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1. Introduction

Let m be a positive integer, q be a power prime, and (Vm, ·) be an m-dimensional vector space over
Fq, where · denotes an inner product on Vm. For a linear code of length n over Fq, there is a generic
construction as follows:

CD = {(x · d1, x · d2, · · · , x · dn) : x ∈ Vm} (1.1)

where, D = {d1, · · · , dn} ⊆ Vm. The set D is called the defining set of the code CD. Although different
orderings of the elements of D result in different codes, these codes are permutation equivalent and
have the same parameters. If the set D is properly chosen, the code CD may have good parameters.
The following two situations are common:

(1) When Vm = Fqm , x · y = Trm(xy) for x, y ∈ Fqm and Trm is the trace function from Fqm to
Fq. In this case, the corresponding code CD in (1.1) is called a trace code over Fq. This generic
construction was first introduced by Ding et al. [3]. Many known codes have been produced by
selecting a proper defining set, see [6, 10] for examples. Note that defining sets here are almost all
related with trace functions, and the computations of weight distributions of corresponding linear codes
are heavily dependent on known results of exponential sums.
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(2) When Vm = Fm
q , x · y =

∑m
i=1 xiyi for x = (x1, . . . , xm), y = (y1, . . . , ym) ∈ Fm

q . This standard
construction in (1.1) can be also found in [7]. Recently, Zhou et al. [13] investigated four infinite
families of binary linear codes and obtained some binary linear complementary dual or self-orthogonal
codes based on the above generic construction.

Based on the construction for linear codes from functions, Hyun et al. [9] constructed some
infinite families of binary optimal linear codes by choosing the support set of a Boolean function as
the complement of some simplicial complexes. After that, a more general situation was considered by
Hyun et al. [8] by using posets, and they presented some optimal and minimal binary linear codes not
satisfying the condition of Ashikhmin-Barg [1]. Notice that linear codes from the generic
construction via posets are all over prime fields and the main difficulty is to calculate the frequencies
of their codewords. It seems that new techniques are required to go beyond prime fields. In this paper,
we will provide such a technique for linear codes over the finite field F4.

The rest of this paper is organized as follows. In Section 2, we will recall some concepts of
simplicial complexes, generating functions and investigate the structure of the finite field F4. In
Section 3, we determine the weight distributions of these quaternary codes and find a class of minimal
quaternary linear codes.

2. Preliminaries

Let C be an [n, k, d] linear code over Fq. Assume that there are Ai codewords in C with Hamming
weight i for 1 ≤ i ≤ n. Then C has weight distribution (1, A1, . . . , An) and weight enumerator 1 + A1z +

· · · + Anzn. Moreover, if the number of nonzero Ai’s in the sequence (A1, . . . , An) is exactly equal to t,
then the code is called t-weight. An [n, k, d] code C is called distance optimal if there is no [n, k, d + 1]
code (that is, this code has the largest minimum distance for given length n and dimension k), and it is
called almost optimal if an [n, k, d + 1] code is distance optimal (refer to [7, Chapter 2]). On the other

hand, the Griesmer bound [5] on an [n, k, d] linear code over Fq is given by
∑k−1

i=0

⌈
d
qi

⌉
≤ n, where d·e is

the ceiling function. We say that a linear code is a Griesmer code if it meets the Griesmer bound with
equality. One can verify that Griesmer codes are distance-optimal.

2.1. Simplicial complexes and generating functions

Let Fq be the finite field with order q. Assume that m is a positive integer. The support supp(v) of
a vector v ∈ Fm

q is defined by the set of nonzero coordinates. The Hamming weight wt(v) of v ∈ Fm
q

is defined by the size of supp(v). For two subsets A, B ⊆ [m], the set {x : x ∈ A and x < B} and the
number of elements in the set A are denoted by A\B and |A|, respectively.

For two vectors u, v ∈ Fm
2 , we say v ⊆ u if supp(v) ⊆ supp(u). We say that a family ∆ ⊆ Fm

2 is a
simplicial complex if u ∈ ∆ and v ⊆ u imply v ∈ ∆. For a simplicial complex ∆, a maximal element of
∆ is one that is not properly contained in any other element of ∆. Let F = {F1, . . . , Fl} be the family
of maximal elements of ∆. For each F ⊆ [m], the simplicial complex ∆F generated by F is defined to
be the family of all subsets of F.

Let X be a subset of Fm
2 . Hyun et al. [2] introduced the following m-variable generating function
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associated with the set X:

HX(x1, x2, . . . , xm) =
∑
u∈X

m∏
i=1

xui
i ∈ Z[x1, x2, . . . , xm],

where u = (u1, u2, . . . , um) ∈ Fm
2 and Z is the ring of integers.

The following lemma plays an important role in determining the weight distributions of the
quaternary codes defined in (1.1).

Lemma 2.1. [2, Theorem 1] Let ∆ be a simplicial complex of Fm
2 with the set of maximal elements F .

Then

H∆(x1, x2, . . . , xm) =
∑
∅,S⊆F

(−1)|S |+1
∏
i∈∩S

(1 + xi),

where ∩S denotes the intersection of all elements in S . In particular, we also have
|∆| =

∑
∅,S⊆F (−1)|S |+12|∩S |.

Example 2.2. Let ∆ be a simplicial complex of F4
2 with the set of maximal elements

F = {(1, 1, 0, 0), (1, 0, 1, 1)}. Then

H∆(x1, x2, x3, x4) =
∏

i∈{1,2}

(1 + xi) +
∏

i∈{1,3,4}

(1 + xi) −
∏
i∈{1}

(1 + xi)

= (1 + x1)(1 + x2 + x3 + x4 + x3x4).

Example 2.3. Let ∆ be a simplicial complex of F4
2 with the set of maximal elements

F = {(1, 1, 0, 0), (0, 0, 1, 1)}. Then

H∆(x1, x2, x3, x4) =
∏

i∈{1,2}

(1 + xi) +
∏

i∈{3,4}

(1 + xi)

= (1 + x1)(1 + x2) + (1 + x3)(1 + x4) − 1.

2.2. The structure of F4

In the paper [12], the authors first constructed linear codes over the finite ring F2 + uF2 with u2 = 0
and obtained many optimal binary linear codes by Gray map. After that, Wu et al. [11] also considered
the case of Fp + uFp with u2 = 0 and p is an odd prime number. Let Z4 be the ring of integers modulo
4. For each u ∈ Z4 there is a unique representation u = a + 2b, where a, b ∈ F2. Here the element 2 in
Z4 plays a similar role, which like u for the ring F2 + uF2, and the only difference is the characteristics
of the two rings.

For the finite field F4, as we known F4 � F2[x]/〈x2 + x + 1〉, where x2 + x + 1 is the only irreducible
polynomial of degree two in F2[x]. Let w be an element in some extend field of F2 such that w2+w+1 =

0. Then we have F4 = F2(w) and for each u ∈ F4 there is a unique representation u = a + wb, where
a, b ∈ F2. Let m be a positive integer, and Fm

4 be the set of m-tuples over F4. Any vector x ∈ Fm
4 can be

written as x = a + wb, where a,b ∈ Fm
2 .
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3. Weight distributions of quaternary codes

In this section, we will construct some quaternary codes via simplicial complexes and determine
the weight distributions of these codes.

There is a bijection between Fm
2 and 2[m] being the power set of [m] = {1, . . . ,m}, defined by v 7→

supp(v). Throughout this paper, we will identify a vector in Fm
2 with its support.

Let A, B be two subsets of [m] and D = ∆c
A + w∆B = Fm

2 \∆A + w∆B ⊂ F
m
4 , where w is an element in

some extension field of F2 such that w2 + w + 1 = 0. We define a quaternary code as follows:

CD = {ca = (a · d)d∈D : a ∈ Fm
4 }. (3.1)

First of all, from (3.1), it is easy to check that the code CD is a linear quaternary code. The length
of the code CD is |D|. If a = 0, then the Hamming weight of the codeword ca is equal to wt(ca) = 0.
Next we assume that a , 0. Suppose that a = α + wβ, d = d1 + wd2, where
α = (α1, · · · , αm),β = (β1, · · · , βm) ∈ Fm

2 , d1 ∈ ∆c
A, and d2 ∈ ∆B. Then

wt(ca) = wt(((α + wβ) · (d1 + wd2))d1∈∆
c
A,d2∈∆B)

= wt((αd1 + w(αd2 + βd1) + w2βd2)d1∈∆
c
A,d2∈∆B)

= wt((αd1 + βd2 + w(βd2 + αd2 + βd1))d1∈∆
c
A,d2∈∆B). (3.2)

By the definition of Hamming weight of vector x = y + wz ∈ Fm
4 with y, z ∈ Fm

2 , wt(x) = 0 if and only
if y = z = 0. Hence

wt(ca) = |D| −
∑

d1∈∆
c
A

∑
d2∈∆B

(
1
2

∑
y∈F2

(−1)(αd1+βd2)y)(
1
2

∑
z∈F2

(−1)(αd2+β(d1+d2))z)

= |D| −
1
4

∑
d1∈∆

c
A

∑
d2∈∆B

(1 + (−1)αd1+βd2)(1 + (−1)αd2+β(d1+d2))

=
3
4
|D| −

1
4

(
∑

d1∈∆
c
A

(−1)αd1)(
∑

d2∈∆B

(−1)βd2)

−
1
4

(
∑

d1∈∆
c
A

(−1)βd1)(
∑

d2∈∆B

(−1)(α+β)d2)

−
1
4

(
∑

d1∈∆
c
A

(−1)(α+β)d1)(
∑

d2∈∆B

(−1)αd2). (3.3)

Theorem 3.1. Let A, B be two subsets of [m] and D = ∆c
A + w∆B ⊂ F

m
4 . Then CD in (3.1) is a

[(2m − 2|A|)2|B|,m] quaternary code and its weight distribution is presented in Table 1.
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Table 1. Weight distribution of the code in Theorem 3.1.

Weight Frequency
0 1
3 × 2m+|B|−2 − 3 × 2|A|+|B|−23(2m − 2m−|A∩B|) + (2m − 1)(2m − 2) − (2m−|A| − 1)(2m−|B| − 2)
3 × 2m+|B|−2 − 2|A|+|B|−1 3(2m−|A∩B| − 2m−|B|) + (2m−|A| − 1)(2m−|B| − 2) − (2m−|A∪B| − 1)(2m−|A∪B| − 2)
2m+|B|−1 − 2|A|+|B|−1 3(2m−|B| − 2m−|A∪B|)
2m+|B|−1 3(2m−|A∪B| − 1)
3 × 2m+|B|−2 (2m−|A∪B| − 1)(2m−|A∪B| − 2)

Proof. It is easy to check that the length of the code CD is |D| = (2m − 2|A|)2|B|. To compute the weight
and frequency of a codeword, we need to introduce the following notation.

For X a subset of Fm
2 , we use χ(u|X) to denote a Boolean function in m-variable, and χ(u|X) = 1 if

and only if u
⋂

X = ∅. For a vector u = (u1, . . . , um) ∈ Fm
2 and a nonempty simplicial complex ∆A, by

Lemma 2.1 we have∑
x∈∆A

(−1)u·x = H∆A((−1)u1 , (−1)u2 , . . . , (−1)um) =
∏
i∈A

(1 + (−1)ui)

=
∏
i∈A

(2 − 2ui) = 2|A|
∏
i∈A

(1 − ui) = 2|A|χ(u|A). (3.4)

By (3.3) and (3.4)

wt(ca) =
3
4
|D| −

1
4

(2mδ0,α − 2|A|χ(α|A))2|B|χ(β|B)

−
1
4

(2mδ0,β − 2|A|χ(β|A))2|B|χ(α + β|B)

−
1
4

(2mδ0,α+β − 2|A|χ(α + β|A))2|B|χ(α|B), (3.5)

where δ is the Kronecker delta function.
Next we need to consider the following cases:
Case 1. α = 0 and β , 0. Then

wt(ca) =
3
4
|D| −

1
4

(2m − 2|A|)2|B|χ(β|B) +
1
4

2|A|+|B|χ(β|A)(χ(β|B) + 1)

=


3
4 (2m − 2|A|)2|B|, if χ(β|B) = 0 and χ(β|A) = 0,
3
4 (2m − 2|A|)2|B| + 1

42|A|+|B|, if χ(β|B) = 0 and χ(β|A) = 1,
1
2 (2m − 2|A|)2|B|, if χ(β|B) = 1 and χ(β|A) = 0,
1
2 (2m − 2|A|)2|B| + 1

22|A|+|B|, if χ(β|B) = 1 and χ(β|A) = 1.

(1) Note that χ(β|B) = 0 and χ(β|A) = 0 if and only if β ∩ (A ∩ B) , ∅. The number of such β is
2m−|A∩B|(2|A∩B| − 1) = 2m − 2m−|A∩B|.

(2) Note that χ(β|B) = 1 and χ(β|A) = 1 if and only if β ∩ (A ∪ B) = ∅. The number of such β is
2m−|A∪B| − 1.
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(3) Note that χ(β|B) = 1 and χ(β|A) = 0 if and only if β ∩ B = ∅ and β ∩ A , ∅. The number of
such β is (2m−|B| − 1) − (2m−|A∪B| − 1) = 2m−|B| − 2m−|A∪B|.

(4) The number of β such that χ(β|B) = 0 and χ(β|A) = 1 is 2m − 1 − (2m − 2m−|A∩B|) − (2m−|A∪B| −

1) − (2m−|B| − 2m−|A∪B|) = 2m−|A∩B| − 2m−|B|.

Case 2. α , 0 and β = 0. Then

wt(ca) =
3
4
|D| −

1
4

(2m − 2|A|)2|B|χ(α|B) +
1
4

2|A|+|B|χ(α|A)(χ(α|B) + 1)

=


3
4 (2m − 2|A|)2|B|, if χ(α|B) = 0 and χ(α|A) = 0,
3
4 (2m − 2|A|)2|B| + 1

42|A|+|B|, if χ(α|B) = 0 and χ(α|A) = 1,
1
2 (2m − 2|A|)2|B|, if χ(α|B) = 1 and χ(α|A) = 0,
1
2 (2m − 2|A|)2|B| + 1

22|A|+|B|, if χ(α|B) = 1 and χ(α|A) = 1.

Similar to Case 1, the numbers of such α can be determined.
Case 3. α = β , 0. Then

wt(ca) =
3
4
|D| −

1
4

(2m − 2|A|)2|B|χ(α|B) +
1
4

2|A|+|B|χ(α|A)(χ(α|B) + 1)

=


3
4 (2m − 2|A|)2|B|, if χ(α|B) = 0 and χ(α|A) = 0,
3
4 (2m − 2|A|)2|B| + 1

42|A|+|B|, if χ(α|B) = 0 and χ(α|A) = 1,
1
2 (2m − 2|A|)2|B|, if χ(α|B) = 1 and χ(α|A) = 0,
1
2 (2m − 2|A|)2|B| + 1

22|A|+|B|, if χ(α|B) = 1 and χ(α|A) = 1.

Similar to Case 1, the numbers of such α can be determined.
Case 4. α , 0,β , 0, and α , β. Then

wt(ca) =
3
4
|D|

+
1
4

2|A|+|B|[χ(α|A)χ(α|B) + χ(β|A)χ(α + β|B) + χ(α + β|A)χ(α|B)]. (3.6)

Let T = χ(α|A)χ(α|B) + χ(β|A)χ(α + β|B) + χ(α + β|A)χ(α|B). We divide the proof into the following
subcases:

(1) T = 3. In this case we have wt(ca) = 3
4 (2m − 2|A|)2|B| + 3

42|A|+|B| and

χ(α|A) = χ(α|B) = χ(β|A) = χ(α + β|B) = χ(α + β|A) = 1,

which is equivalent to
α ∩ (A ∪ B) = ∅ and β ∩ (A ∪ B) = ∅.

The number of such (α,β) is (2m−|A∪B| − 1)(2m−|A∪B| − 2).
(2) T = 2. Suppose that χ(α|A)χ(α|B) = 0. We have{

χ(β|A)χ(α + β|B) = 1
χ(α + β|A)χ(α|B) = 1

⇐⇒

{
β ∩ A = (α + β) ∩ B = ∅

α ∩ B = (α + β) ∩ A = ∅.

Hence α∩ A , ∅. Note that the support of the vector α + β is equal to (supp(α)∪ supp(β))\(supp(α)∩
supp(β)). From α ∩ A , ∅ and β ∩ A = ∅, we have (α + β) ∩ A , ∅, which is a contradiction with
(α + β) ∩ A = ∅. Similarly, we have that there is no (α,β) such that T = 2.
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(3) T = 1. In this case we have wt(ca) = 3
4 (2m − 2|A|)2|B| + 1

42|A|+|B|. Because α,β,α + β have the
same status, without loss of generality, we suppose that χ(β|A)χ(β|B) = 1. Then we have

χ(β|A)χ(β|B) = 1
χ(β|A)χ(α + β|B) = 0
χ(α + β|A)χ(α|B) = 0

⇐⇒


α ∩ A = ∅,β ∩ B = ∅

β ∩ A , ∅ or (α + β) ∩ B , ∅

(α + β) ∩ A , ∅ or α ∩ B , ∅

⇐⇒

{
α ∩ A = ∅,β ∩ B = ∅

(α + β) ∩ (A ∪ B) , ∅.

The number of such (α,β) is (2m−|A| − 1)(2m−|B| − 2) − (2m−|A∪B| − 1)(2m−|A∪B| − 2).
(4) T = 0. In this case we have wt(ca) = 3

4 (2m − 2|A|)2|B|. The number of such (α,β) is (2m − 1)(2m −

2) − (2m−|A∪B| − 1)(2m−|A∪B| − 2) − (2m−|A| − 1)(2m−|B| − 2) + (2m−|A∪B| − 1)(2m−|A∪B| − 2) = (2m − 1)(2m −

2) − (2m−|A| − 1)(2m−|B| − 2).
This completes the proof. �

Corollary 3.2. Let B be a subset of [m] and D = Fm
2 + w∆B ⊂ F

m
4 . Then CD is a [2m+|B|,m, 2m+|B|−1]

two-weight quaternary code and its weight distribution is presented in Table 2.

Table 2. Weight distribution of the code in Corollary 3.2.

Weight Frequency
0 1
2m+|B|−1 3 × (2m−|B| − 1)
3 × 2m+|B|−2 22m − 1 − 3 × (2m−|B| − 1)

Corollary 3.3. Let A be a subset of [m] and D = ∆c
A + wFm

2 ⊂ F
m
4 . Then CD is a [2m(2m − 2|A|),m, 3 ×

22m−2 − 3 × 2|A|+m−2] two-weight quaternary code and its weight distribution is presented in Table 3.

Table 3. Weight distribution of the code in Corollary 3.3.

Weight Frequency
0 1
3 × 22m−2 − 2|A|+m−1 3 × (2m−|A| − 1)
3 × 22m−2 − 3 × 2|A|+m−2 22m − 1 − 3 × (2m−|A| − 1)

We give the following examples to illustrate our main results.

Example 3.4. Let m = 4, |B| = 2, and D = Fm
2 + w∆B ⊂ F

m
4 . By Corollary 3.3, CD is a [64, 4, 32]

quaternary code and its weight distribution is given by 1 + 9z32 + 246z48.

Example 3.5. Let m = 4, |A| = 3, and D = ∆c
A + wFm

2 ⊂ F
m
4 . By Corollary 3.3 and database in [4], CD

is a [128, 4, 96] quaternary optimal code and its weight distribution is given by 1 + 252z96 + 3z128.

Proposition 3.6. The code in Corollary 3.3 is a Griesmer code.
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Proof. By Corollary 3.3, the parameters of the code are

[2m(2m − 2|A|),m, 3 × 22m−2 − 3 × 2|A|+m−2].

By the Griesmer bound, we have

m−1∑
i=0

⌈3(22m−2 − 2m+|A|−2)
4i

⌉
=

m−1∑
i=0

3 × 22m−2

4i −

m−1∑
i=0

⌊3 × 2m+|A|−2

4i

⌋
= 3 × 22m−2 + 3 × 22m−4 + · · · + 3
−(3 × 2m+|A|−2 + 3 × 2m+|A|−4 + · · · + X + Y),

where X = 3 and Y = 0 if m + |A| − 2 is even; and X = 6 and Y = 1 if m + |A| − 2 is odd. Then

m−1∑
i=0

⌈3(22m−2 − 2m+|A|−2)
4i

⌉
=

3 × 22m−2 − 3 × 1
4

1 − 1
4

−
3 × 2m+|A|−2 − X × 1

4

1 − 1
4

− Y

= 22m − 1 − (2m+|A| − 1) = 2m(2m − 2|A|).

This completes the proof. �

For two vectors u, v ∈ Fm
q , we say that u covers v if supp(v) ⊆ supp(u). A nonzero codeword u in a

linear code C is said to be minimal if u covers the zero vector and the u itself but no other codewords in
the code C. A linear code C is said to be minimal if every nonzero codeword in the code C is minimal.

The following lemma developed by Aschikhmin and Barg [1] is a useful criterion for a linear code
to be minimal.

Lemma 3.7. A linear code C over Fq with minimum distance wmin is minimal provided that
wmin/wmax > (q − 1)/q, where wmax denotes the maximum nonzero Hamming weight in the code C.

Corollary 3.8. Let A be a proper subset of [m] and D = ∆c
A + wFm

2 ⊂ F
m
4 in Corollary 3.3. Then the

code CD is minimal.

Proof. The result follows from Lemma 3.7 and

wmin

wmax
=

3 × 22m−2 − 3 × 2|A|+m−2

3 × 22m−2 − 2|A|+m−1 = 1 −
1

2(3 × 2m−|A| − 1)
>

3
4
.
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