · · , n, the neuron activation function fi is continuous and satisfies

| fi(α1) − fi(α2)| ≤ γi|α1 − α2|, ∀α1, α2∈ Q.

where γi is a real constant. Moreover, define Γ = diag{γ1, γ2, · · · , γn}.
Definition 1. The NQVNNs defined by (2.3) are globally stable if there exists a scalar M > 0 for any
solution of system (2.3) satisfies

‖ m(t) ‖≤ M sup
s∈[−τ,0]

‖ ϕ(s) − ψ(s) ‖ .

Definition 2. The drive system (2.1) and the response system (2.2) are global synchronous if the error
system (2.3) is globally stable.
Definition 3. The drive system (2.1) and the response system (2.2) are said to be synchronization in
finite time if there exists T > 0 such that

lim
t→T

m(t) = 0, m(t) = 0, ∀t > T.

Lemma 1. [38] For any positive definite constant Hermitian matrix W∈ Qn×n,W > 0 and any scalar
function ω : [a, b]→ Qn with scalars a < b such that the integrations concerned are well defined,
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(
∫ b

a
ω(s)ds)∗W(

∫ b

a
ω(s)ds) ≤ (b − a)

∫ b

a
ω∗(s)Wω(s)ds.

Lemma 2. For any a, b∈ Qn, if P∈ Qn×n is a positive definite Hermitian matrix, then

a∗b + b∗a ≤ a∗Pa + b∗P−1b.

Lemma 3. Assume that a continuous, positive definite function V(t) satisfies the following differential
inequality:

V̇(t) ≤ −λVα(t),∀t ≥ t0,V(t0) ≥ 0,

where λ > 0, 0 < α < 1 are all constants. Then, for any given t0, V(t) satisfies the following inequality:

V1−α(t) ≤ V1−α(t0) − λ(1 − α)(t − t0), t0 ≤ t ≤ T,

and V(t) ≡ 0,∀t ≥ T , with T given by

T = t0 +
V1−α(t0)
λ(1 − α)

.

3. Main results

Theorem 1. Under Assumptions 1, NQVNNs (2.1) and NQVNNs (2.2) are global synchronous, if
there exist four positive definite Hermitian matrices P1, P2, P3, P4∈ Qn×n, and a positive diagonal matrix
Q∈ Rn×n, and three commutative quaternion matrices S 1, S 2, S 3, such that the following LMI holds:

Ω11 Ω12 Ω13 S 1A S 1B S 1C
∗ Ω22 Ω23 S 2A S 2B S 2C
∗ ∗ Ω33 S 3A S 3B S 3C
∗ ∗ ∗ P2 + τ2P4 − Q 0 0
∗ ∗ ∗ ∗ −P2 0
∗ ∗ ∗ ∗ ∗ −P4


< 0 (3.1)

where

Ω11 = U∗1 + U1 + ΓQΓ − D∗S ∗1 − S 1D,
Ω12 = P1 + U∗2 − D∗S ∗2 − S 1,

Ω13 = U∗3 − D∗S ∗3 + S 1H,
Ω22 = P3 − S 2 − S ∗2,Ω23 = −S ∗3 + S 2H,
Ω33 = −P3 + H∗S ∗3 + S 3H.

Proof. Choose the Lyapunov–Krasovskii functional as following

V(t) = V1(t) + V2(t) + V3(t) + V4(t), (3.2)

where

V1(t) = m∗(t)P1m(t),
V2(t) =

∫ t

t−τ1
g∗(m(s))P2g(m(s))ds,

V3(t) =
∫ t

t−δ
ṁ∗(s)P3ṁ(s)ds,

V4(t) = τ2

∫ 0

−τ2

∫ t

t+s
g∗(m(θ))P4g(m(θ))dθds.
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Calculating the derivative of V1(t) along trajectory of (2.3) and by using Lemma 1, we have

V̇1(t) = ṁ∗(t)P1m(t) + m∗(t)P1ṁ(t) (3.3)

V̇2(t) = g∗(m(t))P2g(m(t)) − g∗(m(t − τ1))P2g(m(t − τ1)) (3.4)

V̇3(t) = ṁ∗(t)P3ṁ(t) − ṁ∗(t − δ)P3ṁ(t − δ) (3.5)

V̇4(t) =τ2

∫ 0

−τ2

[g∗(m(t))P4g(m(t)) − g∗(m(t + s))P4g(m(t + s))]ds

=τ2
2g∗(m(t))P4g(m(t)) − τ2

∫ 0

−τ2

[g∗(m(t + s))P4g(m(t + s))]ds

=τ2
2g∗(m(t))P4g(m(t)) − τ2

∫ t

t−τ2

g∗(m(s))P4g(m(s))ds

≤τ2g∗(m(t))P4g(m(t)) − τ2(t)
∫ t

t−τ2(t)
g∗(m(s))P4g(m(s))ds

≤g∗(m(t))(τ2P4)g(m(t)) + (
∫ t

t−τ2(t)
g(m(s))ds)∗(−P4)(

∫ t

t−τ2(t)
g(m(s))ds)

(3.6)

combining with (3.3), (3.4), (3.5), and (3.6), thus, we can infer that

V̇(t) ≤ṁ∗(t)P1m(t) + m∗(t)P1ṁ(t) + ṁ∗(t)P3ṁ(t) + g∗(m(t))(P2 + τ2P4)g(m(t))
− g∗(m(t − τ1))(P2)g(m(t − τ1)) − ṁ∗(t − δ)P3ṁ(t − δ)

+ (
∫ t

t−τ2(t)
g(m(s))ds)∗(−P4)(

∫ t

t−τ2(t)
g(m(s))ds)

(3.7)

under Assumption 1, we get that

0 ≤ m∗(t)ΓQΓm(t) − g∗(m(t))Qg(m(t)) (3.8)

From system (2.3), it is obvious that

0 = E∗[S ∗1m(t) + S ∗2ṁ(t) + S ∗3ṁ(t − δ)] + [S ∗1m(t) + S ∗2ṁ(t) + S ∗3ṁ(t − δ)]∗E (3.9)

where

E = −ṁ(t) + (K1 − D)m(t) + Ag(m(t)) + Bg(m(t − τ1)) + Hṁ(t − δ) + C
∫ t

t−τ2(t)
g(m(s))ds

we can obtain

0 =ṁ∗(t)(−S ∗1)m(t) + ṁ∗(t)(−S ∗2)ṁ(t) + ṁ∗(t)(−S ∗3)ṁ(t − δ) + m∗(t)((K1 − D)∗S ∗1)m(t)
+ m∗(t)((K1 − D)∗S ∗2)ṁ(t) + m∗(t)((K1 − D)∗S ∗3)ṁ(t − δ) + g∗(m(t))(A∗S ∗1)m(t)
+ g∗(m(t))(A∗S ∗2)ṁ(t) + g∗(m(t))(A∗S ∗3)ṁ(t − δ) + g∗(m(t − τ1))(B∗S ∗1)m(t)
+ g∗(m(t − τ1))(B∗S ∗2)ṁ(t) + g∗(m(t − τ1))(B∗S ∗3)ṁ(t − δ) + ṁ∗(t − δ)(H∗S ∗1)m(t)

+ ṁ∗(t − δ)(H∗S ∗2)ṁ(t) + ṁ∗(t − δ)(H∗S ∗3)ṁ(t − δ) +

∫ t

t−τ2(t)
g∗(m(s))ds(C∗S ∗1)m(t)
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+

∫ t

t−τ2(t)
g∗(m(s))ds(C∗S ∗2)ṁ(t) +

∫ t

t−τ2(t)
g∗(m(s))ds(C∗S ∗3)ṁ(t − δ)

+ m∗(t)(−S 1)ṁ(t) + m∗(t)(S 1(K1 − D))m(t) + m∗(t)(S 1A)g(m(t))

+ m∗(t)(S 1B)g(m(t − τ1)) + m∗(t)(S 1H)ṁ(t − δ) + m∗(t)(S 1C)
∫ t

t−τ2(t)
g(m(s))ds

+ ṁ∗(t)(−S 2)ṁ(t) + ṁ∗(t)(S 2(K1 − D))m(t) + ṁ∗(t)(S 2A)g(m(t))

+ ṁ∗(t)(S 2B)g(m(t − τ1)) + ṁ∗(t)(S 2H)ṁ(t − δ) + ṁ∗(t)(S 2C)
∫ t

t−τ2(t)
g(m(s))ds

+ ṁ∗(t − δ)(−S 3)ṁ(t) + ṁ∗(t − δ)(S 3(K1 − D))m(t) + ṁ∗(t − δ)(S 3A)g(m(t))

+ ṁ∗(t − δ)(S 3B)g(m(t − τ1)) + ṁ∗(t − δ)(S 3H)ṁ(t − δ) + ṁ∗(t − δ)(S 3C)
∫ t

t−τ2(t)
g(m(s))ds

=ṁ∗(t)(−S ∗1 + S 2(K1 − D))m(t) + ṁ∗(t)(−S ∗2 − S 2)ṁ(t) + ṁ∗(t)(−S ∗3 + S 2H)ṁ(t − δ)

+ ṁ∗(t)(S 2A)g(m(t)) + ṁ∗(t)(S 2B)g(m(t − τ1)) + ṁ∗(t)(S 2C)
∫ t

t−τ2(t)
g(m(s))ds

+ m∗(t)((K1 − D)∗S ∗1 + S 1(K1 − D))m(t) + m∗(t)((K1 − D)∗S ∗2 − S 1)ṁ(t)
+ m∗(t)((K1 − D)∗S ∗3 + S 1H)ṁ(t − δ) + m∗(t)(S 1A)g(m(t))

+ m∗(t)(S 1B)g(m(t − τ1)) + m∗(t)(S 1C)
∫ t

t−τ2(t)
g(m(s))ds + g∗(m(t))(A∗S ∗1)m(t)

+ g∗(m(t))(A∗S ∗2)ṁ(t) + g∗(m(t))(A∗S ∗3)ṁ(t − δ) + g∗(m(t − τ1))(B∗S ∗1)m(t)
+ g∗(m(t − τ1))(B∗S ∗2)ṁ(t) + g∗(m(t − τ1))(B∗S ∗3)ṁ(t − δ)
+ ṁ∗(t − δ)(H∗S ∗1 + S 3(K1 − D))m(t) + ṁ∗(t − δ)(H∗S ∗2 − S 3)ṁ(t)

+ ṁ∗(t − δ)(H∗S ∗3 + S 3H)ṁ(t − δ) +

∫ t

t−τ2(t)
g∗(m(s))ds(C∗S ∗1)m(t)

+

∫ t

t−τ2(t)
g∗(m(s))ds(C∗S ∗2)ṁ(t) +

∫ t

t−τ2(t)
g∗(m(s))ds(C∗S ∗3)ṁ(t − δ)

+ ṁ∗(t − δ)(S 3A)g(m(t)) + ṁ∗(t − δ)(S 3B)g(m(t − τ1))

+ ṁ∗(t − δ)(S 3C)
∫ t

t−τ2(t)
g(m(s))ds (3.10)

It flows from equalities or inequalities (3.7), (3.8) and (3.10) that

V̇(t) ≤ G∗(t)ΩG(t), (3.11)

where

G(t) = [m(t) ṁ(t) ṁ∗(t − δ) g(m(t)) g(m(t − τ1))
∫ t

t−τ2(t)
g(m(s))ds]T

AIMS Mathematics Volume 6, Issue 8, 8044–8063.



8051

Ω =



Ω11 Ω12 Ω13 S 1A S 1B S 1C
∗ Ω22 Ω23 S 2A S 2B S 2C
∗ ∗ Ω33 S 3A S 3B S 3C
∗ ∗ ∗ P2 + τ2P4 − Q 0 0
∗ ∗ ∗ ∗ −P2 0
∗ ∗ ∗ ∗ ∗ −P4


let U1 = S 1K1,U2 = S 2K1,U3 = S 3K1,

Ω11 = U∗1 + U1 + ΓQΓ − D∗S ∗1 − S 1D,
Ω12 = P1 + U∗2 − D∗S ∗2 − S 1,

Ω13 = U∗3 − D∗S ∗3 + S 1H,
Ω22 = P3 − S 2 − S ∗2,Ω23 = −S ∗3 + S 2H,
Ω33 = −P3 + H∗S ∗3 + S 3H.

thus, we get from (3.1) and (3.11) that
V̇(t) ≤ 0, t ≥ 0. (3.12)

From (3.12), we know that

V(t) ≤ V(0) =m∗(0)P1m(0) +

∫ 0

−τ1

g∗(m(s))P2g(m(s))ds +

∫ 0

−δ

ṁ∗(s)P3ṁ(s)ds

+ τ

∫ 0

−τ

∫ 0

s
g∗(m(θ))P4g(m(θ))ds

≤(‖ P1 ‖ +τ1 ‖ P2 ‖ max
1≤i≤n
{γ2

i } + δ ‖ P3 ‖ +τ3 ‖ P4 ‖ max
1≤i≤n
{γ2

i })( sup
s∈[−τ,0]

‖ φ(s) ‖)2

≤M1( sup
s∈[−τ,0]

‖ φ(s) ‖)2,

where

M1 =‖ P1 ‖ +τ1 ‖ P2 ‖ max
1≤i≤n
{γ2

i } + δ ‖ P3 ‖ +τ3 ‖ P4 ‖ max
1≤i≤n
{γ2

i },

Obviously,

V(t) ≥ V1(t) ≥ λmax(P1) ‖ m(t) ‖2,

we get that

‖ m(t) ‖≤
√

V(t)
λmax(P1) =

√
M1

λmax(P1) sup
s∈[−τ,0]

‖ φ(s) ‖, t ≥ 0

thus

‖ m(t) ‖≤ M sup
s∈[−τ,0]

‖ φ(s) ‖, t ≥ 0

where

M =
√

M1
λmax(P1) .
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Therefore, by Definition 1 and Definition 2, the NQVNNs (2.3) is globally stable and the drive
system (2.1) and the response system (2.2) are global synchronous.
Theorem 2. Suppose Assumption 1 holds, then the drive-response systems (2.1) and (2.2) can reach
finite-time synchronization under the controller

µ(t) =K2m(t) + λsign(m(t))|m(t)|α + λ(
∫ t

t−τ1

m∗(s)Im(s)ds)
1+α

2 (
m(t)
‖ m(t) ‖2

)

+ λ(
∫ t

t−δ
ṁ∗(s)Iṁ(s)ds)

1+α
2 (

m(t)
‖ m(t) ‖2

)

+ λ(τ2

∫ 0

−τ2

∫ t

t+s
g∗(m(θ))Ig(m(θ))dθds)

1+α
2 (

m(t)
‖ m(t) ‖2

).

(3.13)

where λ > 0, 0 < α < 1. Thus, the following error system is achieved:

ṁ(t) = − Dm(t) + Ag(m(t)) + Bg(m(t − τ1)) + Hṁ(t − δ) + C
∫ t

t−τ2(t)
g(m(s))ds

− K2m(t) − λsign(m(t))|m(t)|α − λ(
∫ t

t−τ1

m∗(s)Im(s)ds)
1+α

2 (
m(t)
‖ m(t) ‖2

)

− λ(
∫ t

t−δ
ṁ∗(s)Iṁ(s)ds)

1+α
2 (

m(t)
‖ m(t) ‖2

)

− λ(τ2

∫ 0

−τ2

∫ t

t+s
g∗(m(θ))Ig(m(θ))dθds)

1+α
2 (

m(t)
‖ m(t) ‖2

).

(3.14)

If there exist four positive definite Hermitian matrices R1,R2,R3,

R4∈ Qn×n, such that the following conditions holds:

(i) −2D − K∗2 − K2 + 2I + AR1A∗ + Γ1(τ2R−1
1 )Γ1 + BR2B∗ + HR3H∗ + CR4C∗ ≤ 0;

(ii) Γ2(τ2R−1
2 )Γ2 − I ≤ 0;

(iii) R−1
3 − I ≤ 0;

(iv) R−1
4 − I ≤ 0.

Then, the synchronization error system m(t) is globally finite-time stability, and the synchronization
between system (2.1) and system (2.2) can be obtained in a finite time, and the finite time is estimated
by

T = t0 +
V1− 1+α

2 (t0)
λ(1 − 1+α

2 )
.

Proof. Consider the following Lyapunov functional:

V(t) = V1(t) + V2(t) + V3(t) + V4(t), (3.15)

where
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V1(t) = m∗(t)Im(t),
V2(t) =

∫ t

t−τ1
m∗(s)Im(s)ds,

V3(t) =
∫ 0

t−δ
ṁ∗(s)Iṁ(s)ds,

V4(t) = τ2

∫ 0

−τ2

∫ t

t+s
g∗(m(θ))Ig(m(θ))dθds.

Calculating the derivative of V1(t) along trajectory of (3.14) and by using Lemma 1, we have

V̇1(t) = ṁ∗(t)Im(t) + m∗(t)Iṁ(t) (3.16)

V̇2(t) = m∗(t)Im(t) − m∗(t − τ1)Im(t − τ1) (3.17)

V̇3(t) = ṁ∗(0)Iṁ(0) − ṁ∗(t − δ)Iṁ(t − δ) (3.18)

V̇4(t) =τ2

∫ 0

−τ2

[g∗(m(t))Ig(m(t)) − g∗(m(t + s))Ig(m(t + s))]ds

=τ2
2g∗(m(t))Ig(m(t)) − τ2

∫ 0

−τ2

[g∗(m(t + s))Ig(m(t + s))]ds

=τ2
2g∗(m(t))Ig(m(t)) − τ2

∫ t

t−τ2

g∗(m(s))Ig(m(s))ds

≤τ2g∗(m(t))Ig(m(t)) − τ2(t)
∫ t

t−τ2(t)
g∗(m(s))Ig(m(s))ds

≤g∗(m(t))(τ2I)g(m(t)) + (
∫ t

t−τ2(t)
g(m(s))ds)∗(−I)(

∫ t

t−τ2(t)
g(m(s))ds)

(3.19)

combining with (3.16)—(3.19), thus, we can infer that

V̇(t) ≤ṁ∗(t)Im(t) + m∗(t)Iṁ(t) + m∗(t)Im(t) − m∗(t − τ1)Im(t − τ1)
+ ṁ∗(0)Iṁ(0) − ṁ∗(t − δ)Iṁ(t − δ) + g∗(m(t))(τ2I)g(m(t))

+ (
∫ t

t−τ2(t)
g(m(s))ds)∗(−I)(

∫ t

t−τ2(t)
g(m(s))ds)

(3.20)

From system (3.14), it is obvious that

V̇(t) ≤m∗(t)(−D)m(t) + g∗(m(t))A∗m(t) + g∗(m(t − τ1))B∗m(t) + ṁ∗(t − δ)H∗m(t)

+ (
∫ t

t−τ2(t)
g∗(m(s))ds)C∗m(t) + m∗(t)(−K∗2)m(t) − λ[sign(m(t))|m(t)|α]∗m(t)

− λ(
∫ t

t−τ1

m∗(s)Im(s)ds)
1+α

2 (
m∗(t)m(t)
‖ m(t) ‖2

) − λ(
∫ t

t−δ
ṁ∗(s)Iṁ(s)ds)

1+α
2 (

m∗(t)m(t)
‖ m(t) ‖2

)

− λ(τ2

∫ 0

−τ2

∫ t

t+s
g∗(m(θ))Ig(m(θ))dθds)

1+α
2 (

m∗(t)m(t)
‖ m(t) ‖2

) + m∗(t)(−D)m(t)

+ m∗(t)Ag(m(t)) + m∗(t)Bg(m(t − τ1)) + m∗(t)Hṁ(t − δ)

+ m∗(t)C(
∫ t

t−τ2(t)
g(m(s))ds) + m∗(t)(−K2)m(t) − λm∗(t)[sign(m(t))|m(t)|α]
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− λ(
∫ t

t−τ1

m∗(s)Im(s)ds)
1+α

2 (
m∗(t)m(t)
‖ m(t) ‖2

) − λ(
∫ t

t−δ
ṁ∗(s)Iṁ(s)ds)

1+α
2 (

m∗(t)m(t)
‖ m(t) ‖2

)

− λ(τ2

∫ 0

−τ2

∫ t

t+s
g∗(m(θ))Ig(m(θ))dθds)

1+α
2 (

m∗(t)m(t)
‖ m(t) ‖2

)

+ ṁ∗(0)Iṁ(0) − ṁ∗(t − δ)Iṁ(t − δ) + g∗(m(t))(τ2I)g(m(t))

+ (
∫ t

t−τ2(t)
g(m(s))ds)∗(−I)(

∫ t

t−τ2(t)
g(m(s))ds) (3.21)

From Assumption 1 and lemma 2, we know that

g∗(m(t))A∗m(t) + m∗(t)Ag(m(t)) ≤m∗(t)AR1A∗m(t) + g∗(m(t))R−1
1 g(m(t))

≤m∗(t)AR1A∗m(t) + m∗(t)Γ1R−1
1 Γ1m(t)

(3.22)

g∗(m(t − τ1))B∗m(t) + m∗(t)Bg(m(t − τ1)) ≤m∗(t)BR2B∗m(t) + g∗(m(t − τ1))R−1
2 g(m(t − τ1))

≤m∗(t)BR2B∗m(t) + m∗(t − τ1)Γ2R−1
2 Γ2m(t − τ1)

(3.23)

ṁ∗(t − δ)H∗m(t) + m∗(t)Hṁ(t − δ) ≤ m∗(t)HR3H∗m(t) + ṁ∗(t − δ)R−1
3 ṁ(t − δ) (3.24)

Also, we are able to get the following inequality:

−λ[sign(m(t))|m(t)|α]∗m(t) − λm∗(t)[sign(m(t))|m(t)|α] ≤ − 2λ|m(t)|∗|m(t)|α

≤ − 2λ|m∗(t)m(t)|
1+α

2
(3.25)

apply (3.22)—(3.25) to (3.21), thus, we can infer that

V̇(t) ≤m∗(t)[−2D − K∗2 − K2 + 2I + AR1A∗ + Γ1(τ2R−1
1 )Γ1 + BR2B∗

+ HR3H∗ + CR4C∗]m(t) + m∗(t − τ1)[Γ2(τ2R−1
2 )Γ2 − I]m(t − τ1)

+ ṁ∗(t − δ)[R−1
3 − I]ṁ(t − δ) +

∫ t

t−τ2(t)
g∗(m(s))ds[R−1

4 − I]
∫ t

t−τ2(t)
g(m(s))ds

− 2λ|m∗(t)m(t)|
1+α

2 − 2λ(
∫ t

t−τ1

m∗(s)Im(s)ds)
1+α

2 − 2λ(
∫ t

t−δ
ṁ∗(s)Iṁ(s)ds)

1+α
2

− 2λ(τ2

∫ 0

−τ2

∫ t

t+s
g∗(m(θ))Ig(m(θ))dθds)

1+α
2 (3.26)

according to the conditions (i)—(iv) of Theorem 2, we can get

V̇(t) ≤ − 2λ|m∗(t)Im(t)|
1+α

2 − 2λ(
∫ t

t−τ1

m∗(s)Im(s)ds)
1+α

2 − 2λ(
∫ t

t−δ
ṁ∗(s)Iṁ(s)ds)

1+α
2

− 2λ(τ2

∫ 0

−τ2

∫ t

t+s
g∗(m(θ))Ig(m(θ))dθds)

1+α
2

= − 2λV
1+α

2 (t) (3.27)

Therefore, we have

V1− 1+α
2 (t) ≤ V1− 1+α

2 (t0) − λ(
1 + α

2
)(t − t0), (3.28)

and V(t) = 0,∀t ≥ T with t1 given by
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T = t0 +
V1− 1+α

2 (t0)
λ(1 − 1+α

2 )
.

Therefore, the synchronization error system m(t) is globally finite-time stability, and the
synchronization between system (2.1) and system (2.2) can be obtained in a finite time, and the finite
time is estimated by

T = t0 +
V1− 1+α

2 (t0)
λ(1 − 1+α

2 )
.

Remark 1. In Refs. [31, 34, 36], the global synchronization or finite-time synchronization of several
quaternion-valued neural networks under the controller is studied respectively. Refs. [34, 36] do not
consider the effect of neutral delay on synchronization. Although Ref. [31] considered the above
factors, it did not consider the distributed time-varying delay. Therefore, in this sense, the models
studied in Refs. [31, 34, 36] are all special cases of this paper. The models studied in this paper are
general and more in line with the actual situation.
Remark 2. The synchronization method of drive-response is widely used in the study of neural
network synchronization. The sufficient conditions for system synchronization are obtained by
constructing a suitable Lyapunov functional. The difference between this paper and the existing
results is that most of the other literatures use linear controller to study the synchronization. In this
paper, a novel nonlinear feedback controller is constructed to research the finite-time synchronization
of the system, and good synchronization results are obtained, which provides more possibilities for
the study of such issues and is more in line with the actual situation.

4. Simulation example

In this section, the validity of the obtained outcomes is confirmed by two example.
Example 1. Consider the following two-neuron NQVNNs with mixed delays:

ṁ(t) =(K1 − D)m(t) + Ag(m(t)) + Bg(m(t − τ1)) + Hṁ(t − δ) + C
∫ t

t−τ2(t)
g(m(s))ds, t ≥ 0 (4.1)

The parameters are shown in Ref. [34], where

A =

[
a11 a12

a21 a22

]
, B =

[
b11 b12

b21 b22

]
, C =

[
c11 c12

c21 c22

]
,

H =

[
h11 h12

h21 h22

]
, D =

[
3.6910 0

0 1.2339

]
, J =

[
0
0

]
,

a11 = −1.2171 + 1.8709i − 0.4868 j + 0.7484k, a12 = 0.4057 + 0.8205i + 0.1623 j + 0.3282k,
a21 = −0.4057 + 1.8338i − 0.1623 j + 0.7335k, a22 = 1.6228 + 1.7873i + 0.6491 j + 0.7149k;
b11 = −0.0347 + 0.7057i − 0.0278 j + 0.5646k, b12 = 0.0695 + 0.0197i + 0.0556 j + 0.0158k,
b21 = 0.0232 + 1.6263i + 0.0185 j + 1.3011k, b22 = −0.0463 + 0.2778i − 0.0371 j + 0.2222k;
c11 = −0.2468 + 0.3794i − 0.0987 j + 0.1517k, c12 = 0.0823 + 0.1664i + 0.0329 j + 0.0666k,
c21 = −0.0823 + 0.3718i − 0.0329 j + 0.1487k, c22 = 0.3291 + 0.3624i + 0.1316 j + 0.1450k;
h11 = 0.89 + 0.13i − 0.84 j − 0.19k, h12 = −0.95 + 0.25i + 0.24 j − 0.21k,
h21 = −0.54 + 0.84i − 0.92 j − 0.61k, h22 = 0.13 − 0.25i − 0.35 j + 0.47k.
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Define g1(m(t)) = g2(m(t)) = 0.2tanh(m(t)),∀m(t)∈ Qn, δ = 0.2, τ1 = 0.2, τ2(t) = 0.1|sin(7t)|. The
following feasible solutions to the LMIs (3.1) in Theorem 1 are found in MATLAB:

P1 = 10−10

[
P11

1 P12
1

P21
1 P22

1

]
, P2 = 10−11

[
P11

2 P12
2

P21
2 P22

2

]
, P3 = 10−11

[
P11

3 P12
3

P21
3 P22

3

]
,

P4 = 10−11

[
P11

4 P12
4

P21
4 P22

4

]
, S 1 = 10−10

[
S 11

1 S 12
1

S 21
1 S 22

1

]
, S 2 = 10−11

[
S 11

2 S 12
2

S 21
2 S 22

2

]
,

S 3 = 10−11

[
S 11

3 S 12
3

S 21
3 S 22

3

]
, U1 = 10−10

[
U11

1 U12
1

U21
1 U22

1

]
, U2 = 10−10

[
U11

2 U12
2

U21
2 U22

2

]
,

U3 = 10−10

[
U11

3 U12
3

U21
3 U22

3

]
, Q1 = 10−8

[
0.2306 0

0 0.0838

]
.

P11
1 = 0.1362 + 0.0000i + 0.3300 j + 0.0000k, P12

1 = −0.0017 + 0.0113i − 0.0912 j + 0.0058k,
P21

1 = −0.0017 − 0.0113i − 0.0912 j − 0.0058k, , P22
1 = 0.0615 + 0.0000i + 0.0805 j + 0.0000k;

P11
2 = −0.6439 + 0.0000i − 0.8784 j + 0.0000k, P12

2 = −0.0993 + 0.0441i + 0.1171 j − 0.1908k,
P21

2 = −0.0993 − 0.0441i + 0.1171 j + 0.1908k, P22
2 = −0.1377 + 0.0000i − 0.5447 j + 0.0000k;

P11
3 = −0.7756 + 0.0000i + 0.7665 j + 0.0000k, P12

3 = −0.1074 + 0.0408i − 0.1548 j − 0.1418k,
P21

3 = −0.1074 − 0.0408i − 0.1548 j + 0.1418k, P22
3 = −0.7217 + 0.0000i + 0.9485 j + 0.0000k;

P11
4 = −0.2449 + 0.0000i + 25.960 j + 0.0000k, P12

4 = −0.0363 + 0.0521i + 0.5400 j − 5.4600k,
P21

4 = −0.0363 − 0.0521i + 0.5400 j + 5.4600k, P22
4 = −0.0581 + 0.0000i + 37.940 j + 0.0000k;

S 11
1 = −0.1632 + 0.0000i + 0.3570 j + 0.0000k, S 12

1 = 0.0170 − 0.0030i − 0.1397 j − 0.0297k,
S 21

1 = 0.0170 + 0.0030i − 0.1397 j + 0.0297k, S 22
1 = −0.0582 + 0.0000i + 0.0998 j + 0.0000k;

S 11
2 = 0.1047 + 0.0000i + 1.2660 j + 0.0000k, S 12

2 = −0.1236 − 0.1157i − 0.7080 j − 0.1350k,
S 21

2 = −0.1236 + 0.1157i − 0.7080 j + 0.1350k, S 22
2 = 0.1804 + 0.0000i + 0.4660 j + 0.0000k;

S 11
3 = −0.3870 + 0.0000i + 2.4170 j + 0.0000k, S 12

3 = −0.3367 + 0.0289i − 1.2250 j − 0.2970k,
S 21

3 = −0.3367 − 0.0289i − 1.2250 j + 0.2970k, S 22
3 = 0.0026 + 0.0000i + 0.8710 j + 0.0000k;

U11
1 = −0.0357 + 0.0000i + 0.2349 j + 0.0000k,U12

1 = −0.0221 + 0.0042i − 0.0678 j − 0.0032k,
U21

1 = −0.0221 − 0.0042i − 0.0678 j + 0.0032k,U22
1 = −0.1349 + 0.0000i − 0.0707 j + 0.0000k;

U11
2 = 0.1362 + 0.0000i + 0.3300 j + 0.0000k,U12

2 = −0.0017 + 0.0113i − 0.0912 j + 0.0058k,
U21

2 = −0.0017 − 0.0113i − 0.0912 j − 0.0058k,U22
2 = 0.0615 + 0.0000i + 0.0805 j + 0.0000k;

U11
3 = 0.2932 + 0.0000i + 1.1120 j + 0.0000k,U12

3 = 0.0025 + 0.0417i − 0.2810 j − 0.0320k,
U21

3 = 0.0025 − 0.0417i − 0.2810 j + 0.0320k,U22
3 = 0.1123 + 0.0000i + 0.2560 j + 0.0000k.

Therefore, the controller coefficient K1 can be obtained as follow:

K1 =

[
K11

1 K12
1

K21
1 K22

1

]
K11

1 = 0.6299 + 0.0360i − 0.2343 j + 0.0550k,K12
1 = 0.3615 + 0.0977i + 0.6895 j + 0.0726k,

K21
1 = 0.1970 + 0.0130i − 0.0988 j + 0.2064k,K22

1 = 0.8278 − 0.0360 j + 1.9143 j − 0.0550k.
So under Theorem 1, the NQVNNs (2.1) and the NQVNNs (2.2) are global synchronous.
The initial values of (4.1) are chosen as:
m1(t) = 1.6655 + 7.6979i + 6.4402 j − 0.5671k,
m2(t) = −2.9953 + 3.1760i + 1.8176 j + 0.4517k.
Figure 1 shows the synchronization errors m1(t),m2(t) between drive system (2.1) and response
system (2.2) without control input. For δ = 0.2, and τ1 = 0.2, Figure 2 shows the state trajectories of
mR

1 ,m
I
1,m

J
1,m

K
1 ,m

R
2 ,m

I
2,m

J
2,m

K
2 with control. When we choose δ = 0.7, and τ1 = 0.5, the state

AIMS Mathematics Volume 6, Issue 8, 8044–8063.



8057

trajectories of the errors m1(t), m2(t) is still synchronized with control in Figure 3.

t/s

0 2 4 6 8 10 12 14 16 18 20

m
1
(t

),
m

2
(t

)

-4

-2

0

2

4

6

8

m
1

R

m
2

R

m
1

I

m
2

I

m
1

J

m
2

J

m
1

K

m
2

K

Figure 1. For δ = 0.2 and τ1 = 0.2, the dynamical behavior of system (4.1) without control
in Example 1.
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Figure 2. For δ = 0.2 and τ1 = 0.2, the dynamical behavior of system (4.1) with control in
Example 1.
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Figure 3. For δ = 0.7 and τ1 = 0.5, the dynamical behavior of system (4.1) with control in
Example 1.

According to the simulation results, the drive system (2.1) and the response system (2.2) can
achieve global synchronization under the controller µ(t) = −K1m(t), and the system can still maintain
synchronization when the time lag is increased. Compared with Ref. [34], the conservativeness of the
results is reduced, thus verifying the validity of Theorem 1.

Example 2. Consider the following two-neuron NQVNNs with mixed delays:

ṁ(t) = − Dm(t) + Ag(m(t)) + Bg(m(t − τ1)) + Hṁ(t − δ) + C
∫ t

t−τ2(t)
g(m(s))ds

− K2m(t) − λsign(m(t))|m(t)|α − λ(
∫ t

t−τ1

m∗(s)Im(s)ds)
1+α

2 (
m(t)
‖ m(t) ‖2

)

− λ(
∫ t

t−δ
ṁ∗(s)Iṁ(s)ds)

1+α
2 (

m(t)
‖ m(t) ‖2

)

− λ(τ2

∫ 0

−τ2

∫ t

t+s
g∗(m(θ))Ig(m(θ))dθds)

1+α
2 (

m(t)
‖ m(t) ‖2

).

(4.2)

The required parameters are the same as in example 1. For numerical simulation, we select λ = 6, α =

0.9, δ = 0.2. After calculation,we obtain the T = 75, and plot the synchronization errors curve, as
shown in Figure 4. As the time t goes to infinity, the synchronization error system (4.2) is stable in
finite time. Hence, the drive system (2.1) and the response system (2.2) are synchronized in a finite time
interval [0, 75]. When δ = 1, the system (4.2) can still maintain synchronization within a finite time, as
shown in Figure 5. When a smaller value is taken for constant λ = 4, the finite time of synchronization
may become larger, as shown in Figure 6.
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Figure 4. For λ = 6,α = 0.9 and δ = 0.2, the dynamical behavior of system (4.2) in Example
2.
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Figure 5. For λ = 6,α = 0.9 and δ = 1, the dynamical behavior of system (4.2) in Example
2.
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Figure 6. For λ = 4 , α = 0.9 and δ = 0.2 , the dynamical behavior of system (4.2) in
Example 2.

5. Conclusions

The synchronization criteria for neutral-type quaternion-val-ued neural networks with mixed
delays is investigated in this paper. By making full use of the information of the time-delay state, a
linear feedback controller and a novel nonlinear feedback controller are constructed. Based on the
synchronization method of drive-response and establishing appropriate Lyapunov-Krasovskii
functional, the sufficient conditions for the global synchronization and finite-time synchronization of
NQVNNs are given in the form of algebra and LMIs. Finally, the validity of the obtained results are
confirmed by two examples. Due to the existence of the neutral term, the study of this kind of model
is more complicated and diffcult than the usual delayed QVNN model, and the results obtained have a
wider application range and more research value. Considering the advantages of NQVNNs in image
processing and associative memory, we will further study the application of NQVNNs in these
aspects.
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