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1. Introduction

Predictive inference of future, or censored observations, is a main interest to many applications of
the reliability theory. The point prediction is a basic tool for predicting future observations, which is
widely used in the reliability theory and lifetime problems. For several years in the reliability theory,
especially in life-testing experiments, much of research has extensively focused on point prediction
by using a limited number of methods such as the maximum likelihood predictor, best unbiased
predictor, conditional median predictor and Bayesian predictor. Balakrishnan et al. [2], Barakat et
al. [3], Dellaportas and Wright [4], Kaminsky and Rhodin [5], Kundu and Raqab [6], Raqab and
Nagaraja [7], Saadati Nik et al. [8], and Volovskiy and Kamps [9] are some works about this subject.
In addition, many authors have considered the prediction of future events, especially future order
statistics and generalized order statistics, in the life-testing experiments. Among these authors are Aly
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et al. [10], Barakat et al. [1, 3, 11–15], El-Adll and Aly [16], Fan et al. [17], Hsieh [18], Kaminsky and
Nelson [19], Lawless [20], Patel [21], Peng et al. [22], Raqab and Barakat [23], Raqab and
Nagaraja [7], Shah et al. [24], and Valiollahi et al. [25].

The importance of the order statistics in the reliability theory is attributed to the fact that the rth
order statistic Xr:n represents the life length of a (n − r + 1)-out-of-n system made up of n identical
components with independent life lengths. On the other hand, in dealing with censored samples, where
the life-test is terminated after observing the rth failure (Type II censoring), or the termination of the
test occurs after a given time lapse (Type I censoring), the complete survival times can not usually be
observed (due to time or cost). In this case, we have to predict the future-failure times to choose a
suitable censoring scheme. More specifically, in any lifetime experiment, a number of items, e.g. n
(fixed or random), is put in a test. The times of failed items X1:n ≤ X2:n ≤ ... ≤ Xr:n (say r < n) are then
observed and we have to predict, based on these observed times, the life span of the surviving items,
Xr+1:n ≤ Xr+2:n ≤ ... ≤ Xn:n, for choosing the suitable scheme.

In many biological and agriculture problems, we often come across a situation where the sample
size is not deterministic because either some observations get lost for various reasons, or the size of the
target population and its representative sample cannot be determined well. For example, assume that
the inhabitants of a populous town are exposed to a dose of radiation resulting from an atomic accident,
or exposed to an infection of an unknown epidemic. Furthermore, assume that our interest focuses on
the time at which r persons would die among a big random sample of size n that is drawn from the
residents of this town. Since the number of infected people in this town is unknown and changes
randomly with time, the drawn sample contains a random number of infected and non-infected people.
Accordingly, the sample size of the sub-sample of the infected people will be a nonnegative integer
valued RV, e.g. N, and it will be described by a sequence of independent and identically distributed
RVs X1, X2, ..., XN . Therefore, the rth smallest order statistic will be denoted by Xr:N , which represents
the time at which r persons will die.

Many authors have considered prediction problems based on samples of random sizes, including Al-
Hussaini and Al-Awadhi [26], Barakat et al. [3], Louzada et al. [27], and Raqab and Barakat [23]. The
present paper proposes a new efficient method to predict the future time-failure Xs:N , 1 < r < s < N,
by using some characterizations of the distribution functions (DFs) of the order statistics, where N
is a positive-integer RV distributed as a left truncated DF at s. It is known that the characterization
of a DF means finding a unique property enjoyed by that distribution. The literature abounds with
many different results for these characterizations and their applications in terms of order statistics.
Interested readers may refer to Khan el al. [28], Oncel et al. [29], Shah et al. [30–32] and Wesolowski
and Ahsanullah [33].

Before going ahead, we have noticed an obstacle that seems, at first glance, to obstruct the
implementation of our purpose. Namely, it is known that the DFs do not uniquely determine their
RVs, especially for the discrete RVs with finite support, or even for some continuous RVs with DFs
that do not strictly increase. However, for the continuous strictly increasing DFs with infinite
supports, we anticipate that the coincidence of two DFs implies that the corresponding RVs will be
significantly close together. For this reason, we only consider the RVs with infinite support and
strictly increasing DFs. Since there is no a rigorous proof of this speculation or even a theoretical
method to measure how the corresponding RVs are close together, the evaluation of the performance
of the suggested method is achieved within simulation and practical studies. The new suggested
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method relies on the following definition given by Barakat et al. [1]:
Definition 1.1 (point D-predictor). Let Z be a continuous RV with strictly increasing DF, which has
an infinite support. Then, a point predictor Ẑ of Z is said to be a point D-predictor of Z if Ẑ d

= Z where
“X d

= Y”means that the RVs X and Y have the same DFs.
In this paper, we use the result of Shah et al. [30] to suggest a new method for developing a

prediction point for the future order statistics under the assumption that the sample size is random.
The rest of the paper unfolds as follows. In Section 2, we present a new method to solve the aforesaid
predicting problem, by deriving a point D-predictor for the future time-failure Xs:N , 1 < r < s < N,
where N is a positive-integer RV distributed as a left truncated DF at the point s. In the sequel, this
method will be denoted by CP. Section 3 is devoted to evaluating the performance of the method CP
via a comprehensive simulation study, which is conducted on several DFs such as exponential,
Weibull, normal, log-normal, generalized gamma DFs and a mixture of two general exponential DFs,
and the RV N is assumed to have a Binomial or Poisson DF. In many practical situations, there is an
uncertainty about the randomness of the sample sizes. Therefore, we have to compete between the
prediction problems with random and non-random sample sizes. This problem is tackled in Section 4
by analyzing three real data sets via the CP method (the random size prediction problem) and the CP2
method, which has been recently suggested by Barakat et al. [1] for non-random sample size
prediction problems.

2. The CP method

We begin this section by representing the result of Shah et al. [30], which is an essential pillar of
our study.

Lemma 2.1 (Theorem 2.3 in Shah et al., [30]). Let Xr:n be the rth order statistic from a sample of
size n drawn from a continuous DF FX. Furthermore, let U j, j = 0, 1, ..., r − 1, be RVs, which are

independent of X and satisfy the relation Xr+n−m− j:n
d
= Xn−m:n + U j, 1 ≤ r < m < n, j = 0, 1, ..., r − 1.

Then U j
d
= Yr− j:m, where Yr− j:m is the (r − j)th order statistic from a sample of size m drawn from the

exponential DF Eα(y) = 1 − e−αy, y, α > 0, if and only if X ∼ Eα(x).

Theorem 2.1. Let N be a positive-integer RV distributed as a left truncated DF at the point R+k,R, k ≥
1. Furthermore, let N0 be any value in the support of the DF of the RV N and X1:N0 ≤ X2:N0 ≤ ... ≤ XN0:N0

be order statistics drawn from a continuous strictly increasing DF FX with an infinite support. Then,
the point predictor X̂R+k:N0 of XR+k:N0 is given by

X̂R+k:N0

d
= F−1

X (Eα(E−1
α (FX(XR:N0)) + Yk:N0−R)) (2.1)

where E−1
α (y) = 1

α
log(1 − y), 0 ≤ y ≤ 1, and Yk:N0−R is the kth order statistic from a sample of size

N0 − R drawn from the DF Eα(y).

Proof. We can easily show that the characterization property given in Lemma 2.1 can be written in
the form

XR+k:N0

d
= XR:N0 + Yk:N0−R,R, k ≥ 1. (2.2)

The PC method can now be applied to the special DF Eα(x), by predicting xR+k:N0 , k,R ≥ 1, based on the
observed value xR:N0 . This can be achieved by generating an ordered random sample of size N0−R from
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the exponential distribution, Eα(y), and determining yk:N0−R . In this way, a point D-prediction x̂R+k:N0 of
xR+k:N0 can be easily computed from (2.2) as xR+k:N0 = xR:N0 + yk:N0−R. Now, let X ∼ FX, where FX is
any continuous strictly increasing DF defined on an infinite support. Then, by using the probability
integral transformation, (2.2) yields

E−1
α (FX(XR+k:N0))

d
= E−1

α (FX(XR:N0)) + Yk:N0−R

and
FX(XR+k:N0)

d
= Eα(E−1

α (FX(XR:N0)) + Yk:N0−R).

Therefore, we get
XR+k:N0

d
= F−1

X (Eα(E−1
α (FX(XR:N0)) + Yk:N0−R)). (2.3)

The theorem is proved. �

Remark 2.1. Theorem 2.1 enables us to predict the value of XR+k:N based on the observed value of
XR:N , where R, k ≥ 1. Namely, we first generate a discrete random sample N1,N2, ...,NM from the
left truncated DF of the RV N at the point R + k. Then, we generate M ordered random samples of
sizes N1 − R,N2 − R, ...,NM − R, respectively, from the exponential distribution, Eα(y), and determine
yk:Ni−R, for each i = 1, 2, ...,M. In this way, a point D-prediction of the (R + k)th order statistic for each
generated random sample can be computed from (2.1). Therefore, the average of the D-predictions
resulting from the M random samples may be taken as a predictor of XR+k:N , which is denoted by
X̂R+k:N and will be still called a D-predictor. In the next sections, via a comprehensive simulation study
and real data examples, we will show that the performance of the predictor X̂R+k:N is well above all
expectations, regardless of the value of k.

Remark 2.2 (stability of the point D-predictors with respect to α). Clearly, the RV XR+k:N and its DF
do not depend on the parameter α. Thus, the relation (2.3) reveals an interesting and useful property of
the point D-predictor (2.1), that is, it is stable with respect to α. More specifically, changing α does not
affect the value of the corresponding point D-predictor. We carried out a simulation study for several
values of α to check this stability property. For the sake of brevity, we did not include this study in the
paper. Therefore, in the next sections we always take α = 1.

3. Simulation study

In this section, a comprehensive simulation study is conducted for some important lifetime
distributions, such as exponential and Weibull DFs (denoted by
W(a, b; x) = 1 − exp(−( x

b )a), a, b > 0, x ≥ 0), and normal DF (denoted by N(x; µ, σ) with mean µ and
variance σ2) to evaluate the efficiency of the method CP. Besides the preceding lifetime DFs, we
consider two more complex lifetime DFs, namely the log-normal DF LN(x; µ, σ) (its probability
density function (PDF) is given by f (x) = 1

√
2πσx

exp(−( (log x−µ)2

2σ2 )), − ∞ < µ < ∞, σ > 0, x > 0) and

generalized gamma DF GG(x; b, a, k)(its PDF is given by f (x) = b
Γ(k)

xbk−1

abk exp(−
(

x
a

)b
), a, b, k, x > 0,

where Γ(.) denotes the gamma function). Namely, we consider the DFs E2(x), W(3, 5; x), and
N(x; 2, 100), LN(x; 1, 0.6), and GGamma(x; 2, 3, 5). For each of these distributions, we generate
10,000 ordered random samples, each of which has an integer size, which is generated from the left
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truncated DF of the RV N at R + k. The average value N̄ of N (i.e., the sample mean of N) for these
observed samples is determined as well as its integer part Ñ, when the random sample size N is
assumed to be distributed as:

1. Binomial distribution Bin(50, p), for p = 0.1, 0.4, 0.7, or
2. Poisson distribution Pois(λ), for λ = 24, 28, 32.

Algorithm for implementing the CP method
Step 1: Select a distribution, from which the data come, i.e., FX, and its parameters,
Step 2: Determine the values of R and k (say R = 20 and k = 1, 2, ..., 5),
Step 3: Generate a random integer, N0, from the truncated binomial distribution (denoted by
Bin(50, p|R + k), p = 0.1, 0.4, 0.7), or the truncated Poisson distribution (denoted by
Pois(λ|R + k), λ = 24, 28, 32), at R + k.
Step 4: Generate an ordered random sample of size N0 from FX and determine xR:N0 and xR+k:N0 ,

Step 5: Generate an ordered random sample of size N0 − R from E1(y) and determine yk:N0−R,

Step 6: Calculate x̂R+k:N0 by using (2.1),
Step 7: Repeat the steps 3–6, 10,000 times,
Step 8: Compute the average of xR+k:N0 and x̂R+k:N0 over these random samples (10,000) (the point
D-prediction of xR+k:N0 is x̂R+k:N0). For simplicity, we denote these averages by xR+k:N and x̂R+k:N ,

respectively,
Step 9: Compute the mean square error (MSE) of the point D-predictor X̂R+k:N .

The computations are carried out by R 4.0.2 and the results of the simulation are presented in
Tables 1 and 2. Tables 1 and 2 show that the CP method yields very close point estimates for future
order statistics for all DFs under consideration. Moreover, the accuracy of these estimates are stable
with increasing k, i.e., the distance between the last observed order statistic and the future one (the
predicted order statistic).

Remark 3.1. Although the main aim of the paper is studying point predictions, which is highly
important, we can use the average perdition over the M = 10, 000 samples, as an average, e.g. x, of
the sample of large size and construct a 95% confidence interval (CI) to the future failure. Namely,
x ± S

√
M

z?, where x = x̂R+k:N0 , z? represents the appropriate z?−value from the standard normal
distribution for the desired confidence level and S is the sample standard deviation. For example,

1. (1.3022; 1.3170) is the 95% CI for xR+k:N (= 1.3091) in Table 1 with E2(x), N ∼ Bin(50, 0.1|R+k),
k = 1, where x = x̂R+k:N = 1.3096, S = 0.3769;

2. (6.8250; 6.8508) is the 95% CI for xR+k:N (= 6.8350) in Table 1 with W(3; 5; x), N ∼ Bin(50, 0.1|
R + k), k = 1, where x = x̂R+k:N = 6.8379, S = 0.6566;

3. (143.6749; 145.2233) is the 95% CI for xR+k:N (= 144.6539) in Table 1 with N(x; 2, 100), N ∼
Bin(50, 0.1|R + k), k = 1, where x = x̂R+k:N = 144.4491, S = 39.4994.
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Table 1. CP method for E2(x), W(3, 5; x) and N(x; 2, 100), when R = 20, k = 1, 2, ..., 5.
E2(x)

N ∼ Bin(50, 0.1|R + k) N ∼ Bin(50, 0.4|R + k) N ∼ Bin(50, 0.7|R + k)
k Ñ xR+k:N x̂R+k:N

1 22 1.3091 1.3096
2 23 1.3347 1.3342
3 24 1.3577 1.3643
4 25 1.3889 1.3875
5 26 1.4884 1.4915

MSE=1.1058E-05

k Ñ xR+k:N x̂R+k:N

1 24 1.0563 1.0592
2 25 1.1033 1.1038
3 25 1.1538 1.1528
4 26 1.1994 1.1988
5 27 1.2362 1.2457

MSE=1.9889E-05

k Ñ xR+k:N x̂R+k:N

1 35 0.4609 0.4612
2 35 0.4994 0.4987
3 35 0.5404 0.5405
4 35 0.5862 0.5866
5 35 0.6377 0.6365

MSE=4.5115E-07
N ∼ Pois(24|R + k) N ∼ Pois(28|R + k) N ∼ Pois(32|R + k)

k Ñ xR+k:N x̂R+k:N

1 26 0.8412 0.8413
2 27 0.8891 0.8937
3 28 0.9400 0.9417
4 28 0.9786 0.9843
5 29 1.0291 1.0302

MSE=1.1535E-05

k Ñ xR+k:N x̂R+k:N

1 29 0.6987 0.6977
2 29 0.7492 0.7510
3 30 0.8007 0.8045
4 30 0.8517 0.8551
5 31 0.8986 0.9049

MSE=1.4111E-05

k Ñ xR+k:N x̂R+k:N

1 32 0.5676 0.5674
2 33 0.6096 0.6113
3 33 0.6608 0.6601
4 33 0.7105 0.7113
5 33 0.7599 0.7597

MSE=8.6515E-07
W(3, 5; x)

N ∼ Bin(50, 0.1|R + k) N ∼ Bin(50, 0.4|R + k) N ∼ Bin(50, 0.7|R + k)
k Ñ xR+k:N x̂R+k:N

1 22 6.8350 6.8379
2 23 6.8746 6.8802
3 24 6.9211 6.9213
4 25 6.9742 6.9821
5 26 7.1175 7.1263

MSE=3.5633E-05

k Ñ xR+k:N x̂R+k:N

1 24 6.3380 6.3380
2 25 6.4422 6.4455
3 25 6.5460 6.5452
4 26 6.6148 6.6202
5 27 6.6886 6.6915

MSE=9.8913E-06

k Ñ xR+k:N x̂R+k:N

1 35 4.8188 4.8190
2 35 4.9482 4.9504
3 35 5.0830 5.0863
4 35 5.2197 5.2244
5 35 5.3612 5.3662

MSE=1.2601E-05
N ∼ Pois(24|R + k) N ∼ Pois(28|R + k) N ∼ Pois(32|R + k)

k Ñ xR+k:N x̂R+k:N

1 27 5.8413 5.8376
2 27 5.9643 5.9603
3 28 6.0721 6.0706
4 28 6.1678 6.1640
5 29 6.2639 6.2598

MSE=1.2797E-05

k Ñ xR+k:N x̂R+k:N

1 29 5.4782 5.4781
2 29 5.6235 5.6205
3 30 5.7461 5.7400
4 30 5.8534 5.8516
5 31 5.9647 5.9709

MSE=1.7777E-05

k Ñ xR+k:N x̂R+k:N

1 32 5.1180 5.1190
2 32 5.2519 5.2555
3 33 5.3893 5.3888
4 33 5.5261 5.5353
5 33 5.6378 5.6398

MSE=2.0344E-05
N(x; 2, 100)

N ∼ Bin(50, 0.1|R + k) N ∼ Bin(50, 0.4|R + k) N ∼ Bin(50, 0.7|R + k)
k Ñ xR+k:N x̂R+k:N

1 22 144.6539 144.4491
2 23 147.0919 147.3464
3 24 149.2766 149.2806
4 25 153.6074 152.9934
5 26 161.6238 161.7251

MSE=0.0988

k Ñ xR+k:N x̂R+k:N

1 24 115.1733 115.4217
2 25 121.3190 120.9976
3 25 125.8034 125.3318
4 26 132.1379 131.7823
5 27 136.6317 136.5249

MSE=0.1051

k Ñ xR+k:N x̂R+k:N

1 35 24.9693 24.9320
2 35 32.7856 32.7156
3 35 40.5828 40.6840
4 35 48.5879 48.5560
5 35 57.1199 57.2327

MSE=0.0061
N ∼ Pois(24|R + k) N ∼ Pois(28|R + k) N ∼ Pois(32|R + k)

k Ñ xR+k:N x̂R+k:N

1 27 85.4340 85.2440
2 27 92.0580 91.8196
3 28 98.7348 98.4784
4 28 104.2157 104.4301
5 29 109.7479 110.1024

MSE=0.0661

k Ñ xR+k:N x̂R+k:N

1 29 64.5565 64.4336
2 29 72.4807 72.5209
3 30 79.6402 79.4052
4 30 86.8052 86.8753
5 31 93.5239 93.9755

MSE=0.0562

k Ñ xR+k:N x̂R+k:N

1 32 42.8026 42.7798
2 33 50.7889 50.8142
3 33 58.6090 58.8497
4 33 66.2443 66.2244
5 33 74.1083 74.4022

MSE=0.0292
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Table 2. CP method for LN(x; 1, 0.6) and GGamma(x; 2, 3, 5), when R = 20, k = 1, 2, ..., 5.
LN(x; 1, 0.6)

N ∼ Bin(50, 0.1|R + k) N ∼ Bin(50, 0.4|R + k) N ∼ Bin(50, 0.7|R + k)
k Ñ xR+k:N x̂R+k:N

1 22 6.5873 6.5763
2 23 6.6769 6.6931
3 24 6.7675 6.7688
4 25 6.9460 6.9153
5 26 7.3399 7.3381

MSE=0.0003

k Ñ xR+k:N x̂R+k:N

1 24 5.5508 5.5557
2 25 5.7548 5.7434
3 25 5.9019 5.8809
4 26 6.1252 6.1068
5 27 6.2895 6.2851

MSE=0.0002

k Ñ xR+k:N x̂R+k:N

1 35 3.1603 3.1600
2 35 3.3156 3.3146
3 35 3.4777 3.4800
4 35 3.6531 3.6533
5 35 3.8534 3.8564

MSE=3.1667E-06
N ∼ Pois(24|R + k) N ∼ Pois(28|R + k) N ∼ Pois(32|R + k)

k Ñ xR+k:N x̂R+k:N

1 27 4.6707 4.6623
2 27 4.8502 4.8434
3 28 5.0480 5.0376
4 28 5.2108 5.2164
5 29 5.3838 29.1105

MSE=7.0578E-05

k Ñ xR+k:N x̂R+k:N

1 29 4.1019 4.1027
2 29 4.3152 4.3147
3 30 4.5018 4.4906
4 30 4.7010 4.7042
5 31 4.8904 4.9033

MSE=6.0784E-05

k Ñ xR+k:N x̂R+k:N

1 32 3.5777 3.5763
2 33 3.7616 3.7610
3 33 3.9520 3.9596
4 33 4.1396 4.1375
5 33 4.3420 4.3551

MSE=4.7215E-05
GGamma(x; 2, 3, 5)

N ∼ Bin(50, 0.1|R + k) N ∼ Bin(50, 0.4|R + k) N ∼ Bin(50, 0.7|R + k)
k Ñ xR+k:N x̂R+k:N

1 22 8.7163 8.7195
2 23 8.7629 8.7672
3 24 8.8173 8.8188
4 25 8.8695 8.8662
5 26 9.0048 9.0019

MSE=1.0300E-05

k Ñ xR+k:N x̂R+k:N

1 24 8.2472 8.2370
2 25 8.3438 8.3545
3 25 8.4462 8.4339
4 26 8.5174 8.5116
5 27 8.5825 8.5884

MSE=8.7148E-05

k Ñ xR+k:N x̂R+k:N

1 35 6.8318 6.8313
2 35 6.9484 6.9478
3 35 7.0667 7.0643
4 35 7.1957 7.1927
5 35 7.3260 7.3208

MSE=8.3946E-06
N ∼ Pois(24|R + k) N ∼ Pois(28|R + k) N ∼ Pois(32|R + k)

k Ñ xR+k:N x̂R+k:N

1 26 7.7938 7.7855
2 27 7.8884 7.8898
3 28 7.9916 7.9903
4 28 8.0797 8.0766
5 29 8.1755 8.1671

MSE=3.0767E-05

k Ñ xR+k:N x̂R+k:N

1 29 7.4508 7.4448
2 29 7.5653 7.5671
3 30 7.6914 7.6880
4 30 7.7926 7.7905
5 31 7.9055 7.9001

MSE=1.7015E-05

k Ñ xR+k:N x̂R+k:N

1 32 7.1149 7.1156
2 32 7.2342 7.2317
3 33 7.3528 7.3559
4 33 7.4734 7.4687
5 33 7.5740 7.5796

MSE=1.4171E-05

Further simulation study (mixture of DFs)

One of the most important DFs in the reliability theory is the finite mixture of DFs. A mixture of
exponential distributions Eλi(x − µi), x ≥ µi, i = 1, 2, is a possible lifetime distribution given by

F(x :a; µ1, λ1; µ2, λ2) = aEλ1(x − µ1) + aEλ1(x − µ1)
= 1 − a exp(−λ1(x − µ1)) − a exp(−λ2(x − µ2)),

where 0 ≤ a ≤ 1 and a = 1 − a. The parameter a is known as the mixing proportion. The quantile
function (QF) Q(y :a; µ1, λ1; µ2, λ2), 0 < y < 1, i.e., the inverse function of F(x :a; µ1, λ1; µ2, λ2), is the
only obstacle that encounters us to get the point D-predictor for the mixture DF F(x : a; µ1, λ1; µ2, λ2)
by the CP method. The following theorem explicitly gives this QF.

Theorem 3.1. For y ∈ (0, 1), the QF for the DF F(x :a; µ1, λ1; µ2, λ2) is

Q(y :a; µ1, λ1; µ2, λ2) = µ2 −
1
λ2

log(1 − β0), 0 ≤ a ≤ 1, λ1, λ2 > 0,
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where β0 ∈ (0, 1) is the minimum root of the non-linear equation (of β)

a[1 − eλ1(µ1−µ2)(1 − β)
λ1
λ2 ] + aβ = y, 0 ≤ β ≤ 1. (3.1)

Proof. By adopting the method of Bernard and Vanduffel [34], the QF Q(y : a; µ1, λ1; µ2, λ2), for y ∈
(0, 1), is given by

Q(y :a; µ1, λ1; µ2, λ2) = max{E−1
λ1

(θ∗ − µ1), E−1
λ2

(β∗ − µ2)}, (3.2)

where θ∗ and β∗ are defined by

θ∗ = inf{θ ∈ (0, 1) | ∃β ∈ (0, 1); E−1
λ1

(θ∗ − µ1) ≥ E−1
λ2

(β∗ − µ2); aθ + aβ = y} (3.3)

and β∗ =
p−aθ∗

a ∈ [0, 1], respectively. Now, the relation E−1
λ1

(θ∗ − µ1) ≥ E−1
λ2

(β∗ − µ2) clearly leads

to θ ≥ 1 − eλ1(µ1−µ2)(1 − β)
λ1
λ2 . Therefore, by (3.3), we get θ∗ = 1 − eλ1(µ1−µ2)(1 − β0)

λ1
λ2 and β∗ =

p−a[1−eλ1(µ1−µ2)(1−β0)
λ1
λ2 ]

a , where β0 is the minimum root of the non-linear equation (3.1). Finally, since both
the mixture components Eλi(x − µi), i = 1, 2, are continuous and monotone increasing, then by using
the result of Bernard and Vanduffel (2014), we get E−1

λ1
(θ∗ − µ1) = E−1

λ2
(β∗ − µ2). Thus, (3.2) implies

Q(y :a; µ1, λ1; µ2, λ2) = E−1
λ1

(θ∗ − µ1) = E−1
λ2

(β∗ − µ2) = µ2 −
1
λ2

log (1 − β0). The theorem is proved. �

By using Theorem 3.1 we can now apply the aforesaid Algorithms for the implementation of the CP
method to carry out a simulation study for the mixture model F(x :a; µ1, λ1; µ2, λ2). Table 3 displays the
result of this simulation study for F(x : 0.2 : 5, 0.6; 7, 0.1). Again, Table 3 shows that the CP method
yields very close point estimates for future order statistics for the DF under consideration (mixture
DF). Moreover, the accuracy of these estimates is stable with increasing k.

Table 3. CP method for F(x : 0.2; 5, 0.6; 7, 0.1) when R = 20, k = 1, 2, ..., 5.
N ∼ Bin(50, 0.1|R + k) N ∼ Bin(50, 0.4|R + k) N ∼ Bin(50, 0.7|R + k)

k Ñ xR+k:N x̂R+k:N

1 22 31.1213 31.0776
2 23 31.4706 31.3951
3 24 32.0642 31.9205
4 25 32.7166 32.6573
5 26 34.6037 34.5996

MSE=0.0064

k Ñ xR+k:N x̂R+k:N

1 24 25.9358 25.8828
2 25 26.9543 26.9086
3 25 27.9817 27.9114
4 26 28.7172 28.6755
5 27 29.4947 29.3302

MSE=0.0077

k Ñ xR+k:N x̂R+k:N

1 35 14.0011 13.9997
2 35 14.7553 14.7586
3 35 15.5903 15.6042
4 35 16.5025 16.5061
5 35 17.4883 17.5074

MSE=0.0001
N ∼ Pois(24|R + k) N ∼ Pois(28|R + k) N ∼ Pois(32|R + k)

k Ñ xR+k:N x̂R+k:N

1 27 21.5964 21.5423
2 27 22.6279 22.5567
3 28 23.5521 23.4860
4 28 24.4502 24.3322
5 29 25.3155 25.2471

MSE=0.0062

k Ñ xR+k:N x̂R+k:N

1 29 18.7141 18.7048
2 29 19.8979 19.8337
3 30 20.8200 20.7374
4 30 21.6331 21.6293
5 31 22.7450 22.7166

MSE=0.0024

k Ñ xR+k:N x̂R+k:N

1 32 16.0340 16.0471
2 32 17.0549 17.0459
3 33 18.0709 18.0387
4 33 19.0787 19.0957
5 33 19.9040 19.8981

MSE=0.0003

4. Numerical examples for real lifetime data sets

In this section, three examples of real lifetime data are presented to demonstrate the importance of
the suggested CP method. Moreover, we compete between the CP method (for the random sample size
prediction problems) and the CP2 method (for the non-random sample size prediction problems).
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Example 4.1. The following set of real lifetime data was reported by Badar and Priest [35], and was
also analyzed by Raqab and Kundu [36]. This data set represents strength measured in GPA for single
carbon fibers as well as impregnated 1000-carbon fiber tows. Single fibers were tested under tension
at gauge lengths of 10 mm. The 63 ordered data are given in Table 4. The earlier studies on this data
set (Badar and Priest, [35] and Raqab and Kundu, [36]) showed that the data was fitted by the Weibull
distribution W(x; a, b) with MLE with parameters a = 5.049422 and b = 3.314562. We checked the
validity of the Weibull model by using the Kolmogorov-Smirnov (K-S) test. It is observed that the K-S
distance and the corresponding p-value are K-S=0.087616 and p-value=0.7188336, respectively. We
assume that we only observed the first 10 observations and we want to predict the next observations
for different values of k (1, 3, 5, 10, 15, 20, 30, 40, 50). We apply the CP method given in Theorem 2.1
and Remark 2.1 with M = 10, 000 and compute the averages to obtain suggested point D-predictions.
The DF of N is assumed to be Bin(100, 0.6|R + k), R + k = 11, 13, 15, 20, 25, 30, 40, 50, 60, or to be
Pois(60|R + k), R + k = 11, 13, 15, 20, 25, 30, 40, 50, 60. Also, the CP2 method is applied as suggested
in Barakat et al. [1]. The result is presented in Table 5. Generally speaking, Table 5 shows that the
CP2 method (for non-random sample size) is more favorable than the method CP (for random sample
size) for describing this model. On the other hand, the CP method’s performance under the assumption
N ∼ Bin(100, 0.6|R + k) is better than the assumption N ∼ Pois(60|R + k).

Table 4. Data set (gauge lengths of 10 mm).

1.901 2.132 2.203 2.228 2.257 2.350 2.361 2.396 2.397 2.445
2.454 2.474 2.518 2.522 2.525 2.532 2.575 2.614 2.616 2.618
2.624 2.659 2.675 2.738 2.740 2.856 2.917 2.928 2.937 2.937
2.977 2.996 3.030 3.125 3.139 3.145 3.220 3.223 3.235 3.243
3.264 3.272 3.294 3.332 3.346 3.377 3.408 3.435 3.493 3.501
3.537 3.554 3.562 3.628 3.852 3.871 3.886 3.971 4.024 4.027
4.225 4.395 5.020

Table 5. Point D-prediction of future observations by the CP and CP2 methods.

k Exact Value Bin(100, 0.6|10 + k) Pois(60|10 + k) n=63 (CP2)

1 2.454 2.488 2.489 2.485
3 2.518 2.567 2.569 2.560
5 2.525 2.641 2.644 2.630
10 2.618 2.809 2.814 2.789
15 2.740 2.961 2.967 2.933
20 2.937 3.105 3.114 3.069
30 3.243 3.392 3.411 3.335
40 3.501 3.731 3.716 3.630
50 4.027 4.052 3.953 4.093

MSE 0.023 0.024 0.014

Remark 4.1. When we take N as either binomial or Poisson DFs, we found (via large number of trials)
that to get the best result in a reasonable run time, we should take the average of these DFs as equal to
or greater than the value at which the distribution of N will be truncated, i.e., 60. There is a theoretical
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explanation for the inevitability of this choice. Namely, for the binomial DF Bin(n, p), the right end-
point is n; so if one decided to truncate it at 60 on the left, we have to choose n ≥ 60 (because we
cannot choose the value of left-truncation greater than the right end-point of the distribution). In this
case, if we choose the average to be 60, we get 60 = np < n, for all values p, 0 < p < 1. On the other
hand, bearing in mind that p should be chosen as greater than 0.5 to get a reasonable time run, we took
the average 60, p=0.6 and then we got n = 100. These choices give an excellent result in a reasonable
time run. The same argument can be applied to the Poisson DF, since the average = λ ≈ np.

Example 4.2. The data set given in Table 6 (20 ordered observations) was handled by Ahmad and
Ali [37] and also analyzed by Ateya [38]. This data set includes the lifetimes of electronic components.
The data was fitted by the 2-component mixture of the exponential distributions, F(x : a; 0, λ1; 0, λ2),
with EM algorithm with parameters a = 0.02084921, λ1 = 0.22009927, and λ2 = 0.40215270. We
checked the validity of this mixture model by using the K-S test. It is observed that the K-S distance
and the corresponding p-value are K-S=0.14188 and p-value=0.7645, respectively . We assume that
we observed the first 10 observations and we want to predict the next observations. We apply the CP
method given in Theorem 2.1 and Remark 2.1 with M = 10, 000 and compute the averages to obtain
suggested point D-predictions. The DF of N is assumed to be Bin(50, 0.5|R + k), R + k = 11, 12, ..., 20,
or to be Pois(25|R + k), R + k = 11, 12, ..., 20. On the other hand, we apply the CP2 method. The result
is presented in Table 7. Generally speaking, Table 7 shows the results of CP method are excellent
if compared with the CP2 method. Moreover, the CP method’s performance under the assumption
N ∼ Bin(50, 0.5|R + k) is better than the assumption N ∼ Pois(25|R + k).

Table 6. Lifetimes of 20 electronic components.

0.03 012 0.22 0.35 0.73 0.79 1.25 1.41 1.52 1.79
1.8 1.94 2.38 2.4 2.87 2.99 3.14 3.17 4.72 5.09

Table 7. Point D-prediction of future observations by the CP and CP2 methods.

k Exact Value Bin(50, 0.5|10 + k) Pois(25|10 + k) n=20 (CP2)

1 1.80 1.97 1.98 2.04
2 1.94 2.16 2.19 2.32
3 2.38 2.38 2.42 2.64
4 2.40 2.61 2.67 3.00
5 2.87 2.88 2.93 3.42
6 2.99 3.16 3.22 3.93
7 3.14 3.48 3.51 4.57
8 3.17 3.80 3.82 5.43
9 4.72 4.15 4.11 6.67

10 5.09 4.54 4.42 9.29

MSE 0.13 0.16 3.05

Example 4.3. At the start of 2020, the new Coronavirus (COVID-19) has spread widely in Egypt, and
a large number of people have become infected. On March 11, 2020, the World Health Organization
declared a new pneumonia outbreak a “global pandemic”. Therefore, it has become necessary to find
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new ways to anticipate the number of infected people with the epidemic. Based on the official data
modeling, Li et al. [39] have studied the transmission process of the Coronavirus disease in China
in 2019. Read et al. [40] have studied early estimation of epidemiological parameters and epidemic
prediction.

In this example, we consider the prediction problem concerning the total cases per million in
Egypt from 1-5-2020 to 23-8-2020. This time interval yields a set of 115 ordered observations. This
study is based on the official data that is available to all countries of the world at the link
“https://ourworldindata.org/coronavirus-source-data”, and includes the new cases, cumulative cases,
new cases per million, deaths numbers per million and population density of all countries of the
world. Moreover, this data is updated daily. The difference between every two consecutive
observations in this data has important indications. If the difference is large, this indicates an
increase in the number of virus infections; while if the difference is small, this indicates a small
number of infected people, and finally if it is zero, this indicates the absence of new infections.

Naturally, the continuity issue of this data appears at the beginning, but the crucial factor in our
case is whether the DF that could successfully fit (approximately) this data is of a continuous type.
Here, by using the moment method, the data were fitted by a continuous DF, which is Johnson SB
distribution with parameters γ = −0.19512, δ = 0.29836, ξ = 80, and λ = 881.49. We checked the
validity of the model by using the K-S test. It is observed that the K-S distance and the corresponding
p-value are K-S=0.04532 and p-value=0.9582, respectively. We assume that we observed the first
100 observations and we want to predict the next observations. We apply the CP method given in
Theorem 2.1 and Remark 2.1 with M = 10, 000, and compute the averages to obtain suggested point
D-predictions. The DF of N is assumed to be Bin(200, 0.7|R + k), R + k = 101, 102, ..., 115, or to be
Pois(140|R + k), R + k = 101, 102, ..., 115. On the other hand, we apply the CP2 method. The result
is presented in Table 8. Table 8 shows that the results of the CP method are excellent when compared
with the result of the CP2 method. Moreover, the CP method’s performance under the assumption
N ∼ Bin(200, 0.7|100 + k) is better than the assumption N ∼ Pois(140|100 + k).

Table 8. Point D-prediction of future observations by the CP and CP2 methods.
k Exact Value Bin(200, 0.7|100 + k) Pois(140|100 + k) n=115(CP2)
1 931.397 931.584 931.743 934.090
2 933.137 933.331 933.592 937.919
3 934.837 935.006 935.345 941.416
4 936.479 936.604 936.978 944.527
5 937.739 938.115 938.565 947.272
6 939.156 939.574 940.081 949.703
7 940.251 940.958 941.446 951.868
8 941.384 942.291 942.796 953.813
9 942.743 943.552 944.097 955.479
10 943.866 944.759 945.234 956.904
11 943.866 945.895 946.305 958.118
12 947.032 946.992 947.362 959.150
13 948.117 948.029 948.381 959.971
14 949.319 949.017 949.324 960.639
15 950.189 949.950 950.270 961.139

MSE 0.4987 1.042 11.3361
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5. Conclusions

We proposed a new method, CP, based on some characterizations of order statistics via their DFs
for constructing point predictions for the observed values of the future order statistics (especially in the
type I and II censoring). An implemented comprehensive simulation study revealed that the proposed
method works very well if both the parent and the distribution for N are known.

Undoubtedly, there are some situations where the information needed about the data’s distributions
(the parent distribution F and the distribution for N) is available due to the earlier experiences, or the
nature of the problem itself. For example, the earlier experiences about the data given in Example 4.1
(where in Example 4.1, we checked this claim) show that the value of the strength in GPA for single
carbon fibers as well as impregnated 1000-carbon fiber tows follows the Weibull distribution. On the
other hand, under some practical conditions, the extreme value distributions would appear as
distributions for some material strength in the life-time tests, where this fact was theoretically proved
(cf. Leadbetter et al. [41] Chap. 14). For several other examples of situations where the parametric
assumption (i.e., the information about the data’s distributions are available) is realistic see
Nelson [42].

Three real data examples treated the problem of not knowing the parent distribution F and the DF of
N (especially Examples 4.2 and 4.3). Moreover, these examples showed how we can trade-off between
the random and non-random sample size of the given model. According to this study, in any real data
prediction problem, where we have a lack of knowledge about the data’s distributions. we suggest the
following methodology:

1. Comparatively divide the available data into two parts, one is big and the other is small;
2. Choose a DF that best fits the data (i.e., a DF that best fits the data among all the DFs that fit this

data via the statistical package that you use) belonging to the big part;
3. Use this selected DF to apply the two methods, CP2 for non-random sample size (Barakat et

al., [1]) and the suggested method CP (by considering a potential number of DFs for the discrete
random size) to the big part in order to predict the items in the small part.

4. Check which method is more favorable to the given data.

Examples 4.2 and 4.3 show that the proposed methodology is reliable and that it gives very good
results. On the other hand, Example 4.1 shows that the suggested method is efficient even if the
predicted future items are far from the last observed value.
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