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1. Background and preliminaries

The fractional calculus is nowadays considered as an important branch of mathematics, with a
positive impact on several applied sciences; see, for example, the classical monograph by Samko
et al. [1] and Kilbas et al. [2]. In [3], Kiryakova proposed a theory of a generalized fractional calculus
(generalizations of fractional integrals and derivatives) and their applications. One of the proposed
generalizations of the fractional calculus operators which has wide applications is the ψ–fractional
operator. This notion is referred to as the fractional derivative and integral of a function with respect
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to another function ψ. Several properties of this operator could be found in [1, 2, 4–7]. For some new
developments on this topic; see [8–12] and references therein.

Inequalities play a vital role in both pure and applied mathematics. In particular, inequalities
involving the derivative and integral of functions are very captivating for researchers [13]. Integral
inequalities have many applications in the theory of differential equations, theory of approximations,
transform theory, probability, and statistical problems and many others. Therefore, in the literature we
found several extensions and significant developments for the forms of classical integral inequalities.
Furthermore, the study of qualitative and quantitative properties of solution of fractional differential
and integral equations requires the use of various types of integral inequalities.

As our concern is Gronwall’s inequality, we state its classical form as follows.

Theorem 1.1. [14] Let u (t) , g (t) be nonnegative functions for any t ∈ [a,T ] and a,T and v be
nonnegative constants such that

u (t) ≤ v +

∫ t

a
g (τ) u (τ) dτ, (1.1)

then

u (t) ≤ v exp
(∫ t

a
g (τ) dτ

)
. (1.2)

We review some recent results for the sake of comparison. In [15], Bellman generalized Theorem
1.1 by letting v be a nonnegative and nondecreasing function, which is stated in many references such
as [13, 16]. In [17], Pachpatte also established the following inequality

u (t) ≤ v (t) +

∫ t

a
g1 (τ) u (τ) dτ +

∫ T

a
g2 (τ) u (τ) dτ. (1.3)

In [18], Kender et al. proved the following further generalizations of inequality (1.3) by replacing the
linear term of the unknown function u by the nonlinear term up in both sides of the inequality and
obtain the following

up (t) ≤ v (t) +

∫ t

a
g1 (τ) u (τ) dτ +

∫ T

a
g2 (τ) u (τ)p dτ, p > 0. (1.4)

In [19], Jiang and Meng discussed the following integral inequality

ur (t) ≤ v (t) + g1 (t)
∫ t

a
g2 (τ) u (τ)p dτ + g1 (t)

∫ t

a
g3 (τ) u (τ)q dτ, r, p, q > 0, (1.5)

under the same initial condition. For further detail on Gronwall–type inequalities involving the
Riemann–Liouville fractional integrals [20, 21], for the Hadamard fractional integrals [22, 23] and for
the Katugampola fractional integrals [24, 25], where other formulations of the Gronwall’s inequality
can be found via fractional integrals [26, 27].

As one of the objectives of this article is to propose a generalized Gronwall’s inequality, we state
the inequality of Gronwall which was first introduced in fractional settings in [28]

u (t) ≤ v (t) + g (t)
∫ t

a
(t − τ)α−1 u (τ) dτ, α > 0, (1.6)
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where u (t) , v (t) are nonnegative functions and g (t) is a nonnegative and nondecreasing function for
t ∈ [0,T ] . In [12], the Gronwall’s inequality (1.6) was generalized as under

u (t) ≤ v (t) + g (t)
∫ t

a
ψ′ (τ) (ψ (t) − ψ (τ))α−1 u (τ) dτ, (1.7)

where ψ ∈ C1[a,T ] is an increasing function such that ψ′ (t) , 0, ∀ t ∈ [a,T ]. Further in [29], Willett
discussed the linear inequality

u (t) ≤ v (t) +

n∑
i=1

gi (t)
∫ t

a
hi (τ) u (τ) dτ, hi ∈ C

1[a,T ]. (1.8)

The following generalizations of the Gronwall type inequality were given in [30, 31]

u (t) ≤ v (t) +

n∑
i=1

gi (t)
∫ t

a
(t − τ)αi−1 u (τ) dτ (1.9)

and

u (t) ≤ v (t) +

n∑
i=1

gi (t)
∫ t

a
(t − τ)αi−1 upi (τ) dτ, pi > 0. (1.10)

Oriented by above discussion, some other generalizations for the inequalities (1.1) and (1.6) have been
elaborated. For relevant results; see [32–37] and the references cited therein.

The main objective of this paper is to extend Theorem 1.1, Gronwall–type inequalities (1.6), (1.7),
(1.9) and (1.10) to the general case by the implementation of ψ–fractional operator. We claim that the
results of this paper are obtained within a general platform that includes all previous forms as particular
cases. As applications, we prove the existence and uniqueness of solutions for ψ–fractional initial
value problem and study the Ulam–Hyers stability of solutions for ψ–fractional differential equations.
Particular examples are given to confirm the proposed results.

We continue with the definitions and properties of the fractional derivative and integral of a function
u with respect to given function ψ. These definitions are referred to as ψ–fractional operators.

The standard Riemann–Liouville fractional integral of order α > 0, namely(
Jαa+,t

)
[u] =

1
Γ (α)

∫ t

a
(t − τ)α−1 u (τ) dτ, t > a. (1.11)

The left–sided factional integrals and fractional derivatives of a function u with respect to another
function ψ in the sense of Riemann–Liouville are defined as follows [2](

Jα,ψa+,t

)
[u] =

1
Γ (α)

∫ t

a
ψ′ (τ) (ψ (t) − ψ (τ))α−1 u (τ) dτ (1.12)

and (
Dα,ψ

a+,t

)
[u] =

(
1

ψ′ (t)
d
dt

)n (
Jn−α,ψ

a+,t

)
[u] , (1.13)

respectively, where n = [α] + 1 and u, ψ ∈ Cn[a,T ] are two functions such that ψ is increasing and
ψ′(t) , 0, for all t ∈ [a,T ].
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We propose the remarkable paper [38] in which some generalizations using ψ–fractional integrals
and derivatives are described. In particular, we have

if ψ(t) −→ t, then Jα,ψa+,t −→ Jαa+,t,

if ψ(t) −→ ln t, then Jα,ψa+,t −→
H Jαa+,t,

if ψ(t) −→ tρ, then Jα,ψa+,t −→
ρJαa+,t, ρ > 0,

(1.14)

where Jαa+,t,
H Jαa+,t and ρJαa+,t are the classical Riemann–Liouville, Hadamard and Katugampola

fractional operators, respectively.

Lemma 1.1. [2] Let α, β > 0. Then, we have the following(
Jα,ψa+,t

) [
K (τ; a)β−1

]
=

Γ (β)
Γ (α + β)

K (t; a)α+β−1 (1.15)

and (
Dα,ψ

a+,t

) [
K (τ; a)β−1

]
=

Γ (β)
Γ (β − α)

K (t; a)β−α−1 , (1.16)

where
K (t; τ) = ψ (t) − ψ (τ) . (1.17)

Lemma 1.2. [6, 11] Given a function u ∈ Cn[a,T ] and α ∈ (0, 1). Then, we have

Jα,ψa+,t

(
Dα,ψ

a+,τ

)
[u] = u (t) −

(
J1−α,ψ

a+,τ

)
[u]

∣∣∣∣
τ=a

Γ (α)
(K (t; a))α−1 . (1.18)

For α, β > 0, the following properties are valid(
Dα,ψ

a+,t

) (
Jβ,ψa+,τ

)
[u] =

(
Jβ−α,ψa+,t

)
[u] . (1.19)

and (
Jα,ψa+,t

) (
Jβ,ψa+,τ

)
[u] =

(
Jα+β,ψ

a+,t

)
[u] and

(
Dα,ψ

a+,t

) (
Dβ,ψ

a+,τ

)
[u] =

(
Dα+β,ψ

a+,t

)
[u] . (1.20)

The next result is helpful for the investigation obtained subsequently.

Lemma 1.3. (Young’s Inequality) [39, page 622] For any A, B > 0 and 1 < p, q < +∞, 1/p + 1/q =

1, ε > 0, we get
AB ≤ εAp + C (ε) Bq, (1.21)

where
C (ε) = (εp)−q/p q−1.

Definition 1.1. [40] The Mittag–Leffler function is given by the series

Eα (z) =

∞∑
k=0

zk

Γ (αk + 1)
, (1.22)

where Re (α) > 0 and Γ (z) is a Gamma function. In particular

E1 (z) = exp (z) , E2

(
z2
)

= cosh (z) , E1/2

(
z1/2

)
= exp (z)

[
1 + er f

(
z1/2

)]
,

where er f (z) error function.
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We outline the structure of the paper as follows: Section 2 is devoted to the new generalizations for
the ψ–Gronwall–type inequality. Meanwhile, two remarks are addressed to show that the obtained
forms of Gronwall–type inequality include other results as particular cases. Section 3 provides
applications for the proposed results. Firstly, we demonstrate that the new inequalities can be used as
handy tools in the study of existence and uniqueness of solutions of ψ–fractional initial value
problem. Secondly, we use the the new inequalities to investigate the Ulam–Hyers stability of
ψ–fractional differential equations. We also give some interesting examples to illustrate the
effectiveness of our main results in Section 4. At last, the paper is concluded in Section 5.

2. New generalized ψ–Gronwall’s inequality

By the same arguments of [30, Lemma 2.1], we can easily obtain the following result, which plays
a very important role in proving the main results.

Lemma 2.1. For any t ∈ [a,T ),

U (t) ≥
n∑

i=1

gi (t)
∫ t

a
ψ′ (τ) (K (t; τ))αi−1 U (τ) dτ, (2.1)

where all functions are continuous. The constants αi > 0. gi (i = 0, 1, . . . , n) are bounded, nonnegative,
and monotonic increasing functions on [a,T ), then U (t) ≥ 0, t ∈ [a,T ).

Proof. Clearly, U (a) ≥ 0. If the proposition is false, that is

{t : t ∈ [a,T ) , U (t) < 0} , φ, (2.2)

where φ is an empty set, then there exists a point t0 on [a,T ) which satisfies U |[a,t0] ≥ 0, U (t0) = 0.
The function U is a strictly monotonic decreasing function on (t0, t0 + ε) ⊂ [a,T ). Let ε > 0. Hence,
for each t ∈ (t0, t0 + ε) , we have U (t) < 0 and

U (t) ≥
n∑

i=1

gi (t)
∫ t

a
ψ′ (τ) (K (t; τ))αi−1 U (τ) dτ

≥

n∑
i=1

gi (t)
∫ t

t0
ψ′ (τ) (K (t; τ))αi−1 U (τ) dτ

≥ U (t)
n∑

i=1

gi (t)
∫ t

t0
ψ′ (τ) (K (t; τ))αi−1 dτ

= U (t)
n∑

i=1

gi (t)
K (t; t0)αi

Γ (αi + 1)
,

which implies that
n∑

i=1

gi (t)
K (t; t0)αi

Γ (αi + 1)
≥ 1.

Let t −→ t0, then we have a contradiction, that is, 0 ≥ 1. The proof of Lemma 2.1 is completed.
�
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In light of the approach introduced in [30], we generalize Gronwall’s inequality as follows.

Theorem 2.1. Let ψ ∈ C1[a,T ] be an increasing function such that ψ′ (t) , 0, ∀ t ∈ [a,T ]. Assume
that

•(H1) u(t) and v(t) are nonnegative functions locally integrable on [a,T );
(H2) The functions (gi)i=1,...,n are the bounded and monotonic increasing functions on [a,T );
(H3) The constants αi > 0, (i = 1, 2, . . . , n) .

If

u (t) ≤ v (t) +

n∑
i=1

gi (t)
∫ t

a
ψ′ (τ) (K (t; τ))αi−1 u (τ) dτ, (2.3)

then

u (t) ≤ v (t) +

∞∑
k=1

 n∑
1′,2′,3′,...,k′=1

k∏
i=1

(gi′ (t)Γ(αi′))
Γ(∑k

i=1 αi′)

∫ t

a

[
ψ′ (τ) (K (t; τ))

∑k
i=1 αi′−1

]
v (τ) dτ

 . (2.4)

Proof. Suppose that

w (t) = v (t) +

∞∑
k=1

 n∑
1′,2′,3′,ldots,k′=1


k∏

i=1
(gi′ (t)Γ(αi′))
Γ(∑k

i=1 αi′)

 ∫ t

a

[
ψ′ (τ) (K (t; τ))

∑k
i=1 αi′−1

]
v (τ) dτ

 .
By Dirichlet’s formula and using the definition of Beta function, the following equality is given∫ t

a

∫ s

a
ψ′ (s)ψ′ (τ) (K (t; s))α j−1 (K (s; τ))

∑k
i=1 αi′−1 v (τ) dτds

=
Γ
(
α j

)
Γ
(∑k

i=1 αi′
)

Γ
(
α j +

∑k
i=1 αi′

) ∫ t

a
ψ′ (s) (K (t; s))α j+

∑k
i=1 αi′−1 v (s) ds. (2.5)

From the fact that gi (i = 0, 1, . . . , n) are monotonic increasing functions on [a,T ) and gi′ (s) ≤ gi′ (t),
for all s ≤ t, we obtain

n∑
i=1

gi (t)
∫ t

a
ψ′ (τ) (K (t; τ))αi−1 w (τ) dτ

≤

∞∑
k=1

n∑
j=1

n∑
1′,2′,3′,...k′=1

g j (t)
∫ t

a

∫ s

a

k∏
i=1

(gi′ (s)Γ(αi′))
Γ(∑k

i=1 αi′) ψ′ (s) (K (t; s))α j−1 (K (s; τ))
∑k

i=1 αi′−1 v (τ) dτds

+

n∑
i=1

gi (t)
∫ t

a
ψ′ (τ) (K (t; τ))αi−1 v (τ) dτ

≤

∞∑
k=1

n∑
j=1

n∑
1′,2′,3′,...k′=1

g j (t)
∫ t

a

∫ s

a

k∏
i=1

(gi′ (t)Γ(αi′))
Γ(∑k

i=1 αi′) ψ′ (s) (K (t; s))α j−1 (K (s; τ))
∑k

i=1 αi′−1 v (τ) dτds

+

n∑
i=1

gi (t)
∫ t

a
ψ′ (τ) (K (t; τ))αi−1 v (τ) dτ. (2.6)
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By using (2.5), the inequality (2.6) can be rewritten as
n∑

i=1

gi (t)
∫ t

a
ψ′ (τ) (K (t; τ))αi−1 w (τ) dτ

≤

∞∑
k=1

n∑
j=1

n∑
1′,2′,3′,...k′=1

g j (t)
∫ t

a

Γ(α j)
k∏

i=1
(gi′ (t)Γ(αi′))

Γ(α j+
∑k

i=1 αi′) ψ′ (s) (K (t; s))α j+
∑k

i=1 αi′−1 v (s) ds. (2.7)

Let j = (k + 1)′ then, from (2.7), we have

n∑
i=1

gi (t)
∫ t

a
ψ′ (τ) (K (t; τ))αi−1 w (τ) dτ

≤

∞∑
k=1

n∑
(k+1)′=1

n∑
1′,2′,3′,...k′=1

g(k+1)′ (t)
∫ t

a

Γ(α(k+1)′)
k∏

i=1
(gi′ (t)Γ(αi′))

Γ(α(k+1)′+
∑k

i=1 αi′) ψ′ (s) (K (t; s))α(k+1)′+
∑k

i=1 αi′−1 v (s) ds

≤

∞∑
k=1

 n∑
1′,2′,3′,...,k′,(k+1)′=1

k+1∏
i=1

(gi′ (t)Γ(αi′))
Γ(∑k+1

i=1 αi′)

∫ t

a
ψ′ (τ) (K (t; τ))

∑k+1
i=1 αi′−1 v (τ) dτ


≤

∞∑
k=1

 n∑
1′,2′,3′,...,k′=1

k∏
i=1

(gi′ (t)Γ(αi′))
Γ(∑k

i=1 αi′)

∫ t

a
ψ′ (τ) (K (t; τ))

∑k
i=1 αi′−1 v (τ) dτ


= w (t) − v (t) ,

which implies that

u (t) −
n∑

i=1

gi (t)
∫ t

a
ψ′ (τ) (K (t; τ))αi−1 u (τ) dτ

≤ v (t)

≤ w (t) −
n∑

i=1

gi (t)
∫ t

a
ψ′ (τ) (K (t; τ))αi−1 w (τ) dτ.

Let U (t) = w (t) − u (t), then we have

U (t) ≥
n∑

i=1

gi (t)
∫ t

a
ψ′ (τ) (K (t; τ))αi−1 U (τ) dτ.

According to Lemma 2.1, U (t) ≥ 0. That is, u (t) ≤ w (t) and t ∈ [a,T ). The proof of Theorem 2.1 is
completed. �

Corollary 2.1. Under the hypotheses of Theorem 2.1, assume further that u (t) is a nondecreasing
function for t ∈ [a,T ), then

u (t) ≤ v (T )
n∑

i=1

Eαi

(
gi (t) Γ (αi) (K (T ; a))αi

)
, t ∈ [a,T ) . (2.8)

where Eαi is the Mittag–Leffler function.
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Proof. From (2.4) and v (t) is a nondecreasing function for t ∈ [a,T ) , we have

u (t) ≤ v (t)

1 +

∞∑
k=1

 n∑
1′,2′,3′,...k′=1


k∏

i=1
(gi′ (t)Γ(αi′))
Γ(∑k

i=1 αi′)

 ∫ t

a

[
ψ′ (τ) (K (t; τ))

∑k
i=1 αi′−1

]
dτ


 .

Then, with the help of (1.12) and Lemma 1.1, it follows that

u (t) ≤ v (t)

 ∞∑
k=0

 n∑
1′,2′,3′,...k′=1

 k∏
i=1

(gi′ (t) Γ (αi′))

 (J
∑k

i=1 αi′ ,ψ

a+,t

)
[1]




≤ v (t)

 ∞∑
k=0

 n∑
1′,2′,3′,...k′=1

 k∏
i=1

(gi′ (t) Γ (αi′))

 (K (t; a))
∑k

i=1 αi′

Γ
(
1 +

∑k
i=1 αi′

)


≤ v (t)
n∑

i=1

Eαi

(
gi (t) Γ (αi) (K (t; a))αi

)
.

The proof is completed. �

Remark 2.1. From Theorem 2.1, we have the following particular cases as follows:

• • If n = 1, then Theorem 2.1 reduces to inequality (1.7) which itself contains, as a special case,
the inequalities (1.1) and (1.6).
• If n = 2, then Theorem 2.1 reduces to the inequality given by [28, Theorem 2].

Remark 2.2. From Theorem 2.1, we have the following particular cases in the general forms of
Gronwall’s inequality as follows:

• • If ψ(t) = t, then the inequality given by [30, Theorem 1.4] reduces to the Gronwall’s
inequality for Riemann–Liouville fractional integral operator.
• If ψ(t) = ln t, then the inequality given by [30, Theorem 1.5] reduces to the Gronwall’s

inequality for Hadamard fractional integral operator.
• If ψ(t) = tρ, then the inequality given by [24, Theorem 2.1. with n = 1] reduces to the

Gronwall’s inequality for Katugampola fractional integral operator.

With the help of this Theorem 2.1, we have the following results.

Theorem 2.2. Let ψ ∈ C1[a,T ] be an increasing function such that ψ′ (t) , 0, ∀ t ∈ [a,T ]. Assume
that (H1) holds and

•(H4) The functions (gi)i=1,...,n and (ci)i=1,...,n are the bounded and monotonic increasing functions on
[a,T );

(H5) The constants 0 < α1 < α2 < · · · < αn ≤ 1 and 0 < λi < 1, (i = 1, 2, . . . , n).

If

u (t) ≤ v (t) +

n∑
i=1

gi (t)
∫ t

a
ψ′ (τ) (K (t; τ))αi−1 ci (τ) uλi (τ) dτ, (2.9)
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then

u (t) ≤ ṽ (t) +

∞∑
k=1

 n∑
1′,2′,3′,...,k′=1

k∏
i=1

(g̃i′ (t)Γ(αi′))
Γ(∑k

i=1 αi′)

∫ t

a

[
ψ′ (τ) (K (t; τ))

∑k
i=1 αi′−1

]
ṽ (τ) dτ

 , (2.10)

where

ṽ (t) = v (t) +

n∑
i=1

Ci (ε) gi (t)
∫ t

a
ψ′ (τ) (K (t; τ))αi−1 [ci (τ)]1/(1−λi) dτ (2.11)

g̃i′ (t) = εgi (t) , i = 1, . . . , n. (2.12)

and

Ci (ε) = (1 − λi)
(
λi

ε

) λi
1−λi

, (2.13)

Here ε is an arbitrary given positive number.

By Young’s inequality (Lemma 1.3), we have

ci (t) uλi (t) ≤ ε
[
uλi (t)

]1/λi
+ Ci (ε) [ci (t)]1/(1−λi) , t ∈ [a,T ] ,

which implies that, for any t ∈ [a,T ]

u (t) ≤ v (t) +

n∑
i=1

gi (t)
∫ t

a
ψ′ (τ) (K (t; τ))αi−1 ci (τ) uλi (τ) dτ.

Hence, we have

u (t) ≤ v (t) +

n∑
i=1

gi (t)
∫ t

a
ψ′ (τ) (K (t; τ))αi−1

[
εu (τ) + Ci (ε) [ci (τ)]1/(1−λi)

]
dτ.

Consequently,

u (t) ≤ v (t) +

n∑
i=1

Ci (ε) gi (t)
∫ t

a
ψ′ (τ) (K (t; τ))αi−1 [ci (τ)]1/(1−λi) dτ

+

n∑
i=1

εgi (t)
∫ t

a
ψ′ (τ) (K (t; τ))αi−1 u (τ) dτ.

The proof is completed.

Corollary 2.2. Let ψ ∈ C1[a,T ] be an increasing function such that ψ′ (t) , 0, ∀ t ∈ [a,T ]. Assume
that (H1), (H4) hold and

•(H6) The constants 0 < α1 = α2 = αn = 1 and 0 < λi < 1 (i = 1, 2, . . . , n).
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If

u (t) ≤ v (t) +

n∑
i=1

gi (t)
∫ t

a
ψ′ (τ) ci (τ) uλi (τ) dτ, (2.14)

then

u (t) ≤ ṽ (t) +

∞∑
k=1

 n∑
1′,2′,3′,...k′=1

k∏
i=1

(g̃i′ (t))
k!

∫ t

a

[
ψ′ (τ) (K (t; τ))k−1

]
ṽ (τ) dτ

 , (2.15)

where

ṽ (t) = v (t) +

n∑
i=1

Ci (ε) gi (t)
∫ t

a
ψ′ (τ) [ci (τ)]1/(1−λi) dτ (2.16)

and g̃i′ (t) = εgi (t) is defined by (2.12) for i = 1, . . . , n.

Remark 2.3. From Theorem 2.2, we have the following particular cases:

• • If n = 1, then Theorem 2.2 reduces to one of the well-known Gronwall’s inequality.
• If λi = 1 or λi = 0 (i = 1, . . . , n), then it reduces to one of the well-known Gronwall’s

inequality.
• If ψ(t) = tρ, then
• If ρ → 1, then the inequality given by [31, Theorem 4.] and [36, Theorem 2.1] reduces

to the Gronwall’s inequality for Riemann–Liouville fractional integral operator.
• If ρ → 0+, then the inequality given by [31, Theorem 5] reduces to the Gronwall’s

inequality for Hadamard fractional integral operator.

We conclude that Theorem 2.2 is more general than [31, Theorem 4 or Theorem 5].

3. Some applications

In this section, we present some applications of Theorem 2.1 and Theorem 2.2 to obtain the
existence and uniqueness of the solution for ψ–fractional initial value problem. Further, we apply the
main results of this work to study the stability of the ψ–fractional differential equations.

3.1. Existence and uniqueness

Consider the initial value problems with the ψ–fractional derivative

n∑
i=1

(
Dαi,ψ

a+,t

)
[u] = f (t, u (t))

n∑
i=1

(
J1−αi,ψ

a+,t

)
[u]

∣∣∣∣∣∣∣
t=a

= δ,

(3.1)

where 0 < α1 < α2 < · · · < αn < 1, Dαi,ψ
a+,t , Jαi,ψ

a+,t denote the left-sided of fractional derivative and
fractional integral operators of a function u with respect to another function ψ in the sense of Riemann–
Liouville, f ∈ C([a,T ] × R,R) and δ ∈ R.

The following lemma presents the uniqueness of solution for the initial value problem (3.1). For
simplicity of presentation, we set fu ≡ f (t, u (t)) .
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Lemma 3.1. For each t ∈ [a,T ), suppose that γ (t) ≥ 0 is a bounded and monotonic increasing function
and

| f (t, u2) − f (t, u1)| ≤ γ (t) |u2 − u1| , for all u1, u2 ∈ R. (3.2)

If the initial value problem (3.1) has a solution, then the solution is unique.

Proof. The proof will be given in two claims.
Claim 1. Since 0 < α1 < α2 < . . . < αn < 1, then according to Lemma 1.2, we get(

Jαn,ψ
a+,t

) [
fu
]

=

n∑
i=1

(
Jαn,ψ

a+,t

) (
Dαi,ψ

a+,τ

)
[u]

=

n∑
i=1

(
Jαn−αi,ψ

a+,t

) ((
Jαi,ψ

a+,s

)
Dαi,ψ

a+,τ

)
[u]

=

n∑
i=1

(
Jαn−αi,ψ

a+,t

) (
u (t) − ciK (t; a)αi−1

)
, (3.3)

where ci, (i = 1, 2, . . . , n) are some real numbers. By (3.3) and (1.15) we also have(
Jαn,ψ

a+,t

) [
fu
]

=

n∑
i=1

(
Jαn−αi,ψ

a+,t

)
[u] −

n∑
i=1

ci

(
Jαn−αi,ψ

a+,t

)
K (t; a)αi−1

=

n∑
i=1

(
Jαn−αi,ψ

a+,t

)
[u] −

K (t; a)αn−1

Γ (αn)

n∑
i=1

ciΓ (αi) . (3.4)

Applying the fractional integral operator
(
J1−αn,ψ

a+,t

)
to both sides of (3.4), we get

(
J1,ψ

a+,t

) [
fu
]

=

n∑
i=1

(
J1−αi,ψ

a+,t

)
[u] −

[(
J1−αn,ψ

a+,t

) K (t; a)αn−1

Γ (αn)

] n∑
i=1

ciΓ (αi) .

Hence, we have

0 =
(
J1,ψ

a+,t

) [
fu
]∣∣∣∣

t=a
=

n∑
i=1

(
J1−αi,ψ

a+,t

)
[u]

∣∣∣∣∣∣∣
t=a

−

n∑
i=1

ciΓ (αi) .

We obtain
n∑

i=1

ciΓ (αi) =

n∑
i=1

(
J1−αi,ψ

a+,t

)
[u]

∣∣∣∣∣∣∣
t=a

= δ. (3.5)

By (3.5), we have (
Jαn,ψ

a+,t

) [
fu
]

=

n∑
i=1

(
Jαn−αi,ψ

a+,t

)
[u] − δ

K (t; a)αn−1

Γ (αn)

= u (t) +

n−1∑
i=1

(
Jαn−αi,ψ

a+,t

)
[u] − δ

K (t; a)αn−1

Γ (αn)
.

Since

u (t) = δ
K (t; a)αn−1

Γ (αn)
−

n−1∑
i=1

(
Jαn−αi,ψ

a+,t

)
[u] +

(
Jαn,ψ

a+,t

) [
fu
]
. (3.6)
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Claim 2. Let u1 and u2 be two solutions of (3.1). Then from (3.6) and (3.2), we get

|u2 (t) − u1 (t)| =

∣∣∣∣∣∣∣
n−1∑
i=1

(
Jαn−αi,ψ

a+,t

)
[u2 − u1] −

(
Jαn,ψ

a+,t

) [
fu2 − fu1

]∣∣∣∣∣∣∣
≤

n−1∑
i=1

(
Jαn−αi,ψ

a+,t

)
[|u2 − u1|] +

(
Jαn,ψ

a+,t

) [∣∣∣ fu2 − fu1

∣∣∣]
≤

n−1∑
i=1

(
Jαn−αi,ψ

a+,t

)
[|u2 − u1|] + γ (t)

(
Jαn,ψ

a+,t

)
[|u2 − u1|]

≤ 0,

which yields
|u2 (t) − u1 (t)| ≤ 0. (3.7)

Therefore, we can conclude that
u2 (t) = u1 (t) . t ∈ [a,T ). (3.8)

Then the initial value problem (3.1) has at most one solution. The proof is completed. �

Consider the following fractional system with the ψ–fractional derivative

n∑
i=1

(
Dαi,ψ

a+,t

)
[u] = f (t, u (t))

n∑
i=1

(
J1−αi,ψ

a+,t

)
[u]

∣∣∣∣∣∣∣
t=0

= δ1

and



n∑
i=1

(
Dαi,ψ

a+,t

)
[v] = g (t, v (t))

n∑
i=1

(
J1−αi,ψ

a+,t

)
[v]

∣∣∣∣∣∣∣
t=0

= δ2.

(3.9)

where 0 < α1 < α2 < · · · < αn < 1, Dαi,ψ
a+,t , Jαi,ψ

a+,t denote the left-sided of fractional derivative and
fractional integral operators of a function u with respect to another function ψ in the sense of Riemann–
Liouville, f , g ∈ C([a,T ] × R,R) and δ1, δ2 ∈ R.

We have the following lemma.

Lemma 3.2. Let f , g : [a,T ] × R→ R be two continuous functions and let u, v be solutions of the two
systems (3.9). Assume that the following assumptions hold:

• (A1) There exists a positive constant c such that

|g (t, v2 (t)) − g (t, v1 (t))| ≤ c |v2 (t) − v1 (t)| , c > 0, ∀ t ∈ [a,T ] , ∀ v1, v2 ∈ R.

(A2) There exists a continuous function χ : [a,T ]→ R+
0 such that

| f (t, u (t)) − g (t, u (t))| ≤ χ (t) , ∀ t ∈ [a,T ] .

Then, for all t ∈ [a,T ], we have the following inequality:

|u (t) − v (t)| ≤ w (t) +

∞∑
k=1

 n∑
1′,2′,3′,...k′=1

k∏
i=1

(gi′ (t)Γ(αi′))
Γ(∑k

i=1 αi′)

∫ t

a

[
ψ′ (τ) (K (t; τ))

∑k
i=1 αi′−1

]
w (τ) dτ

 , (3.10)
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where the function w : [a,T ]→ R is defined by

w (t) = |δ1 − δ2|
K (t; a)αn−1

Γ (αn)
+

(
Jαn,ψ

a+,t

) [
χ
]
. (3.11)

Proof. With the help of (A1) and (A2), it follows that

|u (t) − v (t)|

=

∣∣∣∣∣∣∣(δ1 − δ2)
K (t; a)αn−1

Γ (αn)
+

n−1∑
i=1

(
Jαn−αi,ψ

a+,t

)
[u − v] −

(
Jαn,ψ

a+,t

) [
fu − gv

]∣∣∣∣∣∣∣
≤ |δ1 − δ2|

K (t; a)αn−1

Γ (αn)
+

n−1∑
i=1

(
Jαn−αi,ψ

a+,t

)
[|u − v|] +

(
Jαn,ψ

a+,t

) [
| fu − gv|

]
≤ |δ1 − δ2|

K (t; a)αn−1

Γ (αn)
+

n−1∑
i=1

(
Jαn−αi,ψ

a+,t

)
[|u − v|] +

(
Jαn,ψ

a+,t

) [
| fu − gu + gu − gv|

]
(3.12)

≤ |δ1 − δ2|
K (t; a)αn−1

Γ (αn)
+

n−1∑
i=1

(
Jαn−αi,ψ

a+,t

)
[|u − v|] +

(
Jαn,ψ

a+,t

) [
χ
]
+ c

(
Jαn,ψ

a+,t

)
[|u − v|]

≤ |δ1 − δ2|
K (t; a)αn−1

Γ (αn)
+

(
Jαn,ψ

a+,t

) [
χ
]
+ c

(
Jαn,ψ

a+,t

)
[|u − v|] +

n−1∑
i=1

(
Jαn−αi,ψ

a+,t

)
[|u − v|] .

Setting

w (t) = |δ1 − δ2|
K (t; a)αn−1

Γ (αn)
+

(
Jαn,ψ

a+,t

) [
χ
]
. (3.13)

By applying Theorem 2.1 to (3.12), the desired inequality (3.10) is obtained. This completes the
proof. �

Remark 3.1. In particular, when f = g then χ (t) ≡ 0, we obtain a simpler formula (3.10) with

w (t) = |δ1 − δ2|
K (t; a)αn−1

Γ (αn)
. (3.14)

In view of inequality (3.10) with (3.14), we see that the solution of system (3.9) is unique.

Consider the following fractional system

n∑
i=1

(
Dαn+1−αi,ψ

a+,t

) [
hiuλi

]
+

(
Dαn+1,ψ

a+,t

) [
uλ0

]
= f (t, u (t))

n∑
i=1

(
J1−αn+1+αi,ψ

a+,t

) [
hiuλi

]
+

(
J1−αn+1,ψ

a+,t

) [
uλ0

]∣∣∣∣∣∣∣
t=a

= δ,

(3.15)

where all functions are continuous. Moreover, hi (t) > 0 and the constants λi, αi > 0 (i = 1, 2, . . . , n).
Consider λ0 > 0, δ ∈ R and max {αi : i = 1, 2, . . . , n} < αn+1 < 1.

By applying similar arguments to the technique used in Lin [31], we can conclude the following
result.
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Lemma 3.3. Suppose that

• (A3) The function hn+1 (t) > 0 is continuous and the constant λn+1 ∈ (0, 1), such that

| f (t, u2 (t)) − f (t, u1 (t))| ≤ hn+1 (t)
∣∣∣uλn+1

2 (t) − uλn+1
1 (t)

∣∣∣ , (3.16)

for any t ∈ [a,T ] and for all u1, u2 ∈ R.

(i) If max {λi : i = 1, 2, . . . , n + 1} < λ0, then for any solution u (t) of the problem (3.15), we get

|u (t)|λ0 ≤ ṽ (t) +

∞∑
k=1

 n+1∑
1′,2′,3′,...k′=1

k∏
i=1

(g̃i′ (t)Γ(αi′))
Γ(∑k

i=1 αi′)

∫ t

a

[
ψ′ (τ) (K (t; τ))

∑k
i=1 αi′−1

]
ṽ (τ) dτ

 , (3.17)

where

ṽ (t) = v (t) +

n+1∑
i=1

Ci (ε) gi (t)
∫ t

a
ψ′ (τ) (K (t; τ))αi−1 [hi (τ)]1/

(
1− λi

λ0

)
dτ, (3.18)

and

Ci (ε) =
1
λ0

(λ0 − λi)
(
λi

ελ0

) λi
λ0−λi

, g̃i′ (t) = εgi (t) , gi (t) =
1

Γ (αi)
, i = 1, . . . , n + 1.

(ii) If min {λi : i = 1, 2, . . . , n + 1} ≥ λ0, then the continuous solution of problem (3.15) is unique.

(i) Since max {αi : i = 1, 2, . . . , n} < αn+1 < 1, by using Lemma 1.1 and Lemma 1.2, we obtain

(
Jαn+1,ψ

a+,t

) [
fu
]

=

n∑
i=1

(
Jαn+1,ψ

a+,t

) (
Dαn+1−αi,ψ

a+,τ

) [
hiuλi

]
+

(
Jαn+1,ψ

a+,t

) (
Dαn+1,ψ

a+,τ

) [
uλ0

]
=

n∑
i=1

(
Jαi,ψ

a+,t

) (
Jαn+1,ψ

a+,t

) (
J−αi,ψ

a+,t

) (
Dαn+1−αi,ψ

a+,τ

) [
hiuλi

]
+

(
Jαn+1,ψ

a+,t

) (
Dαn+1,ψ

a+,τ

) [
uλ0

]
= uλ0 − cn+1K (t; a)αn+1−1 +

n∑
i=1

(
Jαi,ψ

a+,t

) [
hiuλi − ciK (t; a)αn+1−αi−1

]
.

It follows from (3.16) and (1.15) that

(
Jαn+1,ψ

a+,t

) [
fu
]

= uλ0 +

n∑
i=1

(
Jαi,ψ

a+,t

) [
hiuλi

]
−

cn+1 +

n∑
i=1

ci
Γ (αn+1 − αi)

Γ (αn+1)

K (t; a)αn+1−1 ,

which, together with (1.15) and (1.20), imply that

(
J1−αn+1,ψ

a+,t

) (
Jαn+1,ψ

a+,τ

) [
fu
]

=
(
J1−αn+1,ψ

a+,t

) [
uλ0

]
+

n∑
i=1

(
J1−αn+1,ψ

a+,t

) (
Jαi,ψ

a+,τ

) [
hiuλi

]
−

cn+1 +

n∑
i=1

ci
Γ (αn+1 − αi)

Γ (αn+1)

 (J1−αn+1,ψ
a+,t

) [
K (t; a)αn+1−1

]
.
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From Lemma 1.2, we have

(
J1,ψ

a+,t

) [
fu
]

=
(
J1−αn+1,ψ

a+,t

) [
uλ0

]
+

n∑
i=1

(
J1+αi−αn+1,ψ

a+,t

) [
hiuλi

]
−

cn+1 +

n∑
i=1

ci
Γ (αn+1 − αi)

Γ (αn+1)

 Γ (αn+1) . (3.19)

From (3.19), we have

(
J1,ψ

a+,t

) [
fu
]∣∣∣∣

t=a
=

(
J1−αn+1,ψ

a+,t

) [
uλ0

]∣∣∣∣
t=a

+

n∑
i=1

(
J1+αi−αn+1,ψ

a+,t

) [
hiuλi

]∣∣∣∣
t=a

−

cn+1 +

n∑
i=1

ci
Γ (αn+1 − αi)

Γ (αn+1)

 Γ (αn+1) . (3.20)

From the condition (3.15) and (3.20), we have

cn+1Γ (αn+1) +

n∑
i=1

ciΓ (αn+1 − αi) = δ.

and

uλ0 (t) =
(
Jαn+1,ψ

a+,t

) [
fu
]
−

n∑
i=1

(
Jαi,ψ

a+,t

) [
hiuλi

]
+

δ

Γ (αn+1)
K (t; a)αn+1−1 . (3.21)

Let w (t) = uλ0 (t) and applying (3.16) and (3.21), given the fact that

| fu| ≤ | fu − f0| + | f0| ≤ hn+1 (t) |u (t)|λn+1 + | f0|

obtains the following

|w (t)| =
(
Jαn+1,ψ

a+,t

) [
| fu|

]
+

n∑
i=1

(
Jαi,ψ

a+,t

) [∣∣∣∣∣hiw
λi
λ0

∣∣∣∣∣] +
|δ|

Γ (αn+1)
K (t; a)αn+1−1

≤
(
Jαn+1,ψ

a+,t

) [
| f0|

]
+

(
Jαn+1,ψ

a+,t

) [
| fu − f0|

]
+

n∑
i=1

(
Jαi,ψ

a+,t

) [∣∣∣∣∣hiw
λi
λ0

∣∣∣∣∣] +
|δ|

Γ (αn+1)
K (t; a)αn+1−1 . (3.22)

Rearranging the terms of (3.22), and by using condition (3.16), we obtain

|w (t)| ≤
(
Jαn+1,ψ

a+,t

) [
| f0|

]
+

(
Jαn+1,ψ

a+,t

) [∣∣∣∣∣hiw
λn+1
λ0

∣∣∣∣∣] +

n∑
i=1

(
Jαi,ψ

a+,t

) [∣∣∣∣∣hiw
λi
λ0

∣∣∣∣∣] +
|δ| K (t; a)αn+1−1

Γ (αn+1)
,

which gives

|w (t)| ≤
(
Jαn+1,ψ

a+,t

) [
| f0|

]
+
|δ| K (t; a)αn+1−1

Γ (αn+1)
+

n+1∑
i=1

(
Jαi,ψ

a+,t

) [∣∣∣∣∣hiw
λi
λ0

∣∣∣∣∣] .
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If max {λi : i = 1, 2, . . . , n + 1} < λ0, then, for any (i = 1, 2, . . . , n + 1) , λi
λ0
< 1. Setting, for any t ∈

[a,T ],

v (t) =
(
Jαn+1,ψ

a+,t

) [
| f0|

]
+
|δ| K (t; a)αn+1−1

Γ (αn+1)
, gi (t) =

1
Γ (αi)

.

By virtue of Theorem 2.2, we obtain

w (t) ≤ ṽ (t) +

∞∑
k=1

 n+1∑
1′,2′,3′,...k′=1

k∏
i=1

(g̃i′ (t)Γ(αi′))
Γ(∑k

i=1 αi′)

∫ t

a

[
ψ′ (τ) (K (t; τ))

∑k
i=1 αi′−1

]
ṽ (τ) dτ

 .
where the expression of ṽ (t) is shown in (3.18). Hence, the conclusion of (i) is derived.

(ii) We assume that problem (3.15) has two continuous solutions u1 and u2. Combining with the
fact that hi (t) ∈ C([a,T ],R) for any i = 1, . . . , n + 1 and the boundedness of the continuous function
on a closed interval, there exists a finite number M which satisfies that, for any t ∈ [a,T ] ,

max
{
|u1 (t)| , |u2 (t)| , max

1≤i≤n+1
|hi (t)|

}
< M. (3.23)

Cauchy’s mean value theorem provides the following inequality

∣∣∣uλi
2 (t) − uλi

1 (t)
∣∣∣ =

∣∣∣uλ0
2 (t) − uλ0

1 (t)
∣∣∣ ∣∣∣∣∣∣∣ λiξ

λi−1
i

λ0ξ
λ0−1
i

∣∣∣∣∣∣∣ =
λi

∣∣∣ξλi−λ0
i

∣∣∣
λ0

∣∣∣uλ0
2 (t) − uλ0

1 (t)
∣∣∣ ,

where ξi, i = 1, . . . , n+1, are the numbers between u1 (t)and u2 (t). The following estimation is deduced
by applying (3.23) and the hypothesis of λ0 ≤ min {λi : i = 1, 2, . . . , n + 1} in (ii)

∣∣∣uλi
2 (t) − uλi

1 (t)
∣∣∣ =

λiMλi−λ0

λ0

∣∣∣uλ0
2 (t) − uλ0

1 (t)
∣∣∣ , (3.24)

holds for any t ∈ [a,T ] and i = 1, . . . , n + 1. Therefore, (3.21), (3.23), and (3.24) give

∣∣∣uλ0
2 (t) − uλ0

1 (t)
∣∣∣ =

∣∣∣∣∣∣∣(Jαn+1,ψ
a+,t

) [
fu2
− fu1

]
−

n∑
i=1

(
Jαi,ψ

a+,t

) [
hi

(
uλi

2 − uλi
1

)]∣∣∣∣∣∣∣
≤

(
Jαn+1,ψ

a+,t

) [
hn+1

∣∣∣uλi
2 − uλi

1

∣∣∣] +

n∑
i=1

(
Jαi,ψ

a+,t

) [
hi

∣∣∣uλi
2 − uλi

1

∣∣∣]
≤

n+1∑
i=1

(
Jαi,ψ

a+,t

) [
hi

∣∣∣uλi
2 − uλi

1

∣∣∣]
≤

n+1∑
i=1

λiMλi−λ0

λ0

(
Jαi,ψ

a+,t

) [
hi

(∣∣∣uλ0
2 − uλ0

1

∣∣∣)] .
According to Theorem 2.2, we have ∣∣∣uλ0

2 (t) − uλ0
1 (t)

∣∣∣ ≤ 0,

which means that uλ0
2 (t) = uλ0

1 (t) . This completes the proof of (ii).
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3.2. Ulam–Hyers stability

In this subsection, we study the Ulam–Hyers stability of the initial value problem (3.1).

Remark 3.2. For every ε > 0, a function uε ∈ C([a,T ],R) is a solution of the inequality∣∣∣∣∣∣∣
n∑

i=1

(
Dαi,ψ

a+,t

)
[uε] − f (t, uε (t))

∣∣∣∣∣∣∣ ≤ ε, (3.25)

if and only if there exists a function h ∈ C([a,T ],R), (which depends on uε) such that

(i) |h (t)| ≤ ε, ∀t ∈ [a,T ] .
(ii)

∑n
i=1

(
Dαi,ψ

a+,t

)
[u] = f (t, u (t)) + h (t) .

Lemma 3.4. Assume that fuε is a continuous function that satisfies (3.2). The Eq (3.1) is Ulam-Hyers
stable with respect to ψ if there exists a real number Cε > 0 such that for each ε > 0 and for each
solution uε ∈ C1 ([a,T ] ,R) of the inequality (3.25), there exists a solution u∗ ∈ C1 ([a,T ] ,R) of (3.1)
with

|uε(t) − u∗(t)| ≤ εCε . (3.26)

Proof. If uε is a solution to (3.25), then uε is a solution to the problem

uε (t) =
δK (t; a)αn−1

Γ (αn)
−

n−1∑
i=1

(
Jαn−αi,ψ

a+,t

)
[uε] +

(
Jαn,ψ

a+,t

) [
fuε + h (t)

]
.

For each t ∈ [a,T ], one has∣∣∣∣∣∣∣uε (t) −
δK (t; a)αn−1

Γ (αn)
+

n−1∑
i=1

(
Jαn−αi,ψ

a+,t

)
[uε] −

(
Jαn,ψ

a+,t

) [
fuε

]∣∣∣∣∣∣∣ ≤ (
Jαn,ψ

a+,t

)
[h] .

Then, it follows that

|uε (t) − u∗ (t)| ≤
n−1∑
i=1

(
Jαn−αi,ψ

a+,t

)
[|uε − u∗|] +

(
Jαn,ψ

a+,t

) [∣∣∣ fuε + h − fu∗
∣∣∣]

≤

n−1∑
i=1

(
Jαn−αi,ψ

a+,t

)
[|uε − u∗|] +

(
Jαn,ψ

a+,t

) [∣∣∣ fuε − fu∗
∣∣∣] +

(
Jαn,ψ

a+,t

)
[h]

≤
(
Jαn,ψ

a+,t

)
[h] +

n−1∑
i=1

(
Jαn−αi,ψ

a+,t

)
[|uε − u∗|] + L

(
Jαn,ψ

a+,t

)
[|uε − u∗|] .

In virtue of (2.3), one has

w (t) ≤ v (t) +

n∑
i=1

gi (t)
∫ t

a
ψ′ (τ) (K (t; τ))βi−1 w (τ) dτ,

where
w (t) = |uε (t) − u∗ (t)| , v (t) = ε

(
Jαn,ψ

a+,t

)
[1] .
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Setting

gn (t) =
L

Γ (βn)
, βn = αn

gi (t) =
1

Γ (βi)
, βi = αn − αi, i = 1, . . . , n − 1.

By using Corollary 2.1, we obtain

w (t) ≤ v (t)

 n−1∑
i=1

Eβi

(
gi (t) Γ (βi) (K (t; a))βi

)
+ Eβn

(
Lgn (t) Γ (βn ) (K (t; a))βn

) .
Therefore

|uε (t) − u∗ (t)| ≤
ε (K (T ; a))αn

Γ (1 + αn)

 n−1∑
i=1

Eαn−αi

(
(K (T ; a))αn−αi

)
+ Eαn

(
L (K (T ; a))αn

) .
This shows that (3.26) holds. The proof is completed. �

4. Particular examples

In this section, we provide some particular examples that validate and confirm the proposed
theorems.

Example 4.1. we consider the linear inequality as follows

u (t) ≤ v (t) +

n∑
i=1

gi (t)
∫ t

0
ψ′ (τ) (K (t; τ))αi−1 u (τ) dτ, t ∈ [0, 1] (4.1)

Here n = 3, α1 = 1/2, α2 = 1, α3 = 2 , ψ(t) = t, gi (t) = 1/2Γ (αi),i = 1, 2, 3 and

v (t) = t2 −
8t

5
2

15
√
π
−

t3

6
−

t4

24
. (4.2)

By equality (4.2), we derive that v (t) is nonnegative and increasing on [0, 1]. According to Corollary
2.1, we have

u (t) ≤
t2 −

8t
5
2

15
√
π
−

t3

6
−

t4

24

 [E 1
2

(
1
2

t
1
2

)
+ E1

(
1
2

t
)

+ E2

(
1
2

t2
)]

(4.3)

≤

t2 −
8t

5
2

15
√
π
−

t3

6
−

t4

24

 e t
4

(
1 + er f

( √
t

2

))
+ e

t
2 + cosh

 √2t
2

 = w (t) .

it can be seen that the values of exact solution the linear integral equation

u (t) = v (t) +

n∑
i=1

gi (t)
∫ t

0
ψ′ (τ) (K (t; τ))αi−1 u (τ) dτ, t ∈ [0, 1], (4.4)

is u (t) = t2. In Figure 1, we plot the graphs of estimated bound of w (t), u (t) and w (t) − u (t) for
t ∈ [0, 1).
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0 0.2 0.4 0.6 0.8 1
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0.5

1
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t

y

w(t)

u(t)

w(t) − u(t)

Figure 1. Graphs of estimated bound of w (t), u (t) and w (t) − u (t) for t ∈ [0, 1).

Example 4.2. Consider the following initial value problems with the ψ–fractional derivative of the
form: 

n∑
i=1

(
Dαi,ψ

0+,t

)
[u] = 2t

 t
7
8

Γ( 23
8 )

+
t

3
4

Γ( 11
4 )

+
4t

1
2

3
√
π
−

t2

4

 +
t
2

u(t), t ∈ [0, 1]

n∑
i=1

(
J1−αi,ψ

0+,t

)
[u]

∣∣∣∣∣∣
t=0

= 0,

(4.5)

Here n = 3, α1 = 1/8, α2 = 1/4, α3 = 1/2 with 0 < α1 < α2 < α3 < 1, ψ(t) = t, δ = 0, and

f (t, u(t)) = 2t
 t

7
8

Γ( 23
8 )

+
t

3
4

Γ(11
4 )

+
4t

1
2

3
√
π
−

t2

4

 +
t
2

u(t). (4.6)

It follows that the inequality

| f (t, u2) − f (t, u1)| ≤
t
2
|u2 − u1|, ∀u1, u2 ∈ R.

From (3.2) with the above inequality, we get the function γ(t) = t/2 is a bounded and monotonic
increasing on t ∈ [0, 1]. It is easy to see that the function u(t) = t2 is a solution of the initial value
problem (4.5). Since all assumptions of Lemma 3.1 are satisfied, then the problem (4.5) has a unique
solution on [0, 1]. Furthermore, we can also compute that the real number

Cε ≤
2
√
π

[
E 3

8
(1) + E 1

4
(1) + E 1

2
(
1
2

)
]
.

Therefore, by Lemma 3.4, the problem (4.5) is Ulam-Hyers stable with respect to ψ on [0.1].
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Example 4.3. Consider the following fractional system with the ψ–fractional derivative of the form:
(
D

1
2 ,t
0+,t

)
[u] =

1
5

+
t2

2
·
|u(t)|

1 + |u(t)|(
J

1
2 ,t
0+,t

)
[u]

∣∣∣∣∣
t=0

=
1
2

and


(
D

1
2 ,t
0+,t

)
[v] =

1
5

+
t2

4
·
|v(t)|

1 + |v(t)|(
J

1
2 ,t
0+,t

)
[v]

∣∣∣∣∣
t=0

=
1
3
.

(4.7)

Here n = 1, α1 = 1/2 with ψ(t) = t, δ1 = 1/2, δ2 = 1/3 and for t ∈ [0, 1],

f (t, u(t)) =
1
5

+
t2

2
·
|u(t)|

1 + |u(t)|
and g(t, v(t)) =

1
5

+
t2

4
·
|v(t)|

1 + |v(t)|
.

It follows that the inequalities

|g(t, v2(t)) − g(t, v1(t))| ≤
1
4
|v2(t) − v1(t)|, ∀t ∈ [0, 1], ∀v1, v2 ∈ R

| f (t, u(t)) − g(t, u(t))| ≤
t2

4
, ∀t ∈ [0, 1].

The assumption (A1)–(A2) of Lemma 3.2 are satisfied with the positive constant c = 1/4 > 0 and
the continuous function χ(t) = t2/4. Then, for all t ∈ [0, 1], we have the following inequality

|u (t) − v (t)| ≤ w (t) +

∞∑
k=1

 n∑
1′,2′,3′,...k′=1

k∏
i=1

(gi′ (t)Γ(αi′))
Γ(∑k

i=1 αi′)

∫ t

a

[
ψ′ (τ) (K (t; τ))

∑k
i=1 αi′−1

]
w (τ) dτ

 ,
where w (t) = 1/(6

√
tπ) + (4t5/2)/(15

√
π).

Example 4.4. Consider the following fractional system of the form:

2∑
i=1

(
Dα3−αi,ψ

0+,t

) [
(et + i − 1)(1−2λi)uλi

]
+

(
Dα3,ψ

0+,t

) [
uλ0

]
=

1
2

+
1
6

(et + 2)(1−2λ3)u
1
6 (t), t ∈ [0, 1],

2∑
i=1

(
J1−α3+αi,ψ

0+,t

) [
(t + i)2uλi

]
+

(
J1−α3,ψ

0+,t

) [
uλ0

]∣∣∣∣∣∣∣
t=0

= 0,

(4.8)

Here n = 2, α1 = 1/2, α2 = 2/3, α3 = 3/4, ψ(t) = et, δ = 0, hi(t) = (et + i − 1)1−2λi , for i = 1, 2 and

f (t, u(t)) =
1
2

+
1
6

(et + 2)(1−2λ3)u
1
6 (t).

For u1, u2 ∈ R, we have

| f (t, u2(t)) − f (t, u1(t))| ≤
1
6

(et + 2)(1−2λ3)
|u

1
6
2 (t) − u

1
6
1 (t)|.

The assumption (A3) of Lemma 3.3 is satisfied with the continuous function h3(t) = (1/6)(et +

2)(1−2λ3) > 0 for t ∈ [0, 1] and the constant λ3 = 1/6 ∈ (0, 1).
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(i) If we set λ0 = 1/2, λ1 = 1/3 and λ2 = 1/4, we get that max{λ1, λ2, λ3} < λ0. Then, for any
solution u(t) of the problem (4.8), we can estimate that

|u (t)|
1
2 ≤ ṽ (t) +

∞∑
k=1

 3∑
1′,2′,3′,...,k′=1

k∏
i=1

(g̃i′ (t)Γ(αi′))
Γ(∑k

i=1 αi′)

∫ t

a

[
ψ′ (τ) (K (t; τ))

∑k
i=1 αi′−1

]
ṽ (τ) dτ

 ,
where

ṽ (t) = v (t) +

3∑
i=1

Ci (ε) gi (t)
∫ t

0
ψ′ (τ) (K (t; τ))αi−1 [hi (τ)]1/(1−2λi) dτ,

and
v (t) =

(
Jαn+1,ψ

a+,t

) [
| f0|

]
=

1
2

(
Jα3,et

0+,t

)
[1] =

2
3

et − 1

Γ
(

3
4

) .
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t
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1
ε = 102

t

ṽ (t)

Figure 2. Graphs of the function ṽ (t) = ṽ (t, ε) for ε = 10−3, 10−2, 10−1, 1, 10 and 102.

Since v (t) is nonnegative and increasing, ṽ (t) is also nonnegative and increasing, where

Ci (ε) = (1 − 2λi)
(
2λi

ε

) 2λi
1−2λi

, C1 (ε) =
4

27ε2 , C2 (ε) =
1
4ε
, C3 (ε) =

2
√

3
9
√
ε

and
g̃i′ (t) = εgi (t) , gi (t) =

1
Γ (αi)

, i = 1, 2, 3.

ṽ (t) = q1 +
q2
√
ε

+
q3

ε
+

q4

ε2

AIMS Mathematics Volume 6, Issue 5, 5053–5077.



5074

and

q1 =
2

3Γ
(

3
4

) (
et − 1

) 3
4 , q2 =

32
√

3

189Γ
(

3
4

) (
et +

17
4

) (
et − 1

) 3
4 ,

q3 =
9

40Γ
(

2
3

) (
et +

7
3

) (
et − 1

) 2
3 , q4 =

16
81
√
π

(
et +

1
2

) (
et − 1

) 1
2 .

In Figure 2, we plotted the graph of ṽ (t) = ṽ (t, ε) for t ∈ [0, 1) with ε = 10−3, 10−2, 10−1, 1, 10
and 102.

(ii) If we set λ0 = 1/2, λ1 = 1/2 and λ2 = 3/4, we get that min{λ1, λ2, λ3} ≥ λ0. Then the continuous
solution of problem (4.8) is unique.

5. Conclusions

In this paper, we introduced new generalizations for Gronwall’s inequality within the ψ–fractional
integral operators. The results of this paper provide general forms of Gronwall’s inequality that include
the forms obtained in [12, 30, 31]. Furthermore, Gronwall’s inequalities involving fractional integrals
of Riemann-Liouville, Hadamard and Katugampola types as well as fractional integrals of a function
with respect to another function are recovered for particular cases of function ψ.

To examine the validity and applicability of our results, we discussed the existence and uniqueness
of solutions of ψ–fractional initial and boundary value problems which are an important and useful
contributions to the existing theory. On the other hand, the stability of ψ–fractional differential
equations was studied via the obtained generalized ψ–Gronwall’s inequality. Interesting examples are
discussed at the end for the sake of confirming the results.

Reported results in this paper can be considered as a promising contribution to the theory of
fractional integral inequalities. These results can be used to study and develop further quantitative and
qualitative properties of generalized fractional differential equations.
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