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1. Introduction

Primitive semigroups have been an important topic of semigroup researches since the 1950s. In
fact, as early as 1954, Preston who is one of the founders of the algebraic theory of semigroups
studied primitive inverse semigroups in [16], and then he gave the characterization of primitive
regular semigroups and applied it to the study of matrix representations of inverse semigroups in [17].
In particular, he pointed out that a regular semigroup (resp. an inverse semigroup) with zero is
primitive if and only if it is the 0-direct union of a family of completely 0-simple semigroups (resp.
Brandt semigroups) (See also the monographs [5, 12, 18]). In addition, from the view of category
Lawson [12] showed that an inverse semigroup with zero is primitive if and only if it is isomorphic to
a groupoid with zero adjoined. On the other hand, Theorem III.3.5 and Corollary III.3.6 in [5]
together give that a regular semigroup (resp. an inverse semigroup) without zero is primitive if and
only if it is a completely simple semigroup (resp. a group). Furthermore, primitive orthodox
semigroups were also concerned in Venkatesan [21].

As generalizations of regular semigroups, abundant semigroups were introduced and investigated
in 1982 by Fountain in [2] where the class of primitive abundant semigroups and its several subclasses,
such as primitive abundant semigroups with regularity condition, primitive quasi-adequate semigroups
and primitive adequate semigroups etc., were also characterized. We observe that the roles of quasi-
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adequate semigroups and adequate semigroups in the range of abundant semigroups are similar to those
of orthodox semigroups and inverse semigroups in the range of regular semigroups, respectively.

In 1991, Lawson [13] went a further step to generalize abundant semigroups to U-semiabundant
semigroups where U is a nonempty subset of the set of idempotents and correspondingly generalize
quasi-adequate semigroups and adequate semigroups to weakly U-orthodox semigroups and
Ehresmann semigroups, respectively. The class of Ehresmann semigroups and its special subclasses
(for example, the class of restriction semigroups) now form a hot research topic, and a lot of
achievements in this line have been obtained by many semigroup experts, for example,
see [3, 4, 6, 8, 10, 11, 13, 20] and the references therein. In particular, Gould [3, 4] gave the equivalent
definition of Ehresmann semigroups from the view of variety, and Jones explicitly introduced the
notion of primitive Ehresmann semigroups in [8] and by using small categories obtained a
construction of primitive Ehresmann semigroups with zero in [10] which is analogous to that of
primitive inverse semigroups with zero given in Lawson [12] by using groupoids. We also observe
that Lawson [14] investigated a class of primitive U-semiabundant semigroups named Rees
semigroups and Wang [22] characterized primitive weakly U-orthodox semigroups, which generalize
the corresponding results of primitive abundant semigroups provided in [2].

On the other hand, Jones [7] generalized Ehresmann semigroups to P-Ehresmann semigroups from
a varietal perspective and provided a common framework for Ehresmann semigroups and regular
*-semigroups. Regular *-semigroups first appeared in Nordahl and Scheiblich [15] and a
generalization of this class of semigroups was investigated in the author [23]. For more details for
regular ∗-semigroups, the reader may consult the texts [1, 7, 15, 19, 23] and their references. At
present, some valuable results have been obtained on P-Ehresmann semigroups. For instance, the
constructions of P-Ehresmann semigroups have been considered by “fundamental approach” in [7]
and [25, 26] by “categorical approach”, respectively. Variety properties, semigroup algebras and
completions of P-Ehresmann semigroups have been explored in Jones [8], Wang [24] and Yan and
Wang [27], respectively.

From the above discussions, the following problem is natural: How to introduce and characterize
primitive P-Ehresmann semigroups? The aim of this paper is to solve the above problem. We have
introduced the notion of projection-primitive P-Ehresmann semigroups and established the structures
of projection-primitive P-Ehresmann semigroups. In particular, we show that projection-primitive P-
Ehresmann semigroups are always P-restriction. Our work may be regarded as extending primitive
Ehresmann semigroups introduced and investigated by Jones in [8] and [10], respectively.

2. Preliminaries

In this section, after recalling some necessary notions and results on P-Ehresmann semigroups, we
shall introduce projection-primitive P-Ehresmann semigroups and explore their basic properties.

For a semigroup S , we always denote the set of idempotents in S by E(S ). From Lemma 2.2 and its
dual in Gould [3], a bi-unary semigroup (S , ·,+ ,∗ ) is called an Ehresmann semigroup if the following
identities hold:

x+x = x, (xy)+ = (xy+)+, (x+y+)+ = x+y+, x+y+ = y+x+, (x+)∗ = x+

xx∗ = x, (xy)∗ = (x∗y)∗, (x∗y∗)∗ = x∗y∗, x∗y∗ = y∗x∗, (x∗)+ = x∗.
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To extend Ehresmann semigroups, P-Ehresmann semigroups were introduced in Jones [7] from the
view of variety. A bi-unary semigroup (S , ·,+ ,∗ ) is called a P-Ehresmann semigroup if the following
identities hold:

(i) x+x = x (i)′ xx∗ = x
(ii) (xy)+ = (xy+)+ (ii)′ (xy)∗ = (x∗y)∗

(iii) (x+y+)+ = x+y+x+ (iii)′ (x∗y∗)∗ = y∗x∗y∗

(iv) x+x+ = x+ (iv)′ x∗x∗ = x∗

(v) x+∗ = x+ (v)′ x∗+ = x∗

A P-Ehresmann semigroup (S , ·,+ ,∗ ) is called P-restriction if

(xy)+x = xy+x∗ and x(yx)∗ = x+y∗x for all x, y ∈ S .

In a P-Ehresmann semigroup (S , ·,+ ,∗ ), the set of projections is PS = {a+ | a ∈ S } which is equal to
{a∗ | a ∈ S } by (v) and (v)′. The following lemmas collect some basic properties of P-Ehresmann
semigroups first given in Jones [7].

Lemma 2.1 ( [7]). A bi-unary semigroup (S , ·,+ ,∗ ) is Ehresmann (resp. restriction) if and only if
(S , ·,+ ,∗ ) is P-Ehresmann (resp. P-restriction) and PS is a subsemilattice of S .

Lemma 2.2 ( [7]). Let (S , ·,+ ,∗ ) be a P-Ehresmann semigroup and x, y ∈ S , e, f ∈ PS .

(1) (x+y)+ = x+y+x+, x++ = x+, x+(xy)+x+ = (xy)+.
(2) (xy∗)∗ = y∗x∗y∗, x∗∗ = x∗, y∗(xy)∗y∗ = (xy)∗.
(3) (e f )2 = e f , e+ = e = e∗, (e f )+ = e f e = ( f e)∗ ∈ PS .
(4) e f ∈ PS if and only if e f = f e.

Let (S , ·,+ ,∗ ) be a P-Ehresmann semigroup. Define a relation on PS by the rule

e ≤ f if and only if e = e f = f e for all e, f ∈ PS .

Then it is easy to see that ≤ is a partial order on PS . By Lemma 2.2, the following corollary is obvious.

Corollary 2.3. Let (S , ·,+ ,∗ ) be a P-Ehresmann semigroup and x, y ∈ S , e, f ∈ PS . Then (xy)+ ≤

x+, (xy)∗ ≤ y∗ and e f e ≤ e.

Similar to the case of restriction semigroups appeared in Jones [8], we call a P-Ehresmann
semigroup (S , ·,+ ,∗ ) without zero or with zero 0 satisfying 0 < PS projection-primitive if

(∀e, f ∈ PS ) e ≤ f =⇒ e = f ,

while call a P-Ehresmann semigroup (S , ·,+ ,∗ ) with zero 0 satisfying 0 ∈ PS projection-primitive if

(∀e, f ∈ PS ) e ≤ f =⇒ e = 0 or e = f .

Observe that a primitive Ehresmann semigroup without zero is just a momoid in which the identity is
the only projection by Lemma 2.1. We first characterize projection-primitive P-Ehresmann semigroups
without zero.
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Proposition 2.4. Let (S , ·,+ ,∗ ) be a P-Ehresmann semigroup without zero. Then the following
statements are equivalent:

(1) S is projection-primitive.
(2) (xy)+ = x+ for all x, y ∈ S .
(3) (xy)∗ = y∗ for all x, y ∈ S .

Proof. We only show that (1) is equivalent to (2), and one can prove that (1) is equivalent to (3) by
similar arguments. If S is projection-primitive and x, y ∈ S , then (xy)+ ≤ x+ by Corollary 2.3. This
implies that (xy)+ = x+. Conversely, let e, f ∈ PS and e ≤ f . Then e f = f e = e. By the given condition
and Lemma 2.2, we have f = f + = ( f e)+ = e+ = e. This gives the projection-primitivity of S . �

From Jones [9], a P-Ehresmann semigroup (S , ·,+ ,∗ ) is called reduced if PS contains exactly one
element. By the identities (i) and (i)′, in this case S is a monoid with the only projection as its identity.
Obviously, reduced P-Ehresmann semigroups are always projection-primitive. In fact, we have the
following result.

Proposition 2.5. Let (S , ·,+ ,∗ ) be a P-Ehresmann semigroup with zero 0 and 0 < PS . Then the
following statements are equivalent:

(1) S is projection-primitive.
(2) x+ = 0+ for all x ∈ S .
(3) x∗ = 0∗ for all x ∈ S .

In this case, S is a reduced P-Ehresmann semigroup with the identity 0+ and so is an Ehresmann
semigroup.

Proof. We only show that (1) is equivalent to (2), and one can prove that (1) is equivalent to (3) by
similar arguments. Let S be projection-primitive and x ∈ S . Then 0+ = (x0)+ ≤ x+ by Corollary 2.3,
and so 0+ = x+. Conversely, the given condition (2) implies that PS = {x+ | x ∈ S } = {0+}. This gives
that S is reduced and has identity 0+, and so is projection-primitive certainly. �

Remark 2.6. By Proposition 2.5, a projection-primitive P-Ehresmann (or Ehresmann) semigroup
(S , ·,+ ,∗ ) with zero 0 and 0 < PS is reduced and is exactly a monoid with zero containing at least two
elements.

Now we consider projection-primitive P-Ehresmann semigroups with zero 0 as a projection.

Proposition 2.7. Let (S , ·,+ ,∗ ) be a projection-primitive P-Ehresmann semigroup with zero 0 and 0 ∈
PS .

(1) For all x ∈ S , x+ = 0⇐⇒ x = 0⇐⇒ x∗ = 0.
(2) For all x, y ∈ S \ {0}, xy , 0⇐⇒ x∗y+x∗ = x∗ ⇐⇒ y+x∗y+ = y+.

Proof. (1) Let x ∈ S . We only prove that x+ = 0 if and only if x = 0. The other equivalence can be
showed by symmetry. In fact, if x+ = 0, then x = x+x = 0x = 0 by (i). To show the converse, we
first observe that 0+ = (a0)+ ≤ a+ for all a ∈ S by Corollary 2.3. This implies that 0+ is the minimum
element in PS . Since 0 ∈ PS , it follows that 0+ = 0+0 = 0.
(2) Let x, y ∈ S \ {0}. We only prove that xy , 0 if and only if x∗y+x∗ = x∗. The other equivalence can
be showed by symmetry. If xy , 0, then xx∗y+y = xy , 0 by the identities (i) and (i)′. This implies
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that x∗ , 0 and x∗y+ , 0. By item (1) we have x∗+ , 0 and (x∗y+)+ , 0. But Corollary 2.3 gives that
(x∗y+)+ ≤ x∗+, and so (x∗y+)+ = x∗+ by the projection-primitivity of S . Moreover, Lemma 2.2 provides
that x∗y+x∗ = (x∗y+)+ = x∗+ = x∗. Conversely, if x∗y+x∗ = x∗, then by using (ii), (i)′, (ii), Lemma 2.2
(3), (i)′ and item (1) of the present lemma in order, we have

(xy)+ = (xy+)+ = (xx∗y+)+ = (x(x∗y+)+)+ = (xx∗y+x∗)+ = (xx∗)+ = x+ , 0, (2.1)

which implies that xy , 0 by item (1) of the present lemma again. �

To end this section, we observe the following interesting result.

Theorem 2.8. A projection-primitive P-Ehresmann semigroup is always P-restriction.

Proof. Let (S , ·,+ ,∗ ) be a projection-primitive P-Ehresmann semigroup and x, y ∈ S . Firstly, if S
contains no zero, then (xy)+x = x+x = x by Proposition 2.4. By Corollary 2.3, we have x∗y+x∗ ≤ x∗,
and so x∗y+x∗ = x∗ by the projection-primitivity of S . This implies that xy+x∗ = xx∗y+x∗ = xx∗ = x
by (i)′. Thus (xy)+x = xy+x∗. Dually, we have x(yx)∗ = x+y∗x. Secondly, if S contains a zero 0
and 0 < PS , then it is obvious that (xy)+x = xy+x∗ and x(yx)∗ = x+y∗x by Proposition 2.5. Finally,
assume that S contains a zero 0 and 0 ∈ PS . If xy = 0, then by Proposition 2.7 (1) and (ii) we have
0 = (xy)+ = (xy+)+ and xy+ = 0. This implies that (xy)+x = 0 = xy+x∗. If xy , 0, then (xy)+ , 0
and x∗ = x∗y+x∗ by Proposition 2.7. Since (xy)+ ≤ x+ by Corollary 2.3, the projection-primitivity of S
gives that (xy)+ = x+. This implies that

xy+x∗ = xx∗y+x∗ = xx∗ = x = x+x = (xy)+x

by (i) and (i)′. Therefore, (xy)+x = xy+x∗. Dually, we have x(yx)∗ = x+y∗x. Thus, S is P-restriction in
all cases. �

3. Projection-primitive P-Ehresmann semigroups without zero or with zero which is not a
projection

In the remainder of this paper, we shall establish the structures of projection-primitive P-Ehresmann
semigroups. The present section is devoted to projection-primitive P-Ehresmann semigroups without
zero or with zero which is not a projection. The following theorem characterize these semigroups
completely.

Theorem 3.1. Let I and Λ be two sets and φ : I → Λ, i 7→ iφ be a bijection. Assume that M is a
monoid, |I × M × Λ| , 1 and P = (pλi)Λ×I is a Λ × I-matrix over M satisfying piφ,i = e = piφ, j p jφ,i for
all i, j ∈ I, where e is the identity of M. Define a binary and two unary operations on the set

S =M(I,Λ,M, P) = {(i, x, λ) | i ∈ I, x ∈ M, λ ∈ Λ}

as follows:

(i, x, λ)( j, y, µ) = (i, xpλ jy, µ), (i, x, λ)+ = (i, e, iφ), (i, x, λ)∗ = (λφ−1, e, λ).

Then (S , ·,+ ,∗ ) is a projection-primitive P-Ehresmann semigroup without zero or with zero which is not
a projection. Conversely, every such semigroup can be obtained in this way.
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Proof. Direct part. By hypothesis, S 0 can be regarded as a Rees matrix semigroup over the monoid
M0. Denote P(S 0) = {(i, p−1

λi , λ) | i ∈ I, λ ∈ Λ} ∪ {0} and U = {(i, e, iφ) | i ∈ I}. Then by Proposition 1.5
in Lawson [14], we can easily show that for all (i, x, λ), ( j, y, µ) ∈ S ,

(i, x, λ) R̃P(S 0) ( j, y, µ)⇐⇒ (i, x, λ) R̃U ( j, y, µ)⇐⇒ i = j,

(i, x, λ) L̃P(S 0) ( j, y, µ)⇐⇒ (i, x, λ) L̃U ( j, y, µ)⇐⇒ λ = µ.

Moreover, R̃U (resp. L̃U) is a left congruence (resp. a right congruence) on S by Lemma 1.9 in
Lawson [14]. By the given condition on the matrix P, it is easy to see that U is both a right
projection-set and a left projection-set of S in the sense of Jones [7] (see page 629). According to
Theorem 6.1 of Jones [7] and its dual, (S , ·,+ ,∗ ) is a P-Ehresmann semigroup and PS = U. Moreover,
in view of Proposition 1.7 of Lawson [14], no two different elements in PS can be compatible. Thus S
is projection-primitive. If (i, z, λ) is the zero element of S , then for all ( j, y, µ) ∈ S , we have
(i, z, λ)( j, y, µ) = (i, z, λ) = ( j, y, µ)(i, z, λ). This implies that i = j and λ = µ. In this case, |I| = |Λ| = 1
and so PS contains only one element. By hypothesis, S has at least two elements and so the zero is
not a projection.

Converse part. Let (M, ·,+ ,∗ ) be a projection-primitive P-Ehresmann semigroup with zero which is
not a projection. Then by Proposition 2.5 and Remark 2.6, M has at least two elements and is a monoid
with the only projection e as its identity. In this case, M has the form in the theorem certainly.

Now let (T, ·,+ ,∗ ) be a projection-primitive P-Ehresmann semigroup without zero. Then it is easy
to see that T 0 is a Rees semigroup with respect to U = P0

T in the sense of Lawson [14], and L̃U =

{(a, b) ∈ T 0 × T 0 | a∗ = b∗} ∪ {(0, 0)} and R̃U = {(a, b) ∈ T 0 × T 0 | a+ = b+} ∪ {(0, 0)} (see page 28
in [14]). Fix an element e ∈ PT and denote I = {xe | x ∈ PT }, Λ = {ex | x ∈ PT }. Define
φ : I → Λ, xe 7→ ex for all x ∈ PT . Then φ is a bijection. In fact, if x, y ∈ PT and xe = ye, then
x = x+ = (xe)+ = (ye)+ = y+ = y by Lemma 2.2 and Proposition 2.4, and so ex = ey. This fact
and its dual give that φ is bijection. We assert that piφ,i = e = piφ, j p jφ,i for all i, j ∈ I. In fact, take
i = xe, j = ye ∈ I where x, y ∈ PT . Then iφ = ex and jφ = ey. This implies by Lemma 2.2 and
Proposition 2.4 that piφ,i = (iφ)i = (ex)(xe) = exe = (ex)+ = e+ = e and

piφ, j p jφ,i = ((iφ) j)(( jφ)i) = exyeeyxe = exyeyxe = (e(xyeyx))+ = e+ = e.

On the other hand, for every t ∈ T , we have (t+e)+ = t+ and (et∗)∗ = t∗ by Proposition 2.4. In
view of Lemma 2.2 (4), I and Λ can index the non-zero R̃U-classes and L̃U-classes of T 0, respectively.
Denote M = {a ∈ T | a+ = a∗ = e} ∪ {0}. For i ∈ I and λ ∈ Λ, let ri = i and qλ = λ and denote
pλi = qλri = λi. Since (t+e)+ = t+, (et∗)∗ = t∗, (ete)+ = (ete)∗ = e and t = (t+e)ete(et∗) by Lemma 2.2
and Proposition 2.4, in view of the proof of Theorem 3.6 in Lawson [14],

θ : T 0 → S =M0(I,Λ,M, P), t 7→ (t+e, ete, et∗), 0 7→ 0

is a semigroup isomorphism. Moreover, if we define

(i, a, λ)+ = (i, e, iφ), (i, a, λ)∗ = (λφ−1, e, λ), 0+ = 0∗ = 0

on S , then we can see that θ also preserves + and ∗ by Lemma 2.2 and Proposition 2.4. By the
construction of P = (pλi), θ|T is a (2, 1, 1)-isomorphism from T ontoM(I,Λ,M, P). �
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In Theorem 3.1, if we identify i with iφ for all i ∈ I, we can assume that I = Λ. So we have the
following corollary.

Corollary 3.2. Let I be a set and M a monoid with |I × M| , 1. Assume that P = (pλi)I×I is an
I × I-matrix over M satisfying pii = e = pi j p j,i for all i, j ∈ I, where e is the identity of M. Define a
binary and two unary operations on the set

S =M(I,M, P) = {(i, x, j) | i, j ∈ I, x ∈ M}

as follows:
(i, x, j)(k, y, l) = (i, xp jky, l), (i, x, j)+ = (i, e, i), (i, x, j)∗ = ( j, e, j).

Then (S , ·,+ ,∗ ) is a projection-primitive P-Ehresmann semigroup without zero or with zero which is not
a projection. Conversely, every such semigroup can be obtained in this way.

4. Projection-primitive P-Ehresmann semigroups with zero as a projection

In this section, we consider the structures of projection-primitive P-Ehresmann semigroups with
zero as a projection. To this aim, we need to recall some necessary notions and results. From Jones [7],
a left projection algebra consists of a nonempty set P and a binary operation “ × ” satisfying the
following axioms:

(P1) e × e = e.
(P2) e × (e × f ) = (e × f ) × e = e × f .
(P3) (e × f ) × g = e × ( f × (e × g)).
(P4) e × ( f × g) = (e × f ) × (e × ( f × g)).

For simplicity, we use the words “projection algebra” to replace “left projection algebra” in the sequel.
Let (P,×) be a projection algebra. Define a relation “ ≤P ” on P by the rule that for all e, f ∈ P,
e ≤P f if and only if e = f × e. Then ≤P is a partial order on P by (P1)–(P4). Moreover, by (P2) it is
easy to see that

e × f ≤P e (4.1)

for all e, f ∈ P. A projection algebra (P,×) with the least element 0 with respect to ≤P is called
primitive if no two different elements in P \ {0} can be compatible. On primitive projection algebras,
we have the following simple results.

Proposition 4.1. A primitive projection algebra (P,×) is just a (2,0)-type algebra (P,×, 0) satisfying
the following conditions: For all e, f ∈ P,

(Pr1) e × e = e.
(Pr2) 0 × e = 0 = e × 0.
(Pr3) e × f = 0 or e × f = e.
(Pr4) e × f = 0 if and only if f × e = 0.

In particular, if e × f = f × e for all e, f ∈ P, then e × f , 0 if and only if e = f , 0.
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Proof. Let (P,×) be a primitive projection algebra with the least element 0. We only need to show that
(Pr2)–(Pr4) hold. Let e, f ∈ P. Since 0 ≤P e, we have e × 0 = 0, and so 0 × e = (e × 0) × e = e × 0 = 0
by (P2). This proves (Pr2). In view of (4.1), (Pr3) is true. Finally, if e × f = 0 and f × e , 0, then
f × e = f , 0 by (Pr3). However,

f × e = ( f × e) × e = f × (e × ( f × e)) = f × (e × f ) = f × 0 = 0

by (P3) and (Pr2). This is a contradiction. So (Pr4) holds.
Conversely, let (P,×, 0) be a (2,0)-type algebra satisfying the given conditions. We only need to

show that (P2)–(P4) hold. Let e, f , g ∈ P. By (Pr3), e× f = 0 or e× f = e. In the former case, all items
in (P2) are equal to 0 by (Pr2). In the latter case, all items in (P2) are equal to e by (Pr1). This shows
(P2). Moreover, we also have e × g = 0 or e × g = e. Then the following four cases may occur:

(1) e × f = e, e × g = e; (2) e × f = e, e × g = 0; (3) e × f = 0, e × g = e; (4) e × f = 0, e × g = 0.

In case (1), (e × f ) × g = e × g = e and e × ( f × (e × g)) = e × ( f × e). By (Pr3) and (Pr4), f × e = f
in the case. So e × ( f × e) = e × f = e. This proves (P3) for case (1). The other cases can be showed
similarly. Finally, we consider (P4). By (Pr3), f × g = f or f × g = 0. In the former case, the left side
of (P4) is e× f , the right side of (P4) is (e× f )× (e× f ) = e× f by (Pr1), and so they are equal. In the
latter case, the two sides of (P4) are both 0 by (Pr2). The final result of the proposition follows from
(Pr1), (Pr3) and (Pr4). �

By the dual of Proposition 2.4 in [7], and Propositions 2.7 and 4.1, we have the following result
easily.

Lemma 4.2. Let (S , ·,+ ,∗ ) be a primitive P-Ehresmann semigroup with zero 0 and 0 ∈ PS . Define a
binary operation “ ×S ” on PS as follows: For all e, f ∈ PS , e ×S f = (e f )+ = e f e. Then (PS ,×S , 0)
forms a primitive projection algebra. In particular, if S is Ehresmann, then e ×S f = f ×S e for all
e, f ∈ PS by Lemma 2.1.

Let C be a nonempty set with a partial binary operation · and (P,×, 0) a primitive projection algebra
with (P \ {0}) ⊆ C. Assume that d : C → P, x 7→ d(x), r : C → P, x 7→ r(x) are maps such that
d(C) ∪ r(C) ⊆ (P \ {0}) and

d(e) = e = r(e) (4.2)

for all e ∈ (P \ {0}). According to Wang [26], C = (C, ·,d, r, P) is called a generalized category over
(P,×, 0) if the following conditions hold:

(G1) For all x, y ∈ C, x · y is defined if and only if r(x) × d(y) , 0 and then d(x · y) = d(x) and
r(x · y) = r(y).

(G2) If x, y, z ∈ C such that both x · y and y · z are defined, then (x · y) · z = x · (y · z).
(G3) For all x ∈ C, d(x) · x and x · r(x) are defined and d(x) · x = x = x · r(x).
(G4) If e, f ∈ P and e × f , 0, then (e · f ) · e = e.

If e × f = f × e for all e, f ∈ P, then e × f , 0 if and only if e = f , and so (G4) is always satisfied by
(4.2), (G3) and Proposition 4.1. In this case, C = (C, ·,d, r, P) is a category in usual sense.
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Proposition 4.3. Let C = (C, ·,d, r, P) be a generalized category over the primitive projection algebra
(P,×, 0). Put C0 = C ∪ {0}. Define a binary operation on C0 as follows: If x, y ∈ C and x · y is
defined in C, then xy = x · y; all other products in C0 are 0. Moreover, define two unary operations
on C0 as follows: 0♣ = 0♠ = 0 and x♣ = d(x), x♠ = r(x) for all x ∈ C. With these operations C0 is a
projection-primitive P-Ehresmann semigroup with 0 as a projection. In the sequel, we call (C0, ·,♣, ♠)
a generalized category with zero adjoined.

Proof. Let x, y, z ∈ C0. It is routine to check that (xy)z = 0 precisely when x(yz) = 0. Thus C0 is a
semigroup by (G2). We shall show that the identities (i)–(v) and (i)′–(v)′ are satisfied. Let x, y ∈ C0.
If 0 ∈ {x, y}, the identities (i)–(v) and (i)′–(v)′ are satisfied obviously. So we assume that x, y ∈ C.
Firstly, since d(x) · x = x by (G3), we have x♣x = x. This gives (i). Dully, we have (i)′. Secondly, since
d(y♣) = d(d(y)) = d(y) by (4.2), it follows that xy♣ , 0 if and only if xy , 0 by (G1). If this is the case,
we have

(xy♣)♣ = d(xy♣) = d(x) = d(xy) = (xy)♣

by (G1) again. This is exactly the identity (ii). Dually, (ii)′ is also true. Thirdly, by (4.2), (G1) and
(Pr4), we can see that

x♣y♣ , 0⇐⇒ d(x) × d(y) , 0⇐⇒ x♣y♣x♣ , 0.

In this case, we have
(x♣y♣)♣ = d(d(x)d(y)) = d(d(x)) = d(x)

by (G1) and x♣y♣x♣ = d(x)d(y)d(x) = d(x) by (G4). This implies that the identity (iii) is true. Dually,
(iii)′ is valid. Moreover, by (4.2), (G1) and (G3) we have

x♣x♣ = d(x)d(x) = d(d(x))d(x) = d(x).

This gives (iv). Similarly, we have (iv)′. The identities (v) and (v)′ follow from the fact (x♣)♠ =

r(d(x)) = d(x) = x♣ by (4.2) and its dual. We have shown that (C0, ·,♣, ♠) is a P-Ehresmann semigroup
with the set of projections

PC0 = {x♣ | x ∈ C0} = P = {d(x) | x ∈ C} ∪ {0} = {r(x) | x ∈ C} ∪ {0}.

Finally, let e, f ∈ PC0 and e ≤ f . Then e = e f = f e. If e , 0, then f · e is defined and so
e = d(e) = d( f e) = d( f ) = f by (4.2) and (G1). Thus, (C0, ·,♣ ,♠ ) is projection-primitive. �

Remark 4.4. Let C = (C, ·,d, r, P) be a generalized category over the primitive projection algebra
(P,×, 0). If P contains at least three elements and e× f , 0 for all e, f ∈ P \ {0}, then x · y is defined for
all x, y ∈ C. By Propositions 4.3 and 2.5, (C, ·,♣ ,♠ ) is a projection-primitive P-Ehresmann semigroup
without zero. On the other hand, if P contains two elements, say, P = {0, 1}, then (C, ·,♣ ,♠ ) is a reduced
P-Ehresmann semigroup. In fact, (C, ·) is a monoid with 1 as identity, and (C0, ·) is a monoid with
zero adjoined. Thus we can think that generalized categories with zero adjoined covers the semigroups
considered in the last section.

Now we can give the main result of this section, which is a generalization of a result on restriction
semigroups obtained by Jones in Section 4 of [10].
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Theorem 4.5. Let (S , ·,+ ,∗ ) be a P-Ehresmann semigroup with zero as a projection and |S | > 1. Then
S is projection-primitive if and only if S is (2,1,1)-isomorphic to a generalized category with zero
adjoined.

Proof. We have proved in Proposition 4.3 that every generalized category with zero adjoined is a
projection-primitive P-Ehresmann semigroup with zero as a projection. To prove the converse, let
(S , ·,+ ,∗ ) be a projection-primitive P-Ehresmann semigroup with zero 0 and 0 ∈ PS . By Lemma 4.2,
(PS ,×S , 0) forms a primitive projection algebra. Denote C = S \ {0}. Define a partial binary operation
“ · ” as follows:

x · y =

{
xy if xy , 0,

undefined if xy = 0,
(4.3)

where xy denotes the multiplication of x and y in the semigroup S . Define maps

d : C → PS , x 7→ x+, r : C → PS , x 7→ x∗. (4.4)

Then we have d(C) ∪ r(C) ⊆ (PS \ {0}) by Proposition 2.7 (1), and d(e) = e = r(e) for all e ∈ PS \ {0}
by Lemma 2.2, respectively.

We assert that (C, ·,d, r, PS ) is a generalized category over the primitive projection algebra
(PS ,×S , 0). First, let x, y ∈ C. By Proposition 2.7 (2) and (Pr3), (Pr4),

x · y is defined ⇐⇒ x∗y+x∗ = x∗

⇐⇒ y+x∗y+ = y+ ⇐⇒ r(x) ×S d(y) , 0⇐⇒ d(y) ×S r(x) , 0.

In this case, by the identities defining P-Ehresmann semigroups and Lemma 2.2 we have

d(x · y) = d(xy) = (xy)+ = (xy+)+ = (xx∗y+)+

= (x(x∗y+)+)+ = (xx∗y+x∗)+ = (xx∗)+ = x+ = d(x).

Dually, we have r(x ·y) = r(y). Thus (G1) holds. Next, let x, y, z ∈ C, and x ·y and y ·z be defined. Since
r(x·y) = r(y) and d(y·z) = d(y), (x·y)·z and x·(y·z) are defined, and so (x·y)·z = (xy)z = x(yz) = x·(y·z).
This gives (G2). Moreover, for x ∈ C, since x+x = x , 0, it follows that x+ · x is defined and d(x) · x = x.
Dually, x · x∗ is defined and x · r(x) = x. Thus (G3) is true. Finally, let e, f ∈ PS and e ×S f , 0.
Then f ×S e , 0 by (Pr4) and e = e ×S f = e f e by (Pr3). In view of (G2), (e · f ) · e is defined and
(e · f ) · e = (e f )e = e f e = e. Thus (G4) is valid.

By Proposition 4.3, we have a generalized category with zero adjoined (C0, ·,♣ ,♠ ). We shall show
that S is (2,1,1)-isomorphic to C0. Define a map ψ : S → C0 by assigning 0ψ = 0 and xψ = x for
all x ∈ C = S \ {0}. Obviously, ψ is a bijection. Let x, y ∈ S . If x = 0 or y = 0, then xψ = 0 or
yψ = 0, whence (xy)ψ = 0ψ = 0 = (xψ)(yψ). Assume that x, y ∈ C = S \ {0}. Then xy = 0 in (S , ·,+ ,∗ )
if and only if x · y is not defined in the generalized category (C, ·,d, r, PS ), if and only if xy = 0 in
(C0, ·,♣ ,♠ ) by (4.3) and Proposition 4.3. This implies that (xy)ψ = (xψ)(yψ) for all x, y ∈ C. Thus ψ
is a semigroup homomorphism. Furthermore, observe that 0+ = 0 by Proposition 2.7 (1) and 0♣ = 0
by Proposition 4.3, it follows that (0ψ)♣ = 0♣ = 0 = 0ψ = 0+ψ. Dually, we have (0ψ)♠ = 0∗ψ. If
x ∈ C = S \ {0}, then x+ ∈ C by Proposition 2.7 (1), this implies that (xψ)♣ = x♣ = d(x) = x+ = x+ψ

by Propositions 4.3 and (4.4). Dually, we have (xψ)♠ = x∗ψ for all x ∈ C. We have shown that ψ is
a (2,1,1)-isomorphism. �
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By Lemma 4.2 and the statements before Proposition 4.3, we have the following result appeared in
Jones [10].

Corollary 4.6 ( [10]). Let (S , ·,+ ,∗ ) be an Ehresmann semigroup with zero as a projection and |S | > 1.
Then S is projection-primitive if and only if S is (2,1,1)-isomorphic to a category with zero adjoined.

Remark 4.7. Let (S , ·,+ ,∗ ) be a primitive P-Ehresmann semigroup without zero or with zero 0 but
0 < PS . Let � < S and define additionally x� = �x = � = �� and �+ = �∗ = �. Then (S �, ·,+ ,∗ ) forms a
primitive P-Ehresmann semigroup with zero � and � ∈ PS � . In this case, the generalized category
associated with S � constructed in the proof of Theorem 4.5 is just (S , ·,+ ,∗ ) and the corresponding
generalized category with zero adjoined is just (S �, ·,+ ,∗ ). By Remark 4.4, we can think that
Theorem 4.5 also works for the semigroups considered in the last section. However, it is trivial
certainly in the case.

5. Conclusions

In this paper, we have obtained the structures of projection-primitive P-Ehresmann semigroups. As
a future work, one can investigate the associative algebras of these semigroups by using the results
obtained in the present paper.
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