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Abstract: Three edges e1, e2 and e3 in a graph G are consecutive if they form a cycle of length 3 or a
path in this order. A k-in jective edge coloring of a graph G is an edge coloring of G, (not necessarily
proper), such that if edges e1, e2, e3 are consecutive, then e1 and e3 receive distinct colors. The
minimum k for which G has a k-injective edge coloring is called the in jective edge coloring number,
denoted by χ′i(G). In this paper, we consider the injective edge coloring numbers of generalized
Petersen graphs P(n, 1) and P(n, 2). We determine the exact values of injective edge coloring numbers
for P(n, 1) with n ≥ 3, and for P(n, 2) with 4 ≤ n ≤ 7. For n ≥ 8, we show that 4 ≤ χ

′

i(P(n, 2)) ≤ 5.
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1. Introduction

Let G be a finite and simple graph. We use V(G), E(G) and ∆(G) to denote its vertex set, edge
set and maximum degree, respectively. A proper vertex (edge) coloring is a mapping from the
vertex (edge) set to a finite set of colors, such that adjacent vertices (edges) receive distinct colors.
A k-in jective coloring of a graph G is a mapping ψ : V(G) → {1, 2, . . . , k}, such that if two vertices
have a common neighbor, then they receive distinct colors. The in jective chromatic number of G,
denoted by χi(G), is the minimum k for which G has a k-injective coloring. The injective coloring of
graphs was originated from the Complexity Theory on Random Access Machines, which was proposed
by Hahn et al. [8] and applied to the theory of error correcting codes and the designing of computer
networks [2].

Similarly, Cardoso et al. [6] introduced the concept of injective edge coloring, motivated by a
Packet Radio Network problem. Three edges e1, e2 and e3 in a graph G are consecutive if they form
a cycle of length 3 or a path in this order. A k-in jective edge coloring of a graph G is a mapping
ψ : E(G) → {1, 2, . . . , k}, such that if e1, e2, e3 are consecutive, then ψ(e1) , ψ(e3). If there is a
k-injective edge coloring of G, then we say that G is k-in jective edge colored. The minimum k for
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which G has a k-injective edge coloring is called the in jective edge coloring number of G, denoted by
χ
′

i(G).
Cardoso et al. [6] showed that it is NP-complete to decide whether χ

′

i(G) = k. They determined the
injective edge coloring numbers for paths, cycles, complete bipartite graphs, and Petersen graph, and
they also gave bounds on some other classes of graphs.

Proposition 1.1 ([6]). Let Pn (Cn) be a path (cycle) of order n, Kp,q be a complete bipartite graph, and
P be the Petersen graph. Then

• χ
′

i(Pn) = 2, f or n ≥ 4.

• χ
′

i(Cn) =

{
2 i f n ≡ 0 (mod 4),
3 otherwise.

• χ
′

i(Kp,q) = min{p, q}.
• χ

′

i(P) = 5.

A graph G is an ω′ edge in jective colorable (per f ect EIC−) graph if χ
′

i(G) = ω′(G), where ω′(G)
is the number of edges in a maximum clique of G. In [11], Yue et al. constructed some perfect EIC-
graphs, and gave a sharp bound of the injective edge coloring number of a 2-connected graph with some
forbidden conditions. Bu and Qi [5] and Ferdjallah [7] studied the injective edge coloring of sparse
graphs in terms of the maximum average degree. Kostochka [9] studied the injective edge coloring in
terms of the maximum degree. Recently, in [3, 4], Bu et al. presented some results on the injective
edge coloring numbers of planar graphs. In this paper, we will consider the injective edge coloring of
generalized Petersen graphs.

For positive integers n and k, where n ≥ 3 and 1 ≤ k < n
2 , the generalized Petersen graph P(n, k) is

a graph with vertex set V = {u1, u2, . . . , un; v1, v2, . . . , vn} and edge set E = {uiui+1, uivi, vivi+k| i ∈
{1, 2, . . . , n}, the subscripts are taken modulo n}. We denote u1, u2, . . . , un as outer vertices and
v1, v2, . . . , vn as inner vertices. The edges uiui+1, vivi+k, and uivi are denoted as outer edges, inner
edges and leg edges, respectively, where i ∈ {1, 2, ..., n}. Generalized Petersen graphs are being
analyzed extensively because of their applications. There have been some results about the colorings
of generalized Petersen graphs, see in [1, 10, 12].

Here we consider the injective edge colorings of generalized Petersen graphs P(n, k) for k = 1 and
k = 2. We prove the following theorems:

Theorem 1.1. If n ≥ 6, then we have that

χ
′

i(P(n, 1)) =

{
3 i f n ≡ 0 (mod 6),
4 otherwise.

Moreover, χ
′

i(P(3, 1)) = 6, χ
′

i(P(4, 1)) = 4, χ
′

i(P(5, 1)) = 5.

Theorem 1.2. If n ≥ 8, then 4 ≤ χ
′

i(P(n, 2)) ≤ 5. Moreover, χ
′

i(P(4, 2)) = 4, χ
′

i(P(5, 2)) = χ
′

i(P(6, 2)) =

χ
′

i(P(7, 2)) = 5.

The paper is organized as follows. The exact values of the injective edge coloring numbers of
P(n, 1) are presented in Section 2. In Section 3, we estimate the injective edge coloring numbers of
P(n, 2).
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2. Injective edge coloring of P(n, 1)

In this section, we determine χ
′

i(P(n, 1)) for n ≥ 3. The graph P(n, 1) is shown in Figure 1. We
denote the cycle u1u2...un as outer cycle, and the cycle v1v2...vn as inner cycle. We say that an edge e1

sees an edge e2, if there is an edge e such that e1, e, e2 are consecutive. A labelling of P(n, 1) is a
mapping L from vertices of P(n, 1) to a set {1, 2, ..., k}.

u1
u2

u3

u4

u5

u6

u7

un

un−1

un−2

un−4

un−5

un−3

v1 v2

v3

v4

v5

v6

v7

vn

vn−1

vn−2

vn−3

vn−4
vn−5

Figure 1. The generalized Petersen graph P(n, 1).

We need a proposition posed by Cardoso et al. [6].

Proposition 2.1 ([6]). If H is a subgraph of a connected graph G, then χ
′

i(H) ≤ χ
′

i(G).

By this proposition, we have the following lemma.

Lemma 2.1. If n ≥ 3, then χ
′

i(P(n, 1)) ≥ 3.

Proof. Since the edges u1u2, u2u3, u3v3, v3v2, v2v1, v1u1 form a cycle of length 6, C6 is a subgraph of
P(n, 1). By Proposition 1.1 and Proposition 2.1, we have that χ

′

i(P(n, 1)) ≥ 3.
�

Lemma 2.2. For n ≥ 6, χ
′

i(P(n, 1)) = 3 if and only if n is a multiple of 6.

Proof. Suppose that P(n, 1) has an injective edge coloring ψ using only three colors 1, 2 and 3. Let
C = v1v2v3v4 · · · vn−1vnv1.

Claim 1: Every edge e on C must receive the same color as one of its adjacent edges on C.

Proof. Assume this is not the case. Then there exist three consecutive edges on C that receive distinct
colors. Assume without loss of generality that ψ(v1v2) = 1, ψ(v2v3) = 2, ψ(v3v4) = 3, then the edge
u2u3 cannot be colored. �

Since ψ is an injective edge coloring, no three consecutive edges can receive the same color.
Therefore, the edges of C can be divided into adjacent pairs and each pair receives the same color.
In particular, C must have even length.

Without loss of generality, we assume that ψ(v1v2) = 1, ψ(v2v3) = 1, ψ(v3v4) = 2, ψ(v4v5) = 2.

Claim 2: ψ(v5v6) = ψ(v6v7) = 3.
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Proof. Clearly ψ(v5v6) , 2. Assume that ψ(v5v6) = 1. Then by Claim 1, ψ(v6v7) = 1. It follows
that ψ(u5u6) = 3. Now the edge u3u4 can not be colored, a contradiction. Therefore, ψ(v5v6) = 3. By
Claim 1, ψ(v6v7) = 3. This completes the proof of Claim 2. �

By Claim 1 and 2, the edges of C are colored in the pattern 112233 · · · (up to renaming colors).
Therefore, the length of C is a multiple of 6.

On the other hand, if the length of C is a multiple of 6, then we give a 3-injective edge coloring of
P(n, 1) in the following way. We first label some of the vertices in P(n, 1) as follows: L(vi) = 1 for
i ∈ {1, 7, ..., n − 5}; L(vi) = 2 for i ∈ {3, 9, ..., n − 3}; L(vi) = 3 for i ∈ {5, 11, ..., n − 1}; L(ui) = 1 for
i ∈ {4, 10, ..., n − 2}; L(ui) = 2 for i ∈ {6, 12, ..., n}; L(ui) = 3 for i ∈ {2, 8, ..., n − 4}. If a vertex v is
labelled, then we color the edges incident with v by the color L(v). Since n is a multiple of 6, all the
edges are colored, and it is easy to check that this coloring is a 3-injective edge coloring of P(n, 1).
Therefore, we complete the proof of this lemma.

�

Now we show that if n > 6 and n is not a multiple of 6, then there is a 4-injective edge coloring of
P(n, 1).

Lemma 2.3. If n . 0 (mod 6) and n > 6, then χ
′

i(P(n, 1)) ≤ 4.

Proof. Clearly there are five cases depending on n (modulo 6). We will give the coloring in each case:
we first label some of the vertices of P(n, 1) with numbers in {1, 2, 3, 4}. Let φ be an edge coloring
such that if a vertex v is labelled by L(v), then we color the edges incident with v by the color L(v).
This edge coloring φ might not be injective edge coloring. If this is the case, then we adjust the colors
of some edges to obtain an injective edge coloring ψ.

Case 1. n = 6m + 1, m ∈ N. We label the vertices as follows:

• L(vi) = 1, L(u j) = 1, i ∈ {1, 7, 13, . . . , n − 6}, j ∈ {4, 10, 16, . . . , n − 3};
• L(vi) = 2, L(u j) = 2, i ∈ {5, 11, 17, . . . , n − 2}, j ∈ {2, 8, 14, . . . , n − 5};
• L(vi) = 3, L(u j) = 3, i ∈ {3, 9, 15, . . . , n − 4}, j ∈ {6, 12, 18, . . . , n − 1}.

Let φ be the edge coloring defined above. We can see that φ is not an injective edge coloring, so we
adjust the colors of some edges in the following way:

Set ψ(un−2un−1) = ψ(un−1vn−1) = ψ(un−1un) = 4, ψ(unu1) = ψ(u1v1) = ψ(u1u2) = 2,
ψ(vn−1vn) = ψ(unvn) = 3, ψ(v2u2) = ψ(u2u3) = 4. Let ψ(e) = φ(e) for all the other edges of
P(n, 1). It is easy to check that the coloring ψ is an injective edge coloring.

un−6 u5

v5

u4

v4

u3

v3

u2u1

v2v1vn

un

vn−1

un−1un−2

vn−2

un−3

vn−3vn−4

un−4un−5

vn−5vn−6

2 2 1 1 4 4 2 2 4 1 1

1 2 3 1 2 4 3 2 4 3 1 2

1 3 3 2 2 3 1 1 3 3 2

Figure 2. An injective edge coloring of P(n, 1) when n ≡ 1 (mod 6).

Case 2. n = 6m + 2, m ∈ N. We label the vertices as follows:
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• L(vi) = 1, L(u j) = 1, i ∈ {1, 7, 13, . . . , n − 7}, j ∈ {4, 10, 16, . . . , n − 4};
• L(vi) = 2, L(u j) = 2, i ∈ {5, 11, 17, . . . , n − 9}, j ∈ {2, 8, 14, . . . , n − 6};
• L(vi) = 3, L(u j) = 3, i ∈ {3, 9, 15, . . . , n − 5}, j ∈ {6, 12, 18, . . . , n − 8}.

Let φ be the coloring defined above. We define ψ in the following way: ψ(vn−4vn−3) = ψ(vn−3vn−2) =

ψ(un−3vn−3) = 4, ψ(un−3un−2) = ψ(un−2un−1) = ψ(un−2vn−2) = 2, ψ(vn−2vn−1) = ψ(vn−1vn) = ψ(un−1vn−1) =

3, ψ(un−1un) = ψ(unu1) = ψ(unvn) = 4, ψ(e) = φ(e) for all the other edges of P(n, 1). It is easy to check
that ψ is an injective edge coloring of P(n, 1).

un−6 un−5 un−4 un−3 un−2 un−1 un u1 u2 u3 u4 u5

vn−6 vn−5 vn−4 vn−3 vn−2 vn−1 vn v1 v2 v3 v4 v5

2 2

1 2 3

1 1 3 3

2

2

3

3

3

1 1

1

4

4

4

2 2

2 3

3 3

4

4 4 1

1

1

2

2

Figure 3. An injective edge coloring of P(n, 1) when n ≡ 2 (mod 6).

Case 3. n = 6m + 3, m ∈ N. We label the vertices as follows:

• L(vi) = 1, L(u j) = 1, i ∈ {1, 7, 13, . . . , n − 8}, j ∈ {4, 10, 16, . . . , n − 5};
• L(vi) = 2, L(u j) = 2, i ∈ {5, 11, 17, . . . , n − 4}, j ∈ {2, 8, 14, . . . , n − 7};
• L(vi) = 3, L(u j) = 3, i ∈ {3, 9, 15, . . . , n − 6}, j ∈ {6, 12, 18, . . . , n − 3}.

Let φ be the coloring defined above. We define ψ in the following way: ψ(vn−3vn−2) = ψ(un−2vn−2) =

1, ψ(un−2un−1) = ψ(un−1un) = 2, ψ(unvn) = ψ(unu1) = 3, ψ(vn−2vn−1) = ψ(vn−1un−1) = ψ(vn−1vn) = 4,
ψ(u1u2) = 4, ψ(e) = φ(e) for all the other edges of P(n, 1). It is easy to check that ψ is an injective edge
coloring of P(n, 1).

un−6

vn−6 vn−5

un−5 un−4

vn−4 vn−3

un−3 un−2

vn−2 vn−1

un−1 un

vn v1

u1 u2

v2 v3 v4 v5

u5u4u3

1 1 3 3 2 2 3 4 2 1 1

3 2 2 1 4 4 1 1 3 3 2

3 1 2 3 1 4 3 1 2 3 1 2

Figure 4. An injective edge coloring of P(n, 1) when n ≡ 3 (mod 6).

Case 4. n = 6m + 4, m ∈ N. We label the vertices as follows:

• L(vi) = 1, L(u j) = 1, i ∈ {1, 7, 13, . . . , n − 3}, j ∈ {4, 10, 16, . . . , n − 6};
• L(vi) = 2, L(u j) = 2, i ∈ {5, 11, 17, . . . , n − 5}, j ∈ {2, 8, 14, . . . , n − 2};
• L(vi) = 3, L(u j) = 3, i ∈ {3, 9, 15, . . . , n − 1}, j ∈ {6, 12, 18, . . . , n − 4}.

Let φ be the coloring defined above. We define ψ as follows: ψ(un−1un) = ψ(unvn) = ψ(unu1) = 4,
ψ(e) = φ(e) for all the other edges of P(n, 1). Then ψ is an injective edge coloring of P(n, 1).

AIMS Mathematics Volume 6, Issue 8, 7929–7943.



7934

un−6 un−5 un−4 un−3 un−2 un−1 un u1 u2 u3 u4 u5

v5v4v3v2v1vnvn−1vn−2vn−3vn−4vn−5vn−6

1 3 3 2 2 4 4 2 2 1 1

1 2 3 1 2 3 4 1 2 3 1 2

2 2 1 1 3 3 1 1 3 3 2

Figure 5. An injective edge coloring of P(n, 1) when n ≡ 4 (mod 6).

Case 5. n = 6m + 5, m ∈ N. We label the vertices as follows:

• L(vi) = 1, L(u j) = 1, i ∈ {1, 7, 13, . . . , n − 10}, j ∈ {4, 10, 16, . . . , n − 7};
• L(vi) = 2, L(u j) = 2, i ∈ {5, 11, 17, . . . , n − 6}, j ∈ {2, 8, 14, . . . , n − 9};
• L(vi) = 3, L(u j) = 3, i ∈ {3, 9, 15, . . . , n − 8}, j ∈ {6, 12, 18, . . . , n − 5};
• L(vn−4) = L(un) = 4, L(un−2) = 1.

Let φ be the coloring defined above. We define ψ in the following way: ψ(un−4un−3) = ψ(un−3vn−3) =

2, ψ(vn−3vn−2) = ψ(vn−2vn−1) = 3, ψ(vn−1vn) = ψ(vn−1un−1) = 2, ψ(e) = φ(e) for all the other edges of
P(n, 1). Then ψ is an injective edge coloring of P(n, 1).

un−6

vn−6 vn−5

un−5 un−4

vn−4 vn−3

un−3 un−2

vn−2 vn−1

un−1 un

vn

u1

v1 v2

u2 u3 u4 u5

v5v4v3

3 3 2 1 1 4 2 2 1 1

2 3 4 2 1 2 4 1 2 3 1 2

2 4 4 3 3 2 1 1 3 3 2

4

Figure 6. An injective edge coloring of P(n, 1) when n ≡ 5 (mod 6).

It follows from Cases 1-5 that χ
′

i(P(n, 1)) ≤ 4 for all n with n . 0 (mod 6) and n > 6. �

Next we determine χ
′

i(P(n, 1)) for 3 ≤ n ≤ 5.

Lemma 2.4. χ′i(P(3, 1)) = 6.

Proof. Since every pair of edges in {u1u2, u2u3, u3u1, v1v2, v2v3, v3v1} see each other, they should be
colored with different colors. This implies that χ

′

i(P(3, 1)) ≥ 6. On the other hand, P(3, 1) has a 6-
injective edge coloring as follows: ψ(u1v1) = ψ(u1u2) = 1; ψ(u2v2) = ψ(u2u3) = 2; ψ(u3v3) = ψ(u3u1) =

3; ψ(v1v2) = 4; ψ(v2v3) = 5;ψ(v3v1) = 6 . Therefore, χ
′

i(P(3, 1)) = 6.
�

Lemma 2.5. χ′i(P(4, 1)) = 4.

Proof. Since every pair of edges in {v1v2, u2u3, v3v4, u4u1} see each other, they must be colored with
different colors. So χ

′

i(P(4, 1)) ≥ 4. On the other hand, P(4, 1) has a 4-injective edge coloring as
follows: ψ(u1v1) = ψ(u1u2) = ψ(u1u4) = 1; ψ(v2u2) = ψ(v2v1) = ψ(v2v3) = 2; ψ(u3u2) = ψ(u3v3) =

ψ(u3u4) = 3; ψ(v4u4) = ψ(v4v3) = ψ(v4v1) = 4. Therefore, χ
′

i(P(4, 1)) = 4.
�

Lemma 2.6. χ′i(P(5, 1)) = 5.

Proof. By Lemma 2.1, we have that χ
′

i(P(5, 1)) ≥ 3. We claim that χ
′

i(P(5, 1)) ≥ 4, for otherwise we
would color the outer cycle with three colors. Then there exist three consecutive edges on the outer
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cycle that are colored differently. Without loss of generality, let ψ(u1u2) = 1, ψ(u2u3) = 2, ψ(u3u4) = 3,
then the edge v2v3 must be colored with a fourth color, and hence, χ

′

i(P(5, 1)) ≥ 4.
Next we show that χ

′

i(P(5, 1)) ≥ 5. We assume by contradiction that P(n, 1) has an injective edge
coloring using four colors.

If only three colors are used to color the edges of the outer cycle, then there are two pairs of adjacent
edges such that each pair is colored with one color and the remaining edge is colored with a third color.
Without loss of generality, let ψ(u1u2) = ψ(u2u3) = 1, ψ(u3u4) = 2, ψ(u4u5) = 2, ψ(u5u1) = 3, then we
must have that ψ(v5v1) = 4, ψ(v2v3) = 3, ψ(v3v4) = 3, ψ(u1v1) = 4, but now the edge u5v5 cannot be
colored.

If four colors are used to color the edges of the outer cycle, then there are two adjacent edges
colored with the same color, all other edges are colored differently. Without loss of generality, let
ψ(u1u2) = 1, ψ(u2u3) = 1, ψ(u3u4) = 2, ψ(u4u5) = 3, ψ(u5u1) = 4, then we get that ψ(v5v1) =

2, ψ(v3v4) = 4, ψ(u4v4) = 3, but now the edge u5v5 cannot be colored.
So an injective edge coloring of P(5, 1) requires at least five colors, that is, χ

′

i(P(5, 1)) ≥ 5. In
Figure 7, we give a 5-injective edge coloring of P(5, 1), therefore, χ

′

i(P(5, 1)) = 5.

u2

u1

u3u4

u5 v1

v2

v4

v5

2

1

1

1

3 2

2

2

5 3

3

31

4 4

v3

Figure 7. An injective edge coloring of generalized Petersen graph P(5, 1).

�

Combining Lemma 2.1 to Lemma 2.6, we obtain the exact values of injective edge coloring numbers
of P(n, 1) for n ≥ 3, which completes the proof of Theorem 1.1.

3. Injective edge coloring of P(n, 2)

In this section, we study the injective edge coloring number of P(n, 2). We first show that
χ
′

i(P(n, 2)) ≥ 4.

Lemma 3.1. If n ≥ 6, then χ
′

i(P(n, 2)) ≥ 4.

Proof. Suppose by contradiction that χ
′

i(P(n, 2)) = 3. Let ψ be a 3-injective edge coloring of P(n, 2).
We may assume that ψ(uivi) = 1. Then since every pair of edges in {uivi, ui−1vi−1, ui+1vi+1} see each
other, they must be colored differently. Without loss of generality, let ψ(ui−1vi−1) = 2, ψ(ui+1vi+1) = 3.
Then we have ψ(ui+2vi+2) = 2, ψ(ui+3vi+3) = 1, ψ(ui+4vi+4) = 3. Now note that ψ(ui+1ui+2) = 2 or 3.
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vi vi+2 vi+4

ui−1

ui

ui+1

ui+2

ui+3

ui+4

vi−1 vi+1 vi+3

Figure 8. Partial structure of generalized Petersen graph P(n, 2).

Case 1. ψ(ui+1ui+2) = 2: Since the edge vivi+2 sees the edges ui+1ui+2 and ui+4vi+4, ψ(vivi+2) = 1.
Similarly, ψ(uiui+1) = 3. But then since the edge vi−1vi+1 sees edges uiui+1, ui+1ui+2, ui+3vi+3, it must be
colored with a fourth color, a contradiction.

Case 2. ψ(ui+1ui+2) = 3: Since the edge vi+2vi+4 sees the edges ui+1ui+2 and uivi, vi+2vi+4

must be colored with 2. Similarly, ψ(ui+2ui+3) = 1. Now since the edge vi+1vi+3 sees edges
ui−1vi−1, ui+1ui+2, ui+2ui+3, it must be colored with a fourth color, a contradiction.

Therefore, at least four colors are required in an injective edge coloring of P(n, 2).
�

Next we find a 5-injective edge coloring of P(n, 2) where n ≥ 8. There are two cases depending on
whether n is even or odd.

Lemma 3.2. If n ≥ 8 and n is even, then χ
′

i(P(n, 2)) ≤ 5.

Proof. Let n = 2q. The inner vertices of P(n, 2) induce two cycles, each of length q. We denote these
two cycles as C1 and C2, where C1 = v1v3 . . . v2q−1v1 and C2 = v2v4 . . . v2qv2. The graph P(2q, 2) is
shown in Figure 9.

v1

v3

v5

v7

v9

v2q−1

v2q−3

v2q−5

v2q−7

u1
u2

u3
u4

u5

u6

u7

u8

u9

u2q

u2q−1
u2q−2

u2q−3

u2q−4

u2q−5

u2q−6

u2q−7

v2v2q

v4v2q−2

v2q−4

v2q−6

v6

v8

Figure 9. The generalized Petersen graph P(2q, 2).

Case 1. 2q = 4m + 2, m ≥ 2 and m ∈ N.
We first label some of the vertices on the outer cycle as follows: L(ui) = 1 for i ∈ {1, 5, 9, . . . , 2q−5},

L(ui) = 2 for i ∈ {3, 7, 11, . . . , 2q − 3}, L(u2q−1) = 3. Then if a vertex is labelled, we color the three
edges incident with this vertex by its labelling. Now the uncolored edges are the edges on the cycles
C1 and C2, and the edges u2iv2i for 1 ≤ i ≤ q.

Subcase 1.1. q ≡ 1 (mod 4). For the edges on the cycle C1, let ψ(v3v5) = 3, the other edges
v5v7, v7v9, . . . , v1v3 are colored in the order 44554455. . .4455. For the edges on the cycle C2, let
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ψ(v2v4) = ψ(v4v6) = 3, the other edges v6v8, v8v10, . . . , v2qv2 are colored in the order 44554455. . .445.
Finally, let ψ(u2iv2i) = 3 for i ∈ {5, 7, 9, . . . , q − 2}, ψ(u2iv2i) = 4 for i ∈ {4, 8, . . . , q − 1}, ψ(u2iv2i) = 5
for i ∈ {6, 10, . . . , q − 3}, ψ(u2v2) = ψ(u6v6) = 5, ψ(u4v4) = 3, ψ(u2qv2q) = 2. It’s easy to check that the
coloring ψ is an injective edge coloring of P(2q, 2).

v2q−9 v2q−7 v2q−5 v2q−3 v2q−1 v1 v3 v5 v7 v9 v11

5443554455

1
u2q−8

1 2 2
u2q−6

1
u2q−4 u2q−2 u2q u2 u4 u6 u8 u10

u11u9u7u5u3u1u2q−1u2q−3u2q−5u2q−7u2q−9

v2q−8 v2q−6 v2q−4 v2q−2 v2q v2 v4 v6 v8 v10

2

1 1

2

2 2

3

3 3

1

1 1

2

2 2

1

1 1

2

2 2

1

1 1

2

2 2

4
3

5
5

5
3

4
4

4
2

5
5

3
3

3
5

4
4

4
3

5

5

5

v12

u12

Figure 10. An injective edge coloring of P(2q, 2) when q ≡ 1 (mod 4).

Subcase 1.2. q ≡ 3 (mod 4). Then q − 2 ≡ 1 (mod 4). For the edges on the cycle C1, let
ψ(v3v5) = ψ(v5v7) = 3, the other edges v7v9, v9v11, . . . , v1v3 are colored in the order 44554455. . .44554.
For the edges on the cycle C2, let ψ(v2v4) = ψ(v4v6) = 3, the other edges v6v8, v8v10, . . . , v2qv2 are
colored in the order 44554455. . .44554. Finally, let ψ(u2iv2i) = 3 for i ∈ {5, 7, 9, . . . , q−2}, ψ(u2iv2i) = 4
for i ∈ {4, 8, . . . , q − 3}, ψ(u2iv2i) = 5 for i ∈ {6, 10, . . . , q − 1}, ψ(u2v2) = 4, ψ(u4v4) = 3, ψ(u6v6) = 5,
ψ(u2qv2q) = 2. It’s easy to check that the coloring ψ is an injective edge coloring of P(2q, 2).

v2q−9 v2q−7 v2q−5 v2q−3 v2q−1 v1 v3 v5 v7 v9 v11

u10u8u6u4u2u2qu2q−2u2q−4u2q−6u2q−8

u2q−9 u2q−7 u2q−5 u2q−3 u2q−1 u1 u3 u5 u7 u9 u11

v10v8v6v4v2v2qv2q−2v2q−4v2q−6v2q−8

1

5 4 4 5 5 4 3 3 4 4

2

2 21

2 1 2 3 1 2 1 2 1

2 1 1 2 2 3 3 1 1 2 2 1 1 2 2 1 1

5
3 4 3 5 2 4 3 5 4 3

544 4 5 5 4 3 3 4

2

v12

u12

5

5

Figure 11. An injective edge coloring of P(2q, 2) when q ≡ 3 (mod 4).

Case 2. 2q = 4m, m ≥ 2 and m ∈ N.

In this case, the labelling of the vertices on the outer cycle are: L(ui) = 1 for i ∈ {1, 5, 9, 13, . . . , 2q−
3}, L(ui) = 2 for i ∈ {3, 7, 11, 15, . . . , 2q − 1}. Similar to Case 1, if a vertex is labelled, we color the
three edges incident with this vertex by its labelling. Now the uncolored edges are the edges on the
cycles C1 and C2, and the edges u2iv2i for 1 ≤ i ≤ q.

Subcase 2.1. q ≡ 2 (mod 4). For the edges on the cycle C1, let ψ(v1v3) = ψ(v3v5) = 3, the other edges
v5v7, v7v9, . . . , v2q−1v1 are colored in the order 44554455. . .4455. For the edges on the cycle C2, let
ψ(v2v4) = ψ(v4v6) = 3, the other edges v6v8, v8v10, . . . , v2qv2 are colored in the order 44554455. . .4455.
Finally, let ψ(u2iv2i) = 3 for i ∈ {5, 7, 9, . . . , q − 1}, ψ(u2iv2i) = 4 for i ∈ {4, 8, . . . , q − 2}, ψ(u2iv2i) = 5
for i ∈ {6, 10, . . . , q}, ψ(u2v2) = 4, ψ(u4v4) = 3, ψ(u6v6) = 5. It’s easy to check that the coloring ψ is an
injective edge coloring of P(2q, 2).
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Figure 12. An injective edge coloring of P(2q, 2) when q ≡ 2 (mod 4).

Subcase 2.2. q ≡ 0 (mod 4). We color the edges v1v3, v3v5, . . . , v2q−1v1 on the cycle C1 and the
edges v2v4, v4v6, . . . , v2qv2 on the cycle C2 both in the order 33443344· · · 3344. Then let ψ(u2iv2i) = 3
for i ∈ {2, 6, . . . , q − 2}, ψ(u2iv2i) = 4 for i ∈ {4, 8, . . . , q}, ψ(u2iv2i) = 5 for i ∈ {1, 3, 5, . . . , q − 1}. It’s
easy to check that the coloring ψ is an injective edge coloring of P(2q, 2).

v1 v3 v5 v7 v9 v11

u2q−7 u2q−5 u2q−3 u2q−1 u7 u9 u11u1 u5u3

v2q−8 v2q−6 v2q−4 v2q−2 v2 v4 v6 v8 v10

v2q−1v2q−3v2q−5v2q−9

u2q−8 u2q−6 u2q−4 u2q−2 u2q u2 u4 u6 u8 u10

1 2 1 2 1 2

1 1 2 2 1 1 2 2 1 1 2 2

5 4

v2q

v2q−7

3 4

3 4

u2q−9

3 4

2 1 1 2 2 1 1 2 2

2 1 2 1 2

4 3 3 4 4 3

4 4 3 3 4 4 3 4 3
4 5 3 5 4 5 3 5

u12

v12

4

3

Figure 13. An injective edge coloring of P(2q, 2) when q ≡ 0 (mod 4).

�

Lemma 3.3. If n ≥ 9 and n is odd, then χ
′

i(P(n, 2)) ≤ 5.

Proof. Since n is odd, the inner vertices of P(n, 2) induce a cycle of length n, denote the cycle as C,
where C = v1v3v5 · · · vn−2vnv2v4 · · · vn−1v1. It suffices to consider the following five cases.

Case 1. n = 5m, m ≥ 2:
Since n is odd, m is odd. We color the edges as follows:

• ψ(uivi) = 1 for i ∈ {1, 6, 11, . . . , n − 4}; ψ(uivi) = 2 for i ∈ {2, 7, 12, . . . , n − 3}; ψ(uivi) = 3 for
i ∈ {3, 8, 13, . . . , n−2}; ψ(uivi) = 4 for i ∈ {4, 9, 14, . . . , n−1}; ψ(uivi) = 5 for i ∈ {5, 10, 15, . . . , n}.
• ψ(ui−1ui) = ψ(uiui+1) = ψ(uivi) for i ∈ {3, 5, 7, 9, . . . , n − 2}; ψ(un−1un) = 2, ψ(unu1) = ψ(u1u2) = 1.
• ψ(vivi+2) = ψ(ui+1vi+1) for i ∈ {1, 3, 5, . . . , n − 2}; ψ(vivi+2) = ψ(ui+2vi+2) for i ∈ {2, 4, 6, . . . , n − 3};
ψ(vn−1v1) = 5, ψ(vnv2) = 5.

Now we obtain a 5-injective edge coloring of P(n, 2).

un−8 un−7 un−6 un−5 un−4 un−3 un−2 un−1 un u1 u2 u3 u4 u5 u6 u7

v7v6v5v4v3v2v1vnvn−1vn−2vn−3vn−4vn−6vn−7 vn−5vn−8

2 4 4 1 1 3 3 2 1 1 3 3 5 5 2

3 5 5 2 2 4 4 5 5 2 4 4 1 1

2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2

Figure 14. An injective edge coloring of P(n, 2) when n ≡ 0 (mod 5).

Case 2. If n = 5m + 1, m ≥ 2:
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In this case m must be even since n is odd. Let

• ψ(uivi) = 1 for i ∈ {1, 6, 11, . . . , n − 5}; ψ(uivi) = 2 for i ∈ {2, 7, 12, . . . , n − 4}; ψ(uivi) = 3 for i ∈
{3, 8, 13, . . . , n−3}; ψ(uivi) = 4 for i ∈ {4, 9, 14, . . . , n−2}; ψ(uivi) = 5 for i ∈ {5, 10, 15, . . . , n−1};
ψ(unvn) = 3.
• ψ(ui−1ui) = ψ(uiui+1) = ψ(uivi) for i ∈ {3, 5, 7, . . . , n − 2}; ψ(un−1un) = 3, ψ(unu1) = ψ(u1u2) = 1.
• ψ(vivi+2) = ψ(ui+1vi+1) for i ∈ {1, 3, 5, . . . , n− 6}; ψ(vivi+2) = ψ(ui+2vi+2) for i ∈ {2, 4, 6, · · · , n− 3};
ψ(vn−4vn−2) = 1, ψ(vn−2vn) = 5, ψ(vnv2) = 2, ψ(vn−1v1) = 2.

This way we obtain a 5-injective edge coloring of P(n, 2).

un−8 un−7 un−6 un−5 un−4 un−3 un−2 un−1 un u1 u2 u3 u4 u5 u6 u7

v7v6v5v4v3v2v1vnvn−1vn−2vn−3vn−4vn−5vn−6vn−7vn−8

3 5 5 2 2 4 4 3 1 1 3 3 5 5 2

4 1 1 3 1 5 5 2 2 2 4 4 1 1

3 4 5 1 2 3 4 5 3 1 2 3 4 5 1 2

Figure 15. An injective edge coloring of P(n, 2) when n ≡ 1 (mod 5).

Case 3. If n = 5m + 2, m ≥ 2:
In this case m is odd. Let

• ψ(uivi) = 1 for i ∈ {1, 6, 11, . . . , n − 6}; ψ(uivi) = 2 for i ∈ {2, 7, 12, . . . , n − 5}; ψ(uivi) = 3 for i ∈
{3, 8, 13, . . . , n−4}; ψ(uivi) = 4 for i ∈ {4, 9, 14, . . . , n−3}; ψ(uivi) = 5 for i ∈ {5, 10, 15, . . . , n−7};
ψ(un−2vn−2) = 2, ψ(un−1vn−1) = 5, ψ(unvn) = 3.
• ψ(ui−1ui) = ψ(uiui+1) = ψ(uivi) for i ∈ {3, 5, 7, . . . , n − 2}; ψ(un−1un) = 3, ψ(unu1) = ψ(u1u2) = 1.
• ψ(vivi+2) = ψ(ui+1vi+1) for i ∈ {1, 3, 5, . . . , n − 8}; ψ(vivi+2) = ψ(ui+2vi+2) for i ∈ {4, 6, 8, . . . , n − 7};
ψ(vn−6vn−4) = 5, ψ(vn−4vn−2) = 4, ψ(vn−2vn) = 4, ψ(vnv2) = 5, ψ(v2v4) = 2;ψ(vn−5vn−3) =

4, ψ(vn−3vn−1) = 4, ψ(vn−1v1) = 5.

It is easy to check that this way we obtain a 5-injective edge coloring of P(n, 2).

un−8 un−7 un−6 un−5 un−4 un−3 un−2 un−1 un u1 u2 u3 u4 u5 u6 u7

v7v6v5v4v3v2v1vnvn−1vn−2vn−3vn−4vn−5vn−6vn−7vn−8

4 1 1 3 3 2 2 3 1 1 3 3 5 5 2

5 2 5 4 4 4 4 5 5 2 2 4 1 1

4 5 1 2 3 4 2 5 3 1 2 3 4 5 1 2

Figure 16. An injective edge coloring of P(n, 2) when n ≡ 2 (mod 5).

Case 4. If n = 5m + 3, m ≥ 2:
Then m is even. Let

• ψ(uivi) = 1 for i ∈ {1, 6, 11, . . . , n − 2}; ψ(uivi) = 2 for i ∈ {2, 7, 12, . . . , n − 1}; ψ(uivi) = 3 for i ∈
{3, 8, 13, . . . , n−5}; ψ(uivi) = 4 for i ∈ {4, 9, 14, . . . , n−4}; ψ(uivi) = 5 for i ∈ {5, 10, 15, . . . , n−3};
ψ(unvn) = 4.
• ψ(ui−1ui) = ψ(uiui+1) = ψ(uivi) for i ∈ {3, 5, 7, . . . , n − 4}; ψ(un−3un−2) = 1, ψ(un−2un−1) =

3,ψ(un−1un) = 3, ψ(unu1) = 1, ψ(u1u2) = 1.
• ψ(vivi+2) = ψ(ui+1vi+1) for i ∈ {3, 5, 7, . . . , n − 4}; ψ(vivi+2) = ψ(ui+2vi+2) for i ∈ {4, 6, 8, . . . , n − 5};
ψ(vn−3vn−1) = 2, ψ(vn−1v1) = 2, ψ(v1v3) = 4,ψ(vn−2vn) = 5, ψ(vnv2) = 2, ψ(v2v4) = 2.
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We again obtain a 5-injective edge coloring of P(n, 2).

vn−8

un−8 un−7 un−6 un−5 un−4 un−3 un−2 un−1 un u1 u2 u3 u4 u5 u6 u7

v7v6v5v4v3v2v1vnvn−1vn−2vn−3vn−4vn−5vn−6vn−7

5 2 2 4 4 1 3 3 1 1 3 3 5 5 2

1 3 3 5 5 2 5 2 2 4 2 4 1 1

5 1 2 3 4 5 1 2 4 1 2 3 4 5 1 2

Figure 17. An injective edge coloring of P(n, 2) when n ≡ 3 (mod 5).

Case 5. If n = 5m + 4, m ≥ 2:
Then m is odd since n is odd. Let

• ψ(uivi) = 1 for i ∈ {1, 6, 11, . . . , n − 3}; ψ(uivi) = 2 for i ∈ {2, 7, 12, . . . , n − 2}; ψ(uivi) = 3 for
i ∈ {3, 8, 13, . . . , n−1}; ψ(uivi) = 4 for i ∈ {4, 9, 14, . . . , n}; ψ(uivi) = 5 for i ∈ {5, 10, 15, . . . , n−4}.
• ψ(ui−1ui) = ψ(uiui+1) = ψ(uivi) for i ∈ {3, 5, 7, . . . , n − 2}; ψ(un−1un) = 4, ψ(unu1) = ψ(u1u2) = 1.
• ψ(vivi+2) = ψ(ui+1vi+1) for i ∈ {1, 3, 5, . . . , n − 2}; ψ(vivi+2) = ψ(ui+2vi+2) for i ∈ {2, 4, 6, . . . , n − 3};
ψ(vn−1v1) = 5, ψ(vnv2) = 5, ψ(v2v4) = 2.

We again obtain a 5-injective edge coloring of P(n, 2).

un−8 un−7 un−4 un−3 un−2 un−1 u1 u2 u3 u4 u5 u6 u7

vn−8 vn−7 vn−6 vn−5 vn−4 vn−3 vn−2 vn−1 vn v1 v2 v3 v4 v5 v6 v7

un

1 2 3 4 5 1 2

1 1

3 3 5 5 2

4

un−5un−6

1 11 3 3 5 5 2 2

1 2 3 4 5 1 2 3 4

2 4 4 1 1 3 3 25

4

5 2

Figure 18. An injective edge coloring of P(n, 2) when n ≡ 4 (mod 5).

�

It follows from Lemma 3.2 and Lemma 3.3 that χ
′

i(P(n, 2)) ≤ 5 for n ≥ 8.
Now we study χ

′

i(P(n, 2)) for 4 ≤ n ≤ 7. If n = 5, then the graph P(5, 2) is just the Petersen graph,
by proposition 1.1, χ

′

i(P(5, 2)) = 5.

Lemma 3.4. χ′i(P(4, 2)) = 4.

Proof. Since every pair of edges in {u1v1, u2v2, u3v3, u4v4} see each other, they should be colored
differently, that is, χ

′

i(P(4, 2)) ≥ 4. On the other hand, P(4, 2) has a 4-injective edge coloring as
follows: ψ(u1v1) = ψ(u1u2) = ψ(u1u4) = 1; ψ(u3u2) = ψ(u3v3) = ψ(u3u4) = 2; ψ(u2v2) = ψ(v1v3) = 3;
ψ(v4u4) = ψ(v2v4) = 4. Therefore, χ

′

i(P(4, 2)) = 4.
�

Lemma 3.5. χ′i(P(6, 2)) = 5.

Proof. Denote the outer cycle of P(6, 2) as C = u1u2u3u4u5u6u1. By Lemma 3.1, χ
′

i(P(6, 2)) ≥ 4.
Assume by contradiction that P(6, 2) has a 4-injective edge coloring.

Case 1. Only three colors are used to color the edges of C.
In any 3-injective edge coloring of C, there exist two adjacent edges that are colored differently, and

each color is used twice. Without loss of generality, let ψ(u1u2) = 1, ψ(u2u3) = 2. By symmetry, we
only need to consider the cases ψ(u3u4) = 3 or ψ(u4u5) = 3.
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If ψ(u3u4) = 3, then ψ(v2v4) = 4. Since the edge v4v6 sees edges u4u5, u5u6, u6u1, v2v4, these four
edges are colored with different colors in {1, 2, 3, 4}. So v4v6 cannot be colored.

If ψ(u4u5) = 3, then ψ(v2v4) = 4. Similarly, the edge v4v6 cannot be colored.
Case 2. Four colors are used to color the edges of C.
First note that there exist no four successive edges uiui+1, ui+1ui+2, ui+2ui+3, ui+3ui+4 that are colored

differently, because otherwise the edge vi+1vi+3 cannot be colored. So there exists an i such that
ψ(uiui+1) = ψ(ui+1ui+2), ψ(ui+3ui+4) = ψ(ui+4ui+5), the subscripts are taken modulo 6. Without loss
of generality, let ψ(u1u2) = ψ(u2u3) = 1, ψ(u3u4) = 2, ψ(u4u5) = ψ(u5u6) = 3, and ψ(u6u1) = 4. Then
we have that ψ(v2v4) = 4, ψ(u6v6) = 2, ψ(v3v5) = 4, and hence, the edge u1v1 cannot be colored.

Therefore, at least five colors are needed in an injective edge coloring of P(6, 2), that is χ
′

i(P(6, 2)) ≥
5. On the other hand, Figure 19 shows a 5-injective edge coloring of P(6, 2). So we have that
χ
′

i(P(6, 2)) = 5, as required.
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u3u5
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4 1

1

1

4

2

3

4

5

2
3

34

5

1

v1

v2

v3

v4

v5

v6

Figure 19. An injective edge coloring of P(6, 2).

�

Lemma 3.6. χ′i(P(7, 2)) = 5.

Proof. Denote the outer cycle of P(7, 2) by C = u1u2u3u4u5u6u7u1. By Lemma 3.1, χ
′

i(P(7, 2)) ≥ 4.
We assume by contradiction that P(7, 2) has a 4-injective edge coloring.

Case 1. Only three colors are used to color the edges of C:
Then there exist three edges colored with the same color, two of them must be adjacent, and the

third one is opposite to them. Without loss of generality, let ψ(u1u2) = ψ(u2u3) = ψ(u5u6) = 1. By
symmetry, if suffices to consider the following three sub-cases.

If ψ(u1u2) = 1, ψ(u2u3) = 1, ψ(u3u4) = 2, ψ(u4u5) = 2, ψ(u5u6) = 1, ψ(u6u7) = 3, ψ(u7u1) = 2,
then the edge v7v2 must be colored with 4, but now the edge v4v6 cannot be colored.

If ψ(u1u2) = 1, ψ(u2u3) = 1, ψ(u3u4) = 2, ψ(u4u5) = 2, ψ(u5u6) = 1, ψ(u6u7) = 3, ψ(u7u1) = 3,
then the edge v4v6 must be colored with 4, but now the edge v1v3 cannot be colored.

If ψ(u1u2) = 1, ψ(u2u3) = 1, ψ(u3u4) = 2, ψ(u4u5) = 3, ψ(u5u6) = 1, ψ(u6u7) = 2, ψ(u7u1) = 3,
then the edge v7v2 must be colored with 4, but now the edge v3v5 cannot be colored.

Case 2. Four colors are used to color the edges of C:
First note that there exist no four successive edges uiui+1, ui+1ui+2, ui+2ui+3, ui+3ui+4 (the subscripts

are taken modulo 7) that are colored differently, because otherwise the edge vi+1vi+3 cannot be colored.
Since there are four colors and seven edges on C, at least one color, say 4, that is used only once.
Without loss of generality, let ψ(u1u2) = 4. Since edges u2u3, u7u1, u1u2 are colored differently,
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suppose ψ(u2u3) = 1 and ψ(u7u1) = 2, then u3u4 and u6u7 must be colored with 1 or 2. So ψ(u4u5) = 3
or ψ(u5u6) = 3.

In both case, we have that ψ(u3u4) = 1, ψ(u4u5) = 3, ψ(u5u6) = 3 and ψ(u6u7) = 2. Then we deduce
that ψ(v2v4) = 2, ψ(v4v6) = 4, ψ(u7v7) = 1, ψ(u1v1) = 3, now the edge u2v2 cannot be colored, a
contradiction.

So we have shown that χ
′

i(P(7, 2)) ≥ 5. In Figure 20, we give a 5-injective edge coloring of P(7, 2).
Therefore, χ

′

i(P(7, 2)) = 5.
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u4u5
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u7

v1
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v3
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1

1

2

2

3

3

4 5

2

1

4 5

3

12
3

3

44

2

5

Figure 20. An injective edge coloring of P(7, 2).

�

From Lemma 3.1 to Lemma 3.6, we complete the proof of Theorem1.2.

4. Conclusions

In this paper, we have determined the exact values of the injective edge coloring numbers for P(n, 1)
with n ≥ 3 and for P(n, 2) with 4 ≤ n ≤ 7. For n ≥ 8, we have showed that 4 ≤ χ

′

i(P(n, 2)) ≤ 5.
However, we don’t know whether the exact values of the injective edge coloring numbers for P(n, 2)
are 4 or 5. We conjecture that χ

′

i(P(n, 2)) = 5. It is also open to compute the exact values of the injective
edge coloring numbers of P(n, k) for k ≥ 3.
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