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Abstract: This paper proposes a simple, accurate and effective empirical formula to determine the 

number of supporting nodes in a newly-developed method, the localized method of fundamental 

solutions (LMFS). The LMFS has the merits of meshless, high-accuracy and easy-to-simulation in 

large-scale problems, but the number of supporting nodes has a certain impact on the accuracy and 

stability of the scheme. By using the curve fitting technique, this study established a simple formula 

between the number of supporting nodes and the node spacing. Based on the developed formula, the 

reasonable number of supporting nodes can be determined according to the node spacing. Numerical 

experiments confirmed the validity of the proposed methodology. This paper perfected the theory of 

the LMFS, and provided a quantitative selection strategy of method parameters. 
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1. Introduction 

The method of fundamental solutions (MFS) [1,2] is a simple, accurate and efficient 

boundary-type meshfree approach for the solution of partial differential equations, which uses the 

fundamental solution of a differential operator as a basis function. Chen et al. [3,4] demonstrated the 

equivalence between the MFS and the Trefftz collocation method [5] under certain conditions. 
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During the last decades, the MFS has been widely applied to various fields in applied mathematics 

and mechanics, such as scattering and radiation problems [6], inverse problems [7], non-linear 

problems [8], and fractal derivative models [9,10]. For more details and applications, the readers are 

referred to Refs. [11–13] and the references therein. In the MFS, the approximation solution is 

assumed as a linear combination of fundamental solutions. In order to avoid the source singularity of 

the fundamental solution, this method requires a fictitious boundary outside the computational 

domain, and places the source points on it. The distance between the fictitious boundary and the real 

boundary has a certain influence on the calculation accuracy [14–16]. To address this issue, many 

scholars proposed improved methods, such as the singular boundary method [17,18], modified 

method of fundamental solutions [19], the non-singular method of fundamental solutions [20]. Due 

to the characteristic of dense matrix, the traditional and improved MFS with “global” discretization 

is difficult to apply in the large-scale problems with complicated geometries. 

Recently, Fan and Chen et al. [21] proposed an improved version of traditional MFS, known as 

the localized method of fundamental solutions (LMFS), for solving Laplace and biharmonic 

equations. The LMFS is essentially a localized semi-analytical meshless collocation scheme, and 

overcomes the limitation of traditional method in applications of complex geometry and large-scale 

problems. Gu and Liu et al. [22–25] extended to the LMFS to elasticity, heat conduction and 

inhomogeneous elliptic problems. Qu et al. [26–28] applied the method to the interior acoustic and 

bending analysis. Wang et al. [29–32] developed the localized space-time method of fundamental 

solutions, and resolved the inverse problems. Li et al. [33] used this method to simulate 2D 

harmonic elastic wave problems. Liu et al. [34] combined the LMFS and the Crank-Nicolson 

time-stepping technology to address the transient convection-diffusion-reaction equations. Li, Qu 

and Wang et al. [35–37] given the error analysis of the LMFS, and proposed a augmented moving 

least squares approximation. Like the element-free Galerkin method [38,39] being successfully 

applied to a large number of partial differential equations, the proposed LMFS belongs to the 

domain-type meshless method. Unlike the former, the latter is a semi-analytical meshless collocation 

method with strong form, in which the fundamental solutions are unavoidable. In the LMFS, the 

whole computational domain is firstly divided into a set of overlapping local subdomains whose 

boundary could be a circle (for 2D problems) and/or a sphere (for 3D problems). In each of the local 

subdomain, the classical MFS formulation and the moving least square (MLS) method are applied to 

the local approximation of variables. This method remains the high accuracy of the traditional MFS, 

and simultaneously produces a sparse system of linear algebraic equations. Inspired by the LMFS, 

recently, some new local meshless methods [40–44] have also been proposed. 

No methodology is perfect, although the LMFS has achieved varying degrees of success in 

various fields, it still faces some thorny problems to be solved. As a local semi-analytical 

meshless technique, the LMFS needs to configure nodes in the whole computational domain and 

to select the supporting nodes in each local subdomain, which likes the generalized finite  

difference method [45–47]. The node spacing (related to the total number of nodes), the number of 

supporting nodes and the relationship between them have the certain influence on the accuracy. Fu et 

al. [48] discussed the selection algorithm of supporting nodes in the generalized finite difference 

method. However, there are few reports in the literature coordinating the node spacing and the 

number of supporting nodes in the LMFS. 

In this paper, we propose an effective empirical formula to determine the node spacing and the 

number of supporting nodes in the LMFS for solving 2D potential problems with Dirichlet boundary 
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condition. A reasonable number of supporting nodes can be directly given according to the size of 

node spacing. The proposed methodology is applicable to both regular and irregular distribution of 

nodes in arbitrary domain. This study consummates the LMFS and lays a foundation for simulating 

various engineering problems accurately and stably. 

The rest of paper is organized as follows. In Section 2, we give the governing equation and 

boundary condition of 2D potential problems, and provide the numerical implementation of LMFS. 

Section 3 introduces the empirical formula of the node spacing and the number of supporting nodes 

in the LMFS. Section 4 investigates two numerical examples with irregular domain and nodes to 

illustrate the accuracy and reliability of the empirical formula. Section 5 summarizes some 

conclusions. 

2. The LMFS for 2D potential problems 

Considering the following 2D potential problem with the Dirichlet boundary condition: 

2 ( , ) 0,    ( , ) ,u x y x y           (1) 

( , ),    ( , ) ,u u x y x y           (2) 

where 2  is the 2D Laplacian, ( , )u x y  the unknown variable,   the computational domain, 

    the boundary of domain, and ( , )u x y  the given function. 

According to the ideas of the LMFS, N ni nb   nodes i
x  ( 1,2,..., )i N  should be 

distributed inside the considered domain   and along its boundary  , where ni is the number of 

interior nodes, nb is the number of boundary nodes. Consider an arbitrary node (0)
x  (called the 

central node), we can find m supporting nodes ( )i
x  ( 1,2,...,i m ) around the central node (0)

x  

(see Figure 1 (a)). At the same time, the local subdomain s  can also be defined. Subsequently, the 

MFS formulation is implemented for the local subdomain. For this purpose, an artificial boundary 

s  is selected at a certain distance from the boundary of local subdomain, as shown in Figure 1 (b). 

On the artificial boundary, M  uniformly distributed source points are specified. 

 

(a)            (b) 

Figure 1. Schematic diagram of the LMFS: (a) nodal distribution and (b) local subdomain. 

maxd

 (0)
x   

sR  

Local subdomain 
s  

Artificial circle 
s  

Central node Supporting nodes 
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For each node in the local subdomain s , the following MFS formulation of numerical 

solution should be hold 

( ) ( ) ( ) ( )

1

( ) ( , ), ,  0,1,..., ,
M

i i j i

j s

j

u G i m 


  x x s x      (3) 

or for brevity 

( ) ( ) ( )

1

, ,  0,1,..., ,
M

i i i

j ij s

j

u G i m


    G x        (4) 

where ( )

0( )i m

ix  are the 1m  nodes in the subdomains s , ( )

1( )j M

js  denote M  fictitious source 

points, 
1 2( , , , )T

M    represent the unknown coefficient vector, 
( ) ( )( , )i j

ijG G x s  are the 

fundamental solutions expressed as 

( ) ( ) ( ) ( )

2

1
( , ) ln , .

2

i j i jG


 x s x s         (5) 

It should be pointed out that the artificial boundary is a circle centered at (0)
x  and with radius sR  

(see Figure 1 (b)), here sR  is a parameter that should be manually fixed by the user. 

In each local subdomain, we determine the unknown coefficients 
1( )M

j j 
 in Eq (3) or (4) by 

the moving least square (MLS) method, we can define a residual function as follows 

 
2

( ) ( )

0

( ) ,
m

i i i

i

B u 


  
  G          (6) 

in which ( )i  represents the weighting function related with node ( )i
x  and is introduced as [49] 

2 2

max( )

2

max

exp ( / ) exp ( / )
,  0,1, , ,

1 exp ( / )

ii
d h d h

i m
d h


         

   

    (7) 

where ( ) (0)

2

i

id  x x  denotes the distance of the central node and its ith supporting node, maxd  

is the size of the local subdomain (the maximum value of distances between (0)
x  and m supporting 

nodes, i.e.,  max
1,2,...,
max i

i m
d d


 ), and 1h  . 

Based on the MLS approximation, we can get the coefficient vector 
1 2( , , , )T

M    by 

minimizing ( )B   with respect to   as follows 

( )
0,  =1,2, , ,

j

B
j M









         (8) 
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Then, a linear system can be formed 

,Aα b            (9) 

where 

( ) ( )

2 ( ) ( ) ( ) ( ) 1

01 1 2 1 3 1

0 0 0 0

2 ( ) ( ) ( )

2 2 3 2

0 0 0

2 ( ) ( )

3 3

0 0

2 ( )

0

,  

m
i im m m m

i i i i i

ii i i i i i iM

i i i i

m m m
i i i

i i i i iM

i i i

m m
i i

i i iM

i i

m
i

iM

i

G u
G G G G G G G

G G G G G

G G G

SYM

G


   

  

 





   

  

 



 
 
 
 
 
 

  
 
 
 
 
 
  


   

  

 



A b

( ) ( )

2

0

( ) ( )

3

0

( ) ( )

0

.

          

m
i i

i

i

m
i i

i

i

m
i i

iM

i

G u

G u

G u













 
 
 
 
 
 
 
 
 
 
 
 
 
 
 







 (10) 

The vector b  in Eq (10) can be further expressed as 

(0) (0)(0) (1) ( )

01 11 1

(0) (1) ( ) (1) (1)

02 12 2

(0) (1) ( ) ( ) ( )
0 1

.
  

m

m

m

m

m m m
M M mM

u uG G G

G G G u u

G G G u u

  

  

  

    
    
     
    
    
         

b B     (11) 

According to Eqs (9)–(11), the unknown coefficients 
1 2( , , , )T

M    can now be 

calculated as 

(0)

1

(1)
2 1

( )

.
  

m
M

u

u

u









  
  
   
  
  
 

   

A B          (12) 

To ensure the regularity of matrix A  in Eq (12), 1m  should be greater than M . For simplicity, 

we fixed 1 2m M   in the computations. It should be pointed out that the matrix A  with a small 

size given in Eq (10) is well-conditioned. In this study, the MATLAB routine “ \A B ” is used to 

calculate 1
A B  in order to avoid the troublesome matrix inversion. 

Substituting Eq (12) into Eq (4) as 0i  , the numerical solution at central node (0)
x  is 

expressed as 

(0)

(1)

(0) (0) (0) 1 ( ) ( )

0

( )

,
 

m
j j

j

m

u

u
u c u

u





 
 
 

  
 
 
 
 

G G A B        (13) 
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or 

(0) ( ) ( )

0

0,
m

j j

j

u c u


            (14) 

in which ( )

0( )j m

jc 
 are coefficients which can be calculated by (0) 1

G A B . 

Now we can obtained a final linear algebraic equation system of the LMFS according to the 

governing equation and boundary condition. At interior nodes, the physical quantities must satisfy 

the governing equation, namely, 

( ) ( )

0

0,   =1,2, , ,
m

i j j

i

j

u c u i ni


          (15) 

where subscript i of ( )j

ic  is used to distinguish the coefficients for different interior nodes. At 

boundary nodes with Dirichlet boundary condition, we have 

,   1, 2, , .i iu u i ni ni ni nd            (16) 

Using the given boundary data and combing Eqs (15) and (16), we have the following sparse system 

of linear algebraic equations 

,CU f           (17) 

where N NC  represents the coefficient matrix, 1 2( , , , )N Tu u uU  denotes the undetermined 

vector of variables at all nodes, and 1Nf  is a known vector composed by given boundary condition 

and zero vector. It should be pointed out that the system given in Eq (17) is well-conditioned, and 

standard solvers can be used to obtain its solution. In this study, the MATLAB routine “ \U C f ” 

is used to solve this system of equation. After solving Eq (17), the approximated solutions at all 

nodes can be acquired. 

3. Experiential formula of the supporting nodes in the LMFS 

In this section, three different analytical solutions are provided to summarize the relationship 

between the number of supporting nodes (m) and the node spacing ( h ). Without loss of generality, 

the node spacing is defined by 

11
max min i j

j Ni N
h

  
  x x .         (18) 

Noted that the node spacing is equivalent to the total number of nodes, and is suitable for the 

arbitrary distribution of nodes including regular and irregular distributions. In the investigation, the 

equidistant nodes are used, thus the node spacing h  is the distance between two adjacent nodes. In 

all calculations, the artificial radius is fixed with 1.5sR  , and the numerical results are calculated 

on a computer equipped with i5-5200 CPU@2.20GHz and 4GB memory. To estimate the accuracy of 
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the present scheme, we adopt the root-mean-square error (RMSE) defined by 

 
21

( ) ( ) ,
totalN

k k

num exa

ktotal

RMSE u u
N

  x x       (19) 

where ( )k

numu x  and ( )k

exau x  are the numerical and analytical solutions at kth test points 

respectively, totalN  is the total number of tested points, which refers to all nodes unless otherwise 

specified. 

As shown in Figure 2, a rectangular with equidistant nodes is considered. To obtain a relatively 

universal formula, three different exact solutions are employed, as shown below: 

2 2( , )  ,u x y x y           (20) 

( , )  sin( )e ,yu x y x          (21) 

       ( , )  cos cosh sin sinh .u x y x y x y       (22) 

    

(a) Computational domain      (b) Nodal distribution 

Figure 2. Computational domain and nodal distribution. 

In order to numerically analyze the relationship between m and h , we choose different m and 

h , and draw the RMSE profiles obtained by the LMFS. For the analytical solution in Eq (20), the 

fitting curve can be formulated as ( )bm a h     (     
denotes the round up operation), where 

2.057 3.759a   and 0.305 0.1509b ﹣ ﹣ . Figure 3 plots the case with 3a   and 0.22b   . 

For the analytical solution in Eq (21), the fitting curve can be formulated as ( )bm a h    , where 

2.221 3.314a   and 0.2817 0.1765b ﹣ ﹣ . Figure 4 plots the case with 2.76a   and 

0.23b   . For the analytical solution in Eq (22), the fitting curve can be formulated as
 ( )bm a h    , where 2.61 3.153a   and 0.2437 0.1937b ﹣ ﹣ . Figure 5 plots the case with 

2.85a   and 0.22b   . 

Ω 

o 

1.0m 

0.5m 

x 

y 
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(a) 2D error plane        (b) 3D error surface 

Figure 3. Distribution of RMSEs under different m and h . 

  

(a) 2D error plane        (b) 3D error surface 

Figure 4. Distribution of RMSEs under different m and h . 

  

(a) 2D error plane        (b) 3D error surface 

Figure 5. Distribution of RMSEs under different m and h . 

By considering the above three cases for different analytical solutions, the following simple 

empirical formula can be carefully concluded: 

( 0.22)3 .m h              (23) 

From Eq (23), we can easily determine the number of supporting nodes by the node spacing. In the 

next section, two complex examples will be provided to verify the present expression. 
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4. Numerical experiments 

This section tests two numerical examples with complex boundaries. The following three 

different analytical solutions are used to to carefully validate the reliability of the empirical formula. 

 sin e ,yu x           (24) 

       cos cos ,h sin sinhu x y x y         (25) 

2 2cos( )cosh( ) 2 3 1.u x y x y x y            (26) 

Example 1: 

A gear-shaped domain is considered as shown in Figure 6. The LMFS uses 1334 nodes 

including 1134 internal nodes and 200 boundary nodes generated from the MATLAB codes, The 

node spacing is 0.0667mh   calculated from Eq (18). It can be known from the empirical 

formula (23) that the number of supporting nodes should be 6m  , when the numerical error 

remains 1.0e 02RMSE   . 

 

Figure 6. Distribution of nodes on the gear-shaped model. 

Figure 7 illustrates the RMSEs of numerical solutions at all nodes with respect to the number of 

supporting nodes for the different analytical solutions, where A, B and C represent the analytical 

solutions (24), (25) and (26), respectively. As can be seen, the numerical results for different types of 

exact solutions converge with increasing number of supporting nodes. More importantly, it can be 

observed from Figure 7 that 1.0e 02RMSE    when 6m  , indicating the reliability and accuracy 

of the proposed empirical formula. 
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Figure 7. Error curves of the LMFS under different number of supporting nodes. 

Example 2: 

In the second example, we consider a car cavity model. Figure 8 shows the problem geometry 

and the distribution of nodes. The total number of nodes is 11558N  , including 11212 internal 

nodes and 346 boundary nodes. Nodes in this model are derived from the HyperMesh software. The 

node spacing is 0.02mh   calculated from Eq (18). It should be pointed out that According to the 

proposed empirical formula (23), the number of supporting nodes needs to meet 8m   when the 

numerical error remains 1.0e 02RMSE   . 

 

Figure 8. Geometry of the problem and the distribution of nodes. 

Figure 9 depicts error curves of the LMFS with the increase of the number of supporting nodes, 

under deferent tested solutions. Despite the complicated domain and the irregular-distributed nodes, 

the results in Figure 9 are in good agreement with our empirical formula. The above numerical 

results fully demonstrate the reliability of the present methodology. It is worth mentioning that a 

large number of numerical experiments have been performed with the empirical formula in Eq (23), 

and all experiments observe the similar performance. 
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Figure 9. Error curves of the LMFS under different number of supporting nodes. 

5. Conclusions 

In this paper, a simple, accurate and effective empirical formula is proposed to choose the 

number of supporting nodes. As a local collocation method, the number of supporting nodes has 

an important impact on the accuracy of the LMFS. This study given the direct relationship 

between the number of supporting nodes and the node spacing. By using the proposed formula, a 

reasonable number of supporting nodes can be determined according to the node spacing. 

Numerical results demonstrate the validity of the developed formula. The proposed empirical 

formula is beneficial to accuracy, simplicity and university for selecting the number of supporting 

nodes in the LMFS. This paper perfected the theory of the LMFS, and provided a quantitative 

selection strategy of method parameters.  

It should be noted that the present study focuses on the 2D homogeneous linear potential 

problems with Dirichlet boundary condition. The proposed formula can not be directly applied to the 

2D cases with Neumann boundary and 3D cases with Dirichlet or Neumann boundary condition. In 

addition, the LMFS depends on the fundamental solutions of governing equations. For the 

nonhomogeneous and/or nonlinear problems without the fundamental solutions, the appropriate 

auxiliary technologies should be introduced in the LMFS, and then the corresponding formula still 

need for further study. The subsequent works will be emphasized on these issues, according to the 

idea developed in this paper. 

Acknowledgments 

The work described in this paper was supported by the Natural Science Foundation of Shandong 

Province of China (No. ZR2019BA008), the China Postdoctoral Science Foundation (No. 

2019M652315), the National Natural Science Foundation of China (Nos.11802151, 11802165, 

11872220), and Qingdao People's Livelihood Science and Technology Project (No. 19-6-1-88-nsh). 

Conflict of interest 

The authors declare that they have no conflicts of interest to report regarding the present study. 

 



7067 

AIMS Mathematics  Volume 6, Issue 7, 7056–7069. 

References 

1. G. Fairweather, A. Karageorghis, The method of fundamental solutions for elliptic boundary 

value problems, Adv. Comput. Math., 9 (1998), 69–95. 

2. M. A. Golberg, C. S. Chen, The method of fundamental solutions for potential, Helmholtz and 

diffusion problems, In: Boundary Integral Methods-Numerical and Mathematical Aspects (Ed. 

M. A. Golberg), (1999), 103–176. 

3. J. T. Chen, C. S. Wu, Y. T. Lee, K. H. Chen, On the equivalence of the Trefftz method and 

method of fundamental solutions for Laplace and biharmonic equations, Comput. Math. Appl., 

53 (2007), 851–879. 

4. J. T. Chen, Y. T. Lee, S. R. Yu, S. C. Shieh, Equivalence between the Trefftz method and the 

method of fundamental solution for the annular Green’s function using the addition theorem 

and image concept, Eng. Anal. Bound. Elem., 33 (2009), 678–688. 

5. J. A. Kołodziej, J. K. Grabski, Many names of the Trefftz method, Eng. Anal. Bound. Elem., 

96 (2018), 169–178. 

6. G. Fairweather, A. Karageorghis, P. A. Martin, The method of fundamental solutions for 

scattering and radiation problems, Eng. Anal. Bound. Elem., 27 (2003), 759–769. 

7. Y. C. Hon, T. Wei, A fundamental solution method for inverse heat conduction problem, Eng. 

Anal. Bound. Elem., 28 (2004), 489–495. 

8. C. S. Chen, The method of fundamental solutions for non-linear thermal explosions, Commun. 

Numer. Methods Eng., 11 (1995), 675–681. 

9. F. J. Wang, W. Cai, B. Zheng, C. Wang, Derivation and numerical validation of the 

fundamental solutions for constant and variable-order structural derivative 

advection-dispersion models, Z. Angew. Math. Phys., 71 (2020), 135. 

10. W. Cai, F. J. Wang, Numerical investigation of three-dimensional hausdorff derivative 

anomalous diffusion model, Fractals, 28 (2020), 2050020. 

11. A. H. D. Cheng, Y. Hong, An overview of the method of fundamental solutions-Solvability, 

uniqueness, convergence, and stability, Eng. Anal. Bound. Elem., 120 (2020), 118–152. 

12. F. F. Dou, L. P. Zhang, Z. C. Li, C. S. Chen, Source nodes on elliptic pseudo-boundaries in the 

method of fundamental solutions for Laplace’s equation; selection of pseudo-boundaries, J. 

Comput. Appl. Math., 377 (2020), 112861. 

13. M. R. Hematiyan, M. Mohammadi, C. C. Tsai, The method of fundamental solutions for 

anisotropic thermoelastic problems, Appl. Math. Model., 95 (2021), 200–218. 

14. C. J. S. Alves, On the choice of source points in the method of fundamental solutions, Eng. 

Anal. Bound. Elem., 33 (2009), 1348–1361. 

15. F. J. Wang, C. S. Liu, W. Z. Qu, Optimal sources in the MFS by minimizing a new merit 

function: Energy gap functional, Appl. Math. Lett., 86 (2018), 229–235. 

16. J. K. Grabski, On the sources placement in the method of fundamental solutions for 

time-dependent heat conduction problems, Comput. Math. Appl., 88 (2021), 33–51. 

17. W. Chen, F. J. Wang, A method of fundamental solutions without fictitious boundary, Eng. 

Anal. Bound. Elem., 34 (2010), 530–532. 

18. L. Qiu, F. J. Wang, J. Lin, Y. Zhang, A meshless singular boundary method for transient heat 

conduction problems in layered materials, Comput. Math. Appl., 78 (2019), 3544–3562. 

 



7068 

AIMS Mathematics  Volume 6, Issue 7, 7056–7069. 

19. D. L. Young, K. H. Chen, J. T. Chen, J. H. Kao, A modified method of fundamental solutions 

with source on the boundary for solving Laplace equations with circular and arbitrary domains, 

Cmes-Comp. Model. Eng. Sci., 19 (2007), 197–221. 

20. Q. G. Liu, B. Šarler, Non-singular method of fundamental solutions for anisotropic elasticity, 

Eng. Anal. Bound. Elem., 45 (2014), 68–78. 

21. C. M. Fan, Y. K. Huang, C. S. Chen, S. R. Kuo, Localized method of fundamental solutions for 

solving two-dimensional Laplace and biharmonic equations, Eng. Anal. Bound. Elem., 101 

(2019), 188–197. 

22. Y. Gu, C. M. Fan, R. P. Xu, Localized method of fundamental solutions for large-scale 

modelling of two-dimensional elasticity problems, Appl. Math. Lett., 93 (2019), 8–14. 

23. Y. Gu, C. M. Fan, W. Z. Qu, F. J. Wang, Localized method of fundamental solutions for 

large-scale modelling of three-dimensional anisotropic heat conduction problems-Theory and 

MATLAB code, Comput. Struct., 220 (2019), 144–155. 

24. Y. Gu, C. M. Fan, W. Z. Qu, Localized method of fundamental solutions for three-dimensional 

inhomogeneous elliptic problems: Theory and MATLAB code, Comput. Mech., 64 (2019), 

1567–1588. 

25. Q. G. Liu, C. M. Fan, B. Šarler, Localized method of fundamental solutions for two-dimensional 

anisotropic elasticity problems, Eng. Anal. Bound. Elem., 125 (2021), 59–65. 

26. W. Z. Qu, C. M. Fan, Y. Gu, F. J. Wang, Analysis of three-dimensional interior acoustic fields by 

using the localized method of fundamental solutions, Appl. Math. Model., 76 (2019), 122–132. 

27. W. Z. Qu, L. L. Sun, P. W. Li, Bending analysis of simply supported and clamped thin elastic 

plates by using a modified version of the LMFS, Math. Comput. Simulat., 185 (2021), 347–357. 

28. W. Z. Qu, C. M. Fan, Y. Gu, Localized method of fundamental solutions for interior Helmholtz 

problems with high wave number, Eng. Anal. Bound. Elem., 107 (2019), 25–32. 

29. F. J. Wang, C. M. Fan, Q. S. Hua, Y. Gu, Localized MFS for the inverse Cauchy problems of 

two-dimensional Laplace and biharmonic equations, Appl. Math. Comput., 364 (2020), 124658. 

30. F. J. Wang, C. M. Fan, C. Z. Zhang, A localized space-time method of fundamental solutions for 

diffusion and convection-diffusion problems, Adv. Appl. Math. Mech., 12 (2020), 940–958. 

31. L. Qiu, J. Lin, Q. H. Qin, W. Chen, Localized space-time method of fundamental solutions for 

three-dimensional transient diffusion problem, Acta Mech. Sinica-PRC, 36 (2020), 1051–1057. 

32. L. Qiu, F. J. Wang, J. Lin, Q. H. Qin, Q. H. Zhao, A novel combined space-time algorithm for 

transient heat conduction problems with heat sources in complex geometry, Comput. Struct., 247 

(2021), 106495. 

33. W. W. Li, Localized method of fundamental solutions for 2D harmonic elastic wave problems, 

Appl. Math. Lett., 112 (2021), 106759. 

34. S. N. Liu, P. W. Li, C. M. Fan, Y. Gu, Localized method of fundamental solutions for two-and 

three-dimensional transient convection-diffusion-reaction equations, Eng. Anal. Bound. Elem., 

124 (2021), 237–244. 

35. X. L. Li, S. L. Li, On the augmented moving least squares approximation and the localized 

method of fundamental solutions for anisotropic heat conduction problems, Eng. Anal. Bound. 

Elem., 119 (2020), 74–82. 

36. W. Z. Qu, C. M. Fan, X. L. Li, Analysis of an augmented moving least squares approximation 

and the associated localized method of fundamental solutions, Comput. Math. Appl., 80 (2020), 

13–30. 



7069 

AIMS Mathematics  Volume 6, Issue 7, 7056–7069. 

37. F. J. Wang, W. Z. Qu, X. L. Li, Augmented moving least squares approximation using 

fundamental solutions, Eng. Anal. Bound. Elem., 115 (2020), 10–20. 

38. X. L. Li, S. L. Li, A linearized element-free Galerkin method for the complex Ginzburg-Landau 

equation, Comput. Math. Appl., 90 (2021), 135–147. 

39. T. Zhang, X. L. Li, Analysis of the element-free Galerkin method with penalty for general 

second-order elliptic problems, Appl. Math. Comput., 380 (2020), 125306. 

40. F. J. Wang, Y. Gu, W. Z. Qu, C. Z. Zhang, Localized boundary knot method and its application 

to large-scale acoustic problems, Comput. Methods Appl. Mech. Eng., 361 (2020), 112729. 

41. F. J. Wang, C. Wang, Z. T. Chen, Local knot method for 2D and 3D 

convection-diffusion-reaction equations in arbitrary domains, Appl. Math. Lett., 105 (2020), 

106308. 

42. F. J. Wang, Q. H. Zhao, Z. T. Chen, C. M. Fan, Localized Chebyshev collocation method for 

solving elliptic partial differential equations in arbitrary 2D domains, Appl. Math. Comput., 397 

(2021), 125903. 

43. X. X. Yue, F. J. Wang, P. W. Li, C. M. Fan, Local non-singular knot method for large-scale 

computation of acoustic problems in complicated geometries, Comput. Math. Appl., 84 (2021), 

128–143. 

44. X. X. Yue, F. J. Wang, C. Z. Zhang, H. X. Zhang, Localized boundary knot method for 3D 

inhomogeneous acoustic problems with complicated geometry, Appl. Math. Model., 92 (2021), 

410–421. 

45. P. W. Li, Space-time generalized finite difference nonlinear model for solving unsteady Burgers’ 

equations, Appl. Math. Lett., 114 (2021), 106896. 

46. W. Z. Qu, H. He, A spatial-temporal GFDM with an additional condition for transient heat 

conduction analysis of FGMs, Appl. Math. Lett., 110 (2020), 106579. 

47. H. Xia, Y. Gu, Generalized finite difference method for electroelastic analysis of 

three-dimensional piezoelectric structures, Appl. Math. Lett., 117 (2021), 107084. 

48. Z. J. Fu, Z. Y. Xie, S. Y. Ji, C. C. Tsai, A. L. Li, Meshless generalized finite difference method 

for water wave interactions with multiple-bottom-seated-cylinder-array structures, Ocean Eng., 

195 (2020), 106736. 

49. T. Belytschko, Y. Krongauz, D. Organ, M. Fleming, P. Krysl, Meshless methods: An overview 

and recent developments, Comput. Methods Appl. Mech. Eng., 139 (1996), 3–47. 

© 2021 the Author(s), licensee AIMS Press. This is an open access 

article distributed under the terms of the Creative Commons 

Attribution License (http://creativecommons.org/licenses/by/4.0) 


