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1. Introduction and preliminaries

We consider, for x € R”, ¢ > 0, the following system

Uy — O0A(u + for w1t — su(s)ds) + au; = hi(u, v, w)

Ve — AV + fot @, (t — sW(s)ds) + av, = hy(u, v, w)

W = 6Aw + [ @3t = )w(s) ds) + aw, = hs(u, v, w) (1.1)
u(x, 0) = up(x), v(x, 0) = vo(x), w(x, 0) = wo(x)

u(x,0) = w1 (x), vi(x, 0) = vi(x), wi(x, 0) = wy(x),

where n > 3, @ > 0, the functions 4;(.,.,.) € (R}, R),i = 1,2,3 are given by
(E6.85) = (g + D[dIEs + & + E[TVE + & + &) + a8 | D],
hy(é1,6,83) = (g + 1)[d|§1 +E+ETVE +E+E) + €|§2|(q_3)/2§2|§3|(q+l)/2];
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hy(E. 6 83) = (q + D[dIEs + & + ETVE + &+ &) + el Pg)E 7],

with d,e > 0,q > 3. e function — ~ U(x) > orall x € 1S a density such that
ith d 0 3. The £ i e(‘x) #(x) > 0 for all R” is a density such th

2n 2n
% e L'(R" ith =———— f 2<r< .
€ LR wi T 2n—rn+2r or _r_n—2

As in [15], it is not hard to see that there exists a function G € C'(R?,R) such that
uhy(u, v,w) + vho(u, v, w) + whz(u,v,w) = (g + HG(u,v,w), Y(u,v,w) € R?.
satisfies
(g + DG, v,w) = |u+ v+ w + 2uv| D2 £ 2|yw|@D/2 4 2fyy|@tD/2,
We define the function spaces H as the closure of Cy(R"), as in [18], we have
H ={ve Lz (R") | Vv e (LPR")'),

with respect to the norm ||v||y = (v, v);L/{2 for the inner product

Vsw)gy = f Vv - Vwdx,
RI’L

and L??(R") as that to the norm ||v|| 2= (v, v)lLé2 for
9

v,w)2 = f Pvw dx.
9 R®

For general r € [1, +00)
1

IWllz; = (f e dX) -
Rn

is the norm of the weighted space Lj(R").

(1.2)

(1.3)

(1.4)

The main aim of this work is to consider an important problem from the point of view of application
in sciences and engineering (materials which is something between that of elastic solids and Newtonian
fluids), namely, a system of three wave equations having a damping effects in an unbounded domain
with strong external forces including damping terms of memory type with past history. Using the
Faedo-Galerkin [16] method and some energy estimates, we proved the existence of global solution
in R" owing to the weighted function. By imposing a new appropriate condition, with the help of
some special estimates and generalized Poincaré’s inequality, we obtained an unusual decay rate for
the energy function. For more detail regarding the single equation, we review the following references
[7,8]. The paper [7] is one of the pioneer in literature for the single equation, which is the source of
inspiration of several researches, while the work [8] is a recent generalization of [7] by introducing

less dissipative effects.
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To enrich our topic, it is necessary to review previous works regarding the nonlinear coupled system
of wave equations, from a qualitative and quantitative study. Let us begin with the single wave equation
treated in [13], where the aim goal was mainely on the system

Uy + p, — Au — wAu, = ulnlul, (x,t) € Q x (0, 00)
u(x,n) =0,x € 0Q,t >0 (1.5)
l/l(x, O) = MO(X), ut(x9 0) = ul(X),X € Q9

where Q is a bounded domain of R”, n > 1 with a smooth boundary 0. The author firstly constructed
a local existence of weak solution by using contraction mapping principle and of course showed the
global existence, decay rate and infinite time blow up of the solution with condition on initial energy.

Next, a nonexistence of global solutions for system of three semi-linear hyperbolic equations was
introduced in [3]. A coupled system for semi-linear hyperbolic equations was investigated by many
authors and a different results were obtained with the nonlinearities in the form f; = [ulf"'|v|[9"'u, f, =
[v[2~u|?*'v. (Please, see [2,5,9,14,24,29]).

In the case of non-bounded domain R”, we mention the paper recently published by T. Miyasita and
Kh. Zennir in [16], where the considered equation as follows

Uy + au, — d(x)A (u + wu; — f g(t — s)u(s) ds) = ulul", (1.6)
0

with initial data
{ u(x, 0) = up(). 0

u(x,0) = u(x).

The authors showed the existence of unique local solution and they continued to extend it to be
global in time. The rate of the decay for solution was the main result by considering the relaxation
function is strictly convex, for more results related to decay rate of solution of this type of problems,
please see [6,17,25,26,30,31].

Regarding the study of the coupled system of two nonlinear wave equations, it is worth recalling
some of the work recently published. Baowei Feng et al. considered in [10], a coupled system for
viscoelastic wave equations with nonlinear sources in bounded domain ((x,7) € Q X (0, c0)) with
smooth boundary as follows

Uy — Au + fot gt — s)Au(s)ds + u, = fi(u,v)
(1.8)
Vi = Av+ [ h(t = )AV(s)ds + v, = fou, v).

Here, the authors concerned with a system in R"(n = 1,2, 3). Under appropriate hypotheses, they
established a general decay result by multiplication techniques to extends some existing results for a
single equation to the case of a coupled system.

It is worth noting here that there are several studies in this field and we particularly refer to the
generalization that Shun et al. made in studying a complicate non-linear case with degenerate damping
term in [22]. The IBVP for a system of nonlinear viscoelastic wave equations in a bounded domain
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was considered in the problem

= D+ 7 gt = 5)Au(s)ds + (ult + WOl = fiu,v)

Ve — Av + fot h(t = $)Av(s) ds + (VI + ul)vl™ v, = fo(u, v)

u(x,t) =v(x,t) =0,x € 0Q,t >0 (1.9)
u(x, 0) = uop(x), v(x, 0) = vo(x)

u(x,0) = uy(x), vi(x,0) = vi(x),

where Q is a bounded domain with a smooth boundary. Given certain conditions on the kernel
functions, degenerate damping and nonlinear source terms, they got a decay rate of the energy
function for some initial data.

The lack of existence (Blow up) is considered one of the most important qualitative studies that must
be spoken of, given its importance in terms of application in various applied sciences. Concerning
the nonexistence of solution for a more degenerate case for coupled system of wave equations with
different damping, we mention the papers [19-21,23,27].

In m-equations, paper in [1] considered a system

m
i + it = A+ = > PP, = 1,2, m, (1.10)

ij=1,i%j

where the absence of global solutions with positive initial energy was investigated.
We introduce a very useful Sobolev embedding and generalized Poincaré inequalities.

Lemma 1.1. [16] Let 9 satisfy (1.2). For positive constants C; > 0 and Cp > 0 depending only on
and n, we have
VIl 21 < Ce [Vl »

and
Wl < Cr IVl

forveH.
Lemma 1.2. [12] Let ¢ satisfy (1.2), then the estimates

IVl < Cr iVl

and 1
C, = C. Il

hold forv € H. Here t = 2n/(2n — rn +2r) for 1 <r <2n/(n - 2).

We assume that the kernel functions @, @, @3 € C'(R*,R*) satisfy

1-T=1>0 for @ = )" w(s)ds, @) <0,

1-T=m>0 for @ = [ wis)ds, @) <0, (1.11)

1-T3=v>0 for @= [ @(s)ds, @) <0,
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we mean by R* the set {r | 7 > 0}. Noting by
@(t) = max (@), w2(0), w(0)},
20

and

wo(t):min{fwl(s)ds,f wz(s)ds,f zm(s)ds}.
20 % Jo 0 0

We assume that there is a function y € C'(R*,R*) such that

(1) + x(@;(1)) <0, x(0)=0, x'(0)>0,i=1,2,3,

for any & > 0.
Holder and Young’s inequalities give

||uv||2;1¥22 < (||u||ig]+]) + ”v”igm)(qﬂ)/z

< (M, + mivi) ",

and

Il < (vl + vibt) "
and

i (T PR %

Thanks to Minkowski’s inequality to give

(g+1)/2
-+ vl < e (Wi + I + i )
< el + VB, + IwiB) "
Then there exist 7 > 0 such that
i+ w00+ 2 il + 2wl + 2wl
< ([l + Vi, + i)
We need to define positive constants 4y and &y by
Ao=n D and &) = (l - L)77_2/(q_1).
2 g+1

(1.12)

(1.13)

(1.14)

(1.15)

(1.16)

(1.17)

(1.18)

(1.19)

The mainely aim of the present paper is to obtain a novel decay rate of solution from the convexity

property of the function y given in Theorem 3.1.
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We denote as in [18,28] an eigenpair {(4;, ¢;)},ay € R X H of
—0(x)Ae; = die;, x€eR",
forany i € N, (6(x))~! = ¥(x). Then
O< =< <45+ T +oo,

holds and {e;} is a complete orthonormal system in H.

Definition 1.3. The triplet functions (u,v,w) is said a weak solution to (1.1) on [0, T] if satisfies for
x €R",

jl‘v Hx)(uy + au)pdx + fRn VuVepdx — fot @ (t — 5)Vu(s)dsVedx

= [, R (u, v, w)edx,

fRn Hx)(vy + av dx + ﬁﬁ VvWiydx — fot @, (t — s)Vv(s) dsVirdx

1.20
= [, 9o (u, v, wypdsx, (1.20)
L 9wy + @w)Pdx + [L, VvV¥dx — [ @s(t — 5)Vw(s) dsV'¥dx
= [, 93 (u, v, w)¥dx,
for all test functions ¢, ¥, ¥ € H for almost all ¢ € [0, T'].
2. Local and global existence
The next Theorem is concerned on the local solution (in time [0, T']).
Theorem 2.1. (Local existence) Assume that
+2
1 <q§n—2 and that n > 3. 2.1
n j—

Let (ug, vo, wo) € H* and (uy, vy, ws) € Ly(R") x L3 (R") X L3(R"). Under the assumptions (1.2)—(1.17)
and (1.11)—(1.14). Then (1.1) admits a unique local solution (u,v,w) such that

(u,v,w) € X3, X7 = C([0, T]; H) N C([0, T]; Ly(R™)),

for sufficiently small T > 0.

We prove the existence of global solution in time. Let us introduce the potential energy J : H* — R
defined by

!
Ju,v,w) = l—fwl(S)ds llullz, + (@1 0 u)
0

!
+ l—fwz(s)ds VIR, + (@ 0 v)
0

+ (1- f ws(s)ds ||w||§, + (@3 0w), (2.2)
0

AIMS Mathematics Volume 6, Issue 7, 7251-7265.



7257

where

(w/ o W) (n= fo @t — ) [Iw(®) — w(s)ll3; ds,

for any w € L*(R"), j = 1,2, 3. The modified energy is defined by

1 1
&) = E(Iluzllig} + iz, +||wz||iz9)+ /., W)—f HOG(u, v, w)dx, (2.3)

Rn

Theorem 2.2. (Global existence) Let (1.2)—(1.17) and (1.11)—(1.14) hold. Under (2.1) and for
sufficiently small (ug,uy), (vo,v1), (wo,w;) € H X ij(R”), problem (1.1) admits a unique global
solution (u,v,w) such that

(u, v, w) € X*, X = C([0, +00); H) N C'([0, +00); L2(R™)). (2.4)

The next, Lemma will play an important role in the sequel.

Lemma 2.3. For (u,v,w) € X3, the functional E(t) associated with problem (1.1) is a decreasing
energy.

Proof. For0 <t <t, < T, we have

&) — &(ty)

153 d
= —&(1) dt
le dt
I )
= -5 f (@10 llully, - (@] 0 w)) dt
1 (" )
-5 f (@20 M3, - (@) 0 v)) dt
t
1 1’2 )
-5 f (@30 Wil = (@ 0 w)) dt
141
2 2 2
ol + il + 1wl )
< 0,
owing to (1.11)—(1.14). O

We sketch here the outline of the proof for local solution by a standard procedure(See [4,11,31]).

Proof. (Of Theorem 2.1.) Let (ug, uy), (vo, v1), (wo, wy) € H X L§(R"). For any (u,v,w) € X3T, we can
obtain weak solution of the related system

)z + @z) — Az = — [ @1t — $)Au(s) ds + I0)hi (u, v, w)

V() + @y) — Ay = — fot @ (t — $)AV(s) ds + Hx)hy(u, v, w)

)Ly + ) — AL = = [ @3t = HAW(s) ds + HX)hs3(u, v, w) (2.5)
2(x,0) = uo(x), y(x, 0) = vo(x), {(x,0) = wo(x)

z(x,0) = u1(x), y,(x,0) = vi(x), {i(x, 0) = wi ().
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We reduces problem (2.5) to Cauchy problem for system of ODE by using the Faedo-Galerkin
approximation. We then find a solution map T : (u, v, w) — (z,y,{) from X 3T to X % We are now ready
show that T is a contraction mapping in an appropriate subset of X. for a small 7 > 0. Hence T has a
fixed point T(u,v,w) = (u, v, w), which gives a unique solution in X ; O

We will show the global solution. By using conditions on functions @, @,, @3, we have

1
& > EJ(M’ v, W) — f Hx)G(u, v, w)dx
Rn
> lJ(u v, W) — ! lu + v + w|“@D
= 2 s Vo q + 1 L1(;1+I)
2 (q+D)/2 (q+D)2 (q+1))2

- m( ||uv| L(?ﬂ)/z + ”VW”L(?H)/Z + ”Wu”LL?Jfl)/z )

1 n (g+1)/2
> S w) - m[znuu; + m Vil + v il |

1 n (g+1)/2
> EJ(M’ v, W) — q-i-—l(J(u’ v, W))

= G(9), (2.6)

here ¢ = J(u, v, w), for t € [0, T'), where
1 n
G i Y (q+1)'
© =58~ ¢
Noting that &) = G(4y), given in (1.19). Then

{ G >0 in £€[0,)] (2.7)

G(E) <0 in &> Ay.
Moreover, sclim G(&) — —oo. Then, we have the following lemma
— 400

Lemma 2.4. Let 0 < E0) < &,.
(i) Iflluollé{ + ||v0||§4 + ||w0||3{ < /lg, then local solution of (1.1) satisfies

J(u,v,w) < A5, V1 €[0,T).
(ii) If lluoll, + Ivolly, + lwolly, > A2, then local solution of (1.1) satisfies

llallz + V15, + Iwllz, > A7, Ve € [0,T), 4, > A.

Proof. Since 0 < &) < & = G(Ay), there exist & and &, such that G(&)) = G(&) = &) with
0< é:l < /10 < fz.
The case (i). By (2.6), we have

G(J(uo, vo, o)) < E(0) = G(&y),
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which implies that J(ug, vo, wp) < ff. Then we claim that J(u, v, w) < &, ¥t € [0, T). Moreover, there

exists #y € (0, T) such that
£ < J(u(to), v(to), w(to)) < &.

Then
G(J(u(tp), v(t), w(to))) > E(0) = E(1),

by Lemma 2.3, which contradicts (2.6). Hence we have
J(u,v,w) < & < A3, V€ [0,T).
The case (ii). We can now show that
lluollz, + lIvollz, + lIwoll3, = &,

and
2 2 2 2 2
ol + V5 + [IWll7 = &5 > A,

in the same way as (i). O
Proof. (Of Theorem 2.2.) Let (ug, uy), (v, v1), (wg, w1) € H X L%(Rn) satisfy both 0 < E(0) < & and
letoll, + IIvollz, + lwoll3, < A3.

By Lemma 2.3 and Lemma 2.4, we have
1
S Ul + i3y hwels ) + 2l + m il + v il
1 !
< Sl + Vil + el ) + (1 - fo @1(s) ds) Il + (@1 0 )
1 1

+ (1 - f w@w5(8) ds) IIMIIEH + (w0 V) + (1 - f ws3(S) ds) ||W||;,{ + (w3 o w)

0 0

2n 5 ) 5 1@+D/2
< 28(1) + m[znunw + mlully + v Iwl, |

2n (g+1)/2
< 28(0) + m(](u, v,w))
2n 1
<28y + ——=A1"
- g+1°7°
= gD, (2.8)
This completes the proof. O
Let
1 ! , 1
A, v,w) = 3 L= @i(s)ds|llully + 3 (@) ou) (2.9)
0
1 ! , 1
+ =(1- @ (s)ds ||Vl + = (@2 0v)
2 0 2
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+ l(1 - f ws3(S) ds) ||w||?H + 1 (w3 0w) — f HNx)G(u, v, w)dx,
2 O 2 Rn

[I(u,v,w) = l—f wi(s)ds ||I/l||;{ + (@ o u) (2.10)
0

t
+ 1—f @ (s)ds | IV, + (@2 0v)
0

+ [1- f wi(s)ds ||w||%4 +(m30ow)—(q+ l)f Fx)G(u, v, w)dx.
0 n

R’

Lemma 2.5. Let (u,v,w) be the solution of problem (1.1). If
lluoliz + lIvollz, + Iwollz, — (g + 1)f Hx)G(uo, vo, wo)dx > 0. (2.11)
R)‘l

Then under condition (3.1), the functional I1(u,v,w) > 0, ¥t > 0.
Proof. By (2.11) and continuity, there exists a time #; > 0 such that
II(u,v,w) > 0,Vt < 1.
Let
Y = {(u,v,w) | H(u(ty), v(ty), w(tp)) = 0, Il(u, v,w) > 0, V1 € [0, 1)} (2.12)

Then, by (2.9), (2.10), we have for all (u,v,w) € Y,

-1 d !
A, v, w) = 2(qq+1)[(l—j(;wl(s)ds)||u||3{+(l—‘fowz(s)ds)llvllg{

+(1 - fo @5(s) ds)||w||§[]

-1 1
+2Z]+ 1)[(W1 ou)+ (wy o)+ (w3 ow)] + mﬂ(u,v,w)
-1
2 z(qq n 1)[”'””31 +m ||V||(2H + V||W||$4 + (@ ou) + (wyov) + (w3 0w) ]
Owing to (2.3), it follows for (u,v,w) € Y
2(g+1)
Ul +m iR, +vilE, < 22 = A, v W)
2 1
< 2t Dg,
qg-1
2 1
< 2 +1 &) (2.13)
q p—

By (1.18), (3.1) we have

(g+1) f Gu(to), v(to), w(to))
Rﬂ
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IA

(g+1)/2
0 (o), + milv(to)ll, + v Iwto) i)

(2(q +1)
M=, =
YU luto)liz, + mIlv(o)lliz, + v IIw(o)ll3,)

)(61—1)/2

IA

E(0)

IA

(U Nuto)lz, + mIv(to)ll7, + v IIwto)ll3,)

< (1- fo @ (5)ds) lluto)lly, + (1 - fo @a(s)ds) [v(to)l3,

+ O—l:wAQMMwwmé

< (1- fo @(s)ds) luto)ll3, + (1 - fo @y(s)ds) [v(to)lly,

+ (1 - w3(s)ds) ||W(l0)||34
0

+ (@ou)+(wyov) +(@30w),

(2.14)

hence I1(u(ty), v(ty), w(ty)) > 0 on Y, which contradicts the definition of Y since I1(u(%y), v(ty), w(ty)) =

0. Thus Il(u,v,w) > 0, VYt > 0.
3. Decay estimates

The decay rate for solution is given in the next Theorem

O

Theorem 3.1. (Decay of solution) Let (1.2)—(1.17) and (1.11)—(1.14) hold. Under condition (2.1) and

_ (2(q+1) )<q—1>/2<

n|———8&(0) 1,
qg-—1

there exists ty > 0 depending only on @, @,, @3, A, and x'(0) such that

@(s) )

0< S(t) < S(to) exp (—f I——ZD'O(I)

holds for all t > t,.
Proof. (Of Theorem 3.1.) By (1.18) and (2.13), we have for ¢t > 0

2(g+1)
0 < Iljully, + m VI, + vIwll, < ;_18m.
Let o
w(t
1) = —————,
@ 1 —@o(2)

where @ and @ defined in (1.12) and (1.13).
Noting that lim @(#) = 0 by (1.11)—(1.13), we have
t—+00

tlim I(tHy=0, I(t) >0, YVt >0.
—+00

AIMS Mathematics
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Then we take 7y > 0 such that
1
0< 51(0 <x'(0),

with (1.14) for all > . Due to (2.3), we have

1 1
&0 < S(Ihal; + Vil +1wellyy ) + S1(@1 0 w) + (@2 00) + (@3 0 w)]
1 ' 1 !
+ 5(1—fzle(s)ds)||u||;,+§(1—fwz(s)ds)nvn%H
0 0
+ 5 1- @s3(s)ds||wlly,
0
1 1
< (el +1vilEy + iy ) + 5@ 0 1) + (@3 0v) + (@3 0 )]
1

+ - @oO)llullz, + V15, + Wl

Then, by definition of /(¢), we have

1
1060 < SOl + v + Iwil )

2
1
+ @Ol + VIl + i)
1
+ SI0Ol@ 0w + (@2 0) + (@3 0 W,

and Lemma 2.3, we have for all ¢;,1, > 0
&(n) — &(t1)
1 ("
< -3 f (@@l + V115, + w3, 1) de

151
1 " / 4 /
t 5 | (@ ow+ @ on+ @ ow)dr
151
15)
2 2 2
- a f (el + B3> + w3 )i,
tl v T

then,

1
—sa@@lullz, + V115, + Iwliz]

&) 7

IA

1
+ 5[(@’1 o u) + (@ o v) + (@} o w)]
2 2 2
= ol + s + Iwill3; )
Finally, V¢ > 1y, we have

&)+ I(HE(®)

(3.4)

(3.5)
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1
< (El(t) -~ a)( ”ut”i% + ||v,||i§ + ”W’”ig)

1
¥ 5[(w’l ou) + (@h ov) + (@ o w)]

1
+ SIO(@1 0w + (@2 0v) + (@3 0 W),

and we can choose 7, > 0 large enough such that

%I(t) < a,
then
&)+ I(H&E(r)
1 !
< E j(: {@'ll(t - 1)+ (O, (t — T)} ||ue(2) — M(T)Hé{ dr

1 t
+ 3 fo (@t = ) + 1@t = D)} VD) = v, dr

1 t
+ Efo (@3t = 1) + I)@3(t = D)} () = w)lly, dr

IA

1 1
Efo (@ (@) + IO@ (D} lu() — u(r = DI}, dT

1 !
+ 3 I) (@5 (1) + (D ()} |v(E) — v(t - T)||${ dr

1 t
+ 3 jo‘ {@5(0) + (w3 (1)} ||w(t) — w(t - T)||3{ dr

IA

1 !
2 fo {-x(@1() + X Oz (D)} lu(t) — u(t = DIl dr

¢ 5 [ {oxlmae) X Oma@} v = v =0l e
1

T3 fo {=x(@3(D) + ¥ @30} Iwe) = wit = DI}, dr

< 0,
by the convexity of y and (1.14), we have

X(©) = x(0) + ¥ (0)§ = x'(0)¢.

Then )
E(1) < E(1p) exp (—f I(s)ds),
1o
which completes the proof. O
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