AIMS Mathematics, 6(6): 6454-6468.
AIMS Mathematics DOI: 10.3934/math.2021379
% : Received: 14 January 2021
o Accepted: 29 March 2021
http://www.aimspress.com/journal/Math Published: 14 April 2021

Research article

On Bounds of fractional integral operators containing Mittag-Leffler
functions for generalized exponentially convex functions

Maryam Saddiqa', Ghulam Farid?, Saleem Ullah’, Chahn Yong Jung**and Soo Hak Shim’

! Department of Mathematics, Air University Islamabad, Pakistan

2 COMSATS University Islamabad, Attock Campus, Attock 43600, Pakistan

3 Department of Mathematics, Air University Islamabad, Pakistan

4 Department of Business Administration Gyeongsang National University Jinju 52828, Korea

> Department of Refrigeration and Air Conditioning Engineering, Chonnam National University,
Yeosu 59626, Korea

* Correspondence: Email: bb5734@gnu.ac.kr.

Abstract: Recently, a generalization of convex function called exponentially (@, — m)-convex
function has been introduced. This generalization of convexity is used to obtain upper bounds of
fractional integral operators involving Mittag-Leffler (ML) functions. Moreover, the upper bounds of
left and right integrals lead to their boundedness and continuity. A modulus inequality is established
for differentiable functions. The Hadamard type inequality is proved which shows upper and lower
bounds of sum of left and right sided fractional integral operators.

Keywords: convex function; exponentially (@, i — m)-convex function; Mittag-Leffler function;
generalized fractional integral operators
Mathematics Subject Classification: 26A51, 26A33, 33E12

1. Introduction

Convexity is one of the fascinating and natural concepts, it is beneficial in optimization theory,
theory of inequalities, numerical analysis, economics and in other subjects of pure and applied
mathematics. Convex functions are defined in different ways due to their interesting graphical shapes
in euclidean space. A convex function defined on an interval of real line is always continuous in the
interior points, but need not be differentiable. Although, it has left and right increasing derivatives at
each interior point. The derivative of a differentiable convex function is always an increasing function.
A twice differentiable convex function has downward concavity. In analytical forms it is defined in
several ways the classical one is given in the following definition.
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Definition 1. A function ¢ : M C R — R, where M is convex set, is said to be convex function, if the
following inequality holds:

d(tu + (1 — 1)) < tp(u) + (1 — HP(v), (1.1)
forallu,v e Mandt € [0, 1].

The inequality (1.1) motivates the reader to extend, refine, generalize the notion of convexity. The
authors have analyzed this inequality to introduce several new notions, for example m-convex
function, s-convex function, h-convex function, p-convex function and many others. In [1], the notion
of exponential convex function is introduced.

Definition 2. A function ¢ : M C R — R, where M is an interval, is said to be exponentially convex
function, if we have the following inequality:

o(tu + (1 —1yv) < ;% +(1 - t)d)(v)

eov ?
forallu,ve M, te€[0,1]and o € R.
In [2], the notion of A-convex function is introduced as follows:

Definition 3. Let h : N D [0, 1] — R be a non-negative function. A function ¢ : M — R is said to be
h-convex function, if the following inequality holds:

P(tu + (1 — 1)v) < h(D)gp(u) + h(1 — H)$(v),
forallu,v e M andt € [0, 1], where M and N are intervals in R.
In [3], the following definition of (h — m)-convex function is given.

Definition 4. Let N C R be an interval containing (0,1) and let h : N — R be a non-negative
function. We say that ¢ : [0,b] — R is (h — m)-convex function, if ¢ is non-negative and for all
u,ve[0,bl,me[0,1]andt € (0, 1), one has

o(tu + m(1 — £v) < h(OPw) + mh(1 — D). (1.2)

In [4], the following definition of (a, m)-convex function is given.

Definition 5. A function ¢ : [0,b] C R — R is said to be (a, m)-convex function, where (a,m) € [0, 17
and b > 0, if for every u, v € [0,b] and t € [0, 1] we have

ot +m(1 — 1)) < °¢(u) + m(1 — )p(v).

In [5], the definition of (s, m)-convex function is given.

Definition 6. A function ¢ : [0,b] — R is said to be (s, m)-convex function, where (s,m) € [0, 11? and
b >0, if for every u, v € [0,b] and t € [0, 1] we have

$(tu +m(l =) < £°¢u) + m(1 - 1)°¢(v).

Farid et al. in [6] unified the all above definitions in a single notion called («, h—m)-convex function.
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Definition 7. Let N C R be an interval containing (0,1) and let h : N — R be a non-negative
function. We say that ¢ : [0,b] — R is a (o, h — m)-convex function, if ¢ is non-negative and for all
u,v € [0,b], (a,m) € [0,1]1* and t € (0, 1), one has

d(tu + m(1 —1)v) < h(t")p(u) + mh(1l — 1*)p(v). (1.3)

A further generalization namely exponentially (a, h — m)-convex function is given in [7].

Definition 8. Let N C R be an interval containing (0, 1) and let h : N — R be a non-negative function.
We say that ¢ : [0,b] — R is an exponentially (a, h — m)-convex function, if ¢ is non-negative and for
all u,v € [0, b], (a,m) € [0,1]%, t € (0, 1) and o € R, one has
o(tu + m(1 — t)v) < h(t“)M + mh(1 — IQ)@.
eO’V

eO’M

(1.4)

The above definition of exponentially (a, & — m)-convex function unifies the definitions of convex,
exponentially convex, m-convex, exponentially m-convex, s-convex, exponentially s-convex, h-convex,
exponentially s-convex, (h — m)-convex, exponentially (4 — m)-convex, (s, m)-convex, exponentially
(s, m)-convex, (a, m)-convex, exponentially («, m)-convex functions in a single inequality. The aim of
this paper is to study the extended generalized fractional integral operators involving Mittag-Leffler
(ML) functions for exponentially (a,h — m)-convex function. By using definition of exponentially
(a, h — m)-convex function, bounds of these fractional integral operators are obtained. The results will
hold at the same time for all convex functions explained in above.

The well-known Mittag-Lefller function E(.) for one parameter is defined as follows [8]:

(9] tn
FO= ) @y

where t,& € C, R(€) > 0 and I'(.) is the gamma function. It is a natural extension of exponential,
hyperbolic and trigonometric functions. This function and its extensions appear as solution of
fractional integral equations and fractional differential equations. It was further explored by Wiman,
Pollard, Humbert, Agarwal and Feller, see [9]. For its generalizations and extensions by various
authors, we refer the reader to [9-13].
The following extended Mittag-Lefller function is introduced by Andri¢ et al. in [14]:

Definition 9. Let y, &, 1, y,c € C, R(u), R(E), R > 0, R(c) > R(y) > 0withp > 0,6 > 0 and

0 < k <6+ R(u). Then the extended generalized Mittag-Leffler function EZ:?:];’C(t; p) is defined by:

, 1.5
wél Bly,c—y) T(un+a) ), >

Ey,é,k,c(l; p) _ i ﬁp(y +nk,c — Y) () "
n=0
where 3, is defined by

1
By(x,y) = f P =ty e i dt
0

I'(c+nk)
')

and (C)nx =
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A derivative formula of the extended generalized Mittag-Leffler function is given in following
lemma.

Lemmal. [/4]Ifm e N,w,u, &, 1,y,c € C,R(), R(&), R() > 0,R(c) > R(y) >0withp >0,6 >0
and 0 < k < 6 + R(u), then

ufl nE—m,

d C —m— ,C
( ) [ EYON (it p)] = £ TEVSSS (it p) R(E) > m. (1.6)
Remark 1. The extended Mittag-Leffler function (1.5) produces the related functions defined in [11—
13,15,16], see [17, Remark 1.3].

Next we give the definition of the generalized fractional integral operator containing the extended
generalized Mittag-LefHler function (1.5).

Definition 10. [/4] Let w,u,&,1,y,¢ € C, R(u), R(€),R(1) > 0, R(c) > R(y) > 0 with p > 0,
6>0and0 <k <6+ R(u). Let f € Li[a,b] and x € [a, b]. Then the generalized fractional integral
operators containing Mittag-Leffler function are defined by:

(€enat) () = f (= DT BV (w(x = 175 p) [ (1.7)
and
(s, F)xp) = f (1 = X EX it - ) p)f (). (1.8)
For application and related results involving Mittag-Leffler function, see [18,19].

Remark 2. The operators (1.7) and (1.8) produce in particular several kinds of known fractional
integral operators, see [17, Remark 1.4]

The classical Riemann-Liouville fractional integral operator is defined as follows:

Definition 11. [16] Let f € Li[a,b]. Then Riemann-Liouville fractional integral operators of order
£ € C, R(&) > 0 are defined as follows:

L f(x) = = (g) f (x =0 f(Ddt, x > a, (1.9)

L f(x) = @ f (t—x) ' f()dt, x < b. (1.10)

It can be noted that ( 7?% " f) (x;0) = f(x) and ( 7;;‘0‘ . f) (x;0) = I;:, f(x). From fractional

integral operators (1.7) and (1.8) we can erte.

Jear (s p) = (€070 1) (s p) = (x = af EVgyy (w(x — a)'; p), (1.11)
T (s p) = (000 1) (x5 p) = (b= X)"EL (w(b — x)'; p). (1.12)

In the upcoming section we compute the bounds of fractional integral operators involving extended
Mittag-Leffler (ML) functions for exponentially (a, h — m)-convex functions. The continuity of the
fractional integrals is proved. Furthermore, the bounds of these operators are presented in the form of
the Hadamard type inequality. A modulus inequality is established for differentiable functions whose
derivatives in absolute are exponentially (@, h—m)-convex. Many well-known results are deduced from
given results.
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2. Main results

Theorem 1. Let ¢ : [u,v] — R, u < mv, be a real valued function. If f is positive and exponentially
(a, h — m)-convex, m € (0, 1], then there exist o, T € R such that for &,n > 1, the following fractional
integral inequality holds:

(6205 ®) 22 + (€1715,-8) (3 ) @.1)

X 1
< (= gy (X3 p)[¢( )f h(6™)d6 + m ¢(’")f h(l—@“)d@}
0

(ﬁ)

+ (v =x)J-1,-(x p)[¢( )f h(6*)dO + m — fh(l—@“)d@], x € [u,v].
T Jo

Proof. Let x € [u, V], for t € [u, x) and € > 1. Then the following inequality holds:
(x = OF T EXS (w(x — 15 p) < (x — w) T EVE (w(x — u)'s p). (2.2)

Using the definition of exponentially (@, h — m)-convex function, for o € R we get

oo <h{[ L))o - (1)) 2

After multiplying (2.2) and (2.3) and then integrating over [u, x], we have

f (x = O EN (w(x — 1 p)p(1)dt

il et X—u

) [0 (=2 )

By using the definition of left integral operators, we get

u

< (= wf BN (@(x - wp's p) (¢(”) (L

(€8s o0) (s p) (2.4)

X 1
< (= )0 (35 p)[¢( " f h(")d6 + ¢5 ) f h(1 - 9")d9].
e’ m 0

Similarly, on the other hand for ¢ € (x,v] and > 1, the following inequality holds:
(1= ) EL (ol = x5 p) < (v = X" ELe (v = 0 p). (2.5)

Again by using definition of exponentially (a, h — m)-convexity of ¢, for 7 € R we have

¢(t)<h( x) ‘/’e(v) h(l—(t_x)a)qs(%). 2.6)

vV—X em
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Multiplying (2.5) with (2.6) and then integrating over [x, v], we have

f x(f — )" EN (Wl = X p)g(nyd

< =" EX R (w — xps p (¢(V) dt
o) t—x\?
) [ (22 )|
e’'m u vV—X
By using the definition of right integral operators, we get
(€t ®) (i ) 7
o(2)
< V=), (x; p){¢( )f h(6")d6 + m (X)f h(1 —6")5]9].
e m 0
Sum of inequalities (2.4) and (2.7) gives the required inequality (2.1). O

Some particular results are stated in the following corollaries.

Corollary 1. Ifwe set ¢ = nin (2.1), then the following inequality is obtained:

(62000 ) 522 + (€1217,-0) (x: ) (2.8)

X 1
< (= w0 (3 p){¢( “) f h(6”)dd + m ¢(’") f h(l — 9")d0]
m o Jo

e’
(é)f h(l_ga)de]’ x € [u,v].
0

Corollary 2. Along with assumptions of Theorem 1, if ¢ € Ly[u,v], then the following inequality is
established:

b= ey (x p)(‘m f h(O")d0 + m

(€ 0) 6 p) + (€ 0) (x: p) 2.9)
— . _ - 1
< lgll (((x e 6p) | 0= Dt (s p )) f h(")d6
e e 0
_ (x _ (- 1
m((x DewliD) B2 D ik )) [ h(l—é’“)de).
e n e 0

Corollary 3. Further if h € Lo[u,v] and & = 1 in (2.9), then we get the following result:
(€ers ) () + (g, 8) (x: ) (2.10)

1 m
< gLl ((x = )10 (53 ) (em + eo-x)

1
V= D)1 (2 p) (e— i ))

e ' m
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Remark 3. (i) If we set « = m = 1 and h(t) = tin (2.1), then we obtain result for exponentially convex
function.

(ii) If we set @ = m = 1 and h(t) = t in (2.8), then we obtain result for exponentially convex function.
(iii) If we say that h(t) = t and o = 1 = 0 in (2.1), then we obtain [20, Theorem 2.1].

(iv) If we set h(t) = t and o = 7 = 0 in (2.8), then we obtain [20, Corollary 2.1].

(v) Ifweseta =1and o =1 =0in(2.1), then we obtain [21, Theorem 1].

(vi) Ifweseta =m =1, h(t) =tand o = 7 = 0 in (2.1), then we obtain [21, Corollary 1].

(vii) If we set @ = 1 and o0 = v = 0 in (2.1) we obtain [22, Theorem 1].

(viii) Ifwe seta =m =1, h(t) = tand o =t = 0in (2.1) we obtain [23, Theorem 1].

Theorem 2. With the assumptions of Theorem 1 if ¢ € L[u,v], then operator defined in (1.7) and
(1.8) are bounded and continuous.

Proof. 1f ¢ € L,[u,v], then from (2.4) we have

'(EZ,?,’ZZM+¢) (x; p)] 2.11)
Yoo 1
S IPlloo (x = u)Je—1 0 (x5 P) e h(@%) + megi h(l —6%)|do
0 m
: 1 104 1 Y04
< Plloo(v — )14+ (v p) ﬁh(e ) + m— h(l — 6%)| do.
() m
Therefore we have
‘(fﬁfﬁ,m) (x; p)‘ < Mllgllos (2.12)

where M = (v = u)e1,-(v: p) Jj (5h(6%) + m=Lrh(1 — 6%)) 6. Also on the other hand from (2.7) we
can obtain:

(€24 ) x: p)| < Kl (2.13)

_ . Ly @ 1 .6k, .
where K = (v — u)J,]_Lm(u,p)fo (ﬁh(e ) + mer—%h(l - 9")) df. Therefore (Eu,g,z,w,u+¢) (x; p) and
(e}f:f:}m ¢) (x; p) are bounded also these are linear, hence continuous. O

Theorem 3. Let ¢ : [u,v] — R, u < mv, be a real valued function. If ¢ is differentiable and |¢'| is
exponentially (a, h—m)-convex, m € (0, 1], then there exist o, T € R such that for £, > 1, the following
fractional integral inequality for generalized integral operators (1.7) and (1.8) holds:

(€128, o) ) + (€185, 0) (33 ) = (o1 (3 PIO) + Ty 14 (53 B0 (2.14)
’ 1 o= 1
< (X = g1 (x5 ) [l(ﬁe((;t)l f h(6*)d6 + m C(rm) f h(1 - 0")d9J
0 e m 0

¢ (3)

’ 1 1
+ (v = )1, (x5 ) [Weﬂ f h(O")df + m—— f h(1 - ea)de], x € fuvl.
0 e m 0
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Proof. For x € [u,v] and ¢ € [u, x), by using the definition of exponentially (@, i — m)-convexity of |¢’|

for o € R we have
ey ¢ (2
ol <h(Z) LACHN +mh(1-(2=)) ec(fé)' (2.15)
From(2.15), we can write
d (E) . (2.16)

—l"ld’(u)l X -1\
¢(t)<h( u) e h(l_(x—u)) en
Multiplication of (2.2) and (2.16), gives the following:
(x = O EJ 2 (@ = 0 )¢ (0d1 < (x = u) B} (@(x — w)'s p) (2.17)
o, x=1yn ¢ ()
et em(o- (1) 2

e’

=

Now integrating over [u, x|, we get
(2.18)

f -0 ET (w(x = 1Y p)g (Dt

< = B (= uf p) (|¢—ef-ff)' [ =gy
¢ (n%) * x—1\®
e eTin f,; h(l_(x—u) )dtJ

’ 1 (ﬁ’ i 1
(x— u)fEZ’g’l;’c(a)(x —u)'; p) {—¢ g?' f h(6)do + m—‘ (X )‘ f h(1 — Ha)dﬁ] :
e 0 en Jo

The left hand side of (2.18) is computed as follows:
f (x =) 1Eygll“(a)(x— Y p)’ ()dt, (2.19)

substituting x — ¢ = r, using the derivative property (1.6) of Mittag-Leffler function, we have

fx_u e 1Ey5kc(wr'“ )¢ (x — r)dr
wf T EV(w(x = s p)glu) - f e 2EN) (wr's p)p(x = rydr,
0

wél

= (_x —
now for x — r = ¢ in second term of the right hand side of the above equation and then using (1.7), we

get
X—U
f rt lEyékC(a)r" p)¢ (x —r)dr
Volume 6, Issue 6, 6454-6468.
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= (x — W EXY (wx = w)'s pp(u) — (€105 o) (x: ).

Therefore (2.18) becomes:

(Jeotar(x: p)) dw0) — (€125, .0) (s p) (2.20)

7 (i)

’ 1
< (X = W gep (13 p)[|¢ ffff)l f h(@")d6 + m— f h(1 - ea)de].
e 0 eo—m 0

Again from (2.15) we can write

oz B (i) ER) e

Similarly as we did for (2.16), one can obtain:

(€04 e ®) (: P) = T (x3 D)) (2.22)

5;)' f 1 h(l—@“)d@].
e m 0

’ 1 ¢
< (x = w)Je 1,0 (x; p) ["pegf)' f h(6")dO + m
0

From (2.20) and (2.22), we get

(€24100) G ) = T PO (2.23)
’ 1 ¢' i
< (% = w) o (x: p)[l‘i((j)l f h(#")d + m ( ) f h(1 - ea)de}
0 0

e’
Now for x € [u,v] and f € (x,v]. Again by using exponentially (o, h — m)-convexity of |¢’|, for T € R
we have
N
|¢(t)|<h( ) AU h(l—( x)) () (2.24)
- X vV—X etm

Proceeding on the same lines as we did to get (2.23), the following inequality holds:

i

|(€Zf§fic,z,w,v-¢) (x5 P) = Jyo1 (X3 p)¢(v)| (2.25)

¢ (%)

’ 1
< (v = )1 (55 p) ['¢ V) f h(@")d0 +m f h(1 - 67)do|.
e 0 en Jo

From inequalities (2.23) and (2.25) via triangular inequality (2.14) is established. O

Corollary 4. If we put & = n in (2.14), then the following inequality is obtained:
(CherR ORI Cheey [E30 2.26)
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(Jg L (X5 P)M + Jeo1,- ¢(V))

¢(")
’fh(l—&“)d@) x € [u,v].

Remark 4. (i) If we take « = m = 1 and h(t) = t in (2.14), then we obtain result for exponentially
convex function.

(ii) If we take « = m = 1 and h(t) = t in (2.26), then we obtain result for exponentially convex function.
(iii) If we take h(t) = t and o = T = 0 in (2.14), then we obtain [20, Theorem 2.2].

(iv) If we take h(t) = t and o = T = 0 in (2.26), then we obtain [20, Corollary 2.2].

(v) If we take a = 1 and o = T = 0 in (2.14), then we obtain [21, Theorem 2].

(vi) If we take « =m =1, h(t) = t and o = T = 0 in (2.14), then we obtain [21, Corollary 2].

(vii) If we take « = 1 and o = 7 = 0 in (2.14), then we obtain [22, Theorem 2].

(viii) If we take « = m = 1, h(t) = t and o = 7 = Qin (2.14), then we obtain [23, Theorem 2].

< (x = u) e+ (x5 p) (|¢ (u)lf h(68*)dO + m h(l - 0“)d6)

= e () (|¢ Wl f HO")d0+ m|o

It is easy to prove the next lemma which will be helpful to produce Hadamard type estimations for
the generalized fractional integral operators.

Lemma 2. Let ¢ : [u,v] = R, u < mv, be exponentially (o, h — m)-convex function. If ¢(: ;:i XX)) = 'Zf,x\)

and m € (0, 1], then the following inequality holds:

u+ my o(x) 1
o(“5™) < E5 ((2)+ h( 2)) x € [u,v]. (227)

Proof. Since ¢ is exponentially (a, h — m)-convex function, oo € R we can write

u+ my 1\ o((1 - Hu + metv) 1\¢ (w)
¢( 5 ) <h (?) o (—Durm) + mh (1 - 2—0) W (228)
Let x = u(1 — t) + mtv, then we have
u+ my 1) o(x) 1\¢ (%)
<h|—=|—+mh|l - —| ————. 2.29
¢( 2 ) = (2&) ere ( 2&) (s (2:29)
Hence by using the condition imposed on ¢, we get the required inequality (2.27). O

Theorem 4. Let ¢ : [u,v] — R, u < mv, be a real valued function. If ¢ is positive, exponentially

(a, h — m)-convex and ¢((::, X\) = ¢fr’?, m € (0, 1], then there exist o, T € R such that for &, > 0, the

following fractional integral inequality holds:

e’ u + my

h(z)+mh(1 —2%,)(#( 2

< (Elr:flchm )(u p) +( Zsfflclwu )(V;p)

1 u 1
S[Jn_l,v(u;p>+Jf_],u+<v;p>]<v—u>2[$ | wrao + m22) [ h(1—9*>deJ.
0 e’ n Jo

) [Fysta ) + Jevra )] (230)
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Proof. For x € [u,v], we have

(x = w)EI (@(x — u}'s p) < (v = ) EX0V (w(v = u)s p),n > 0.

As the function ¢ is exponentially (a, h — m)-convex, for T € R, we have:

— U\ p(v) +m¢(%)h(1 B (u)a)

¢(x)Sh(f—u) e e v—u

Multiplying (2.31) with (2.32) and then integrating over [u, v], we get

f v(x W'E7ST (@(x — u); p)p(x)dx

¢0) I ax

< (v —w)ElNT (v — s p)(

o(2) —uy

()f n(1-(3=) )dx].
en Jy V—u
Further it takes the following forms

(ﬁfﬁz,w,v—@ (u; p) < (v =P VST (w(v — u)'; p)
1 u
((’3(::) f h(©")dO + m¢( ) f h(1 - ea)de],
e 0 eTm 0

(Ezgfic,z,w,v—@ (t; p) < (v = )2 Jp_1-(u; )
()

1 1
(‘MV) f HE™Yd0 + m f h(l—@")d@].
e 0 e 0

Now on the other hand for x € [u, v], we have

V—I/t

+m

v = FE (v — x¥s p) < (v = wF L (w(v — u)'s p), € > 0.

Multiplying (2.32) with (2.35) and then integrating over [u, v], we get

f (v = XFELL (v = xF'; p)p(x)dx
$(v)

< (v —wfES (v —ufs p (

4 ﬁ”h<l—(f::)“>dx]~

Further it takes the following forms

v—u

+

(et ®) i P) < v =)™ EL3 (v — w)'; p)

(2.31)

(2.32)

(2.33)

(2.34)

(2.35)

(2.36)
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( (V)f @Yo+ m ¢(ﬁ)f h(l - 9‘*)d9),
e%m 0
(€85 0.08) 2 P) < O = W1V p)

( () f h(O")dO + m ¢(_) f h(l—@“)d@]
e Jo

Adding (2.34) and (2.37), we get;

(i ®) @ p) + (€12, #) (Vi P)
< [y (s p) + Ty (01 )|

u 1
(v — [(V) f hO™)dO + m ¢(m) f h(1 — e“)de).
en Jo

Multiplying (2.27) with (x — u)”EMkC(a)(x — u)*; p) and integrating over [u, v], we get

u+mv

f (x - u)"EMl (w(x — u); p)dx

: e(l”‘ (h(Za) " mh(l B _))f (x = ' E3“((x = u)'s p)d()dax.

By using (1.8) and (1.11), we get

u+ my 1 1 1 .
0“5 ) dyerr s ) < ;(h(2 )+mh(1 - 2—)) (e4,,.-0) s p).

(2.37)

(2.38)

(2.39)

(2.40)

Multiplying (2.27) with (v—x)* Ezjgf’c(w(v—x)”; p) and integrating over [u, v], also using (1.7) and(1.11),

we get

u+ my 1 1 1 .
¢>( 2 )Jg+1,u+(v;p) S (h(z—a) + mh(l - ﬁ)) (e,fj;sf;,,,w,mrb) (v; p).

Adding (2.40) and (2.41), we get;

e’* U+ my

h(5)+mh(1- Lw)gb( 2
< (€t @) (5 P + (€125 8) O )

Now combining (2.38) and (2.42), inequality (2.30) can be established.

) [Jqﬂ,v‘(u; P) + Jeruw (V3 P)]

Corollary 5. If we put ¢ = 1 in (2.30), then the following inequality is obtained:

Tx u+ mv

)¢( > )[J§+1,v—(bt; p)+ J§+1,u+(V;P)]

h(% )+;h(1——

2a
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< (625100 ®) (5 P) + (€125 ,108) (v )
< [Jecta (s p) + Jecr e 3 p)| 0 = 0

1 u 1
(@f h(@“)d9+m¢(’ff)f h(l—H")d@].
eTV 0 eo'ﬁ 0

Remark 5. (i) If we take « = m = 1 and h(t) = t in (2.30), then we get result for exponentially convex
Sfunction.

(ii) If we take « = m = 1 and h(t) = t in (2.43), then we get result for exponentially convex function.
(iii) If we take h(t) = t and o = T = 0 in (2.30), then we get [20, Theorem 2.3].

(v) If we take h(t) = t and o = 7 = 0 in (2.43), then we get [20, Corollary 2.3].

(vi) If we take @« = 1 and o = 7 = 0in (2.30), then we get [21, Theorem 3].

(vi) If we take « = m =1, h(t) = t and o = 7 = 0 in (2.30), then we get [21, Corollary 3].

(vii) If we take « = 1 and o0 = v = 0 in (2.30), then we get [22, Theorem 3].

(viii) If we take « = m = 1, h(t) = t and o = 7 = 0 in (2.30), then we get [23, Theorem 3].

3. Conclusions

In this research, we present the bounds of fractional integral operators containing Mittag-Leffler
(ML) functions by using exponential (@, h — m)-convexity. Also we provide the generalization of
various results already determined in [20-26]. The boundedness and continuity of several known
integral operators defined in [11-13, 15, 16] are also mentioned. Also we have established upper and
lower bounds in the form of the Hadamard like inequality. The reader can derive a plenty of fractional
integral inequalities for various kinds of convex functions.
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