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Abstract: In the present paper, we consider an important problem from the point of view of application
in sciences and mechanic, namely, a class of p(x)-Laplacian type parabolic equation with weak-
viscoelasticity. Here, we are concerned with global in time non-existence under suitable conditions
on the exponents g(x) and p(x) with positive initial energy. We show that the weak-memory term is
unable to stabilize problem (1.2) under conditions (1.5) and (1.7). Our main interest in this paper arose
in the first place in consequence of a query to blow-up phenomenon.
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1. Literature overview and new contributions

Let 1 < p < 400 and Q be an open bounded domain in R",n > 2, with smooth boundary Q. The
p-Laplacian A, is a nonlinear differential operator of order 2 defined by

Apu = div ([Vul”?Vu), forall ue W' (Q).

This differential operator intervenes in various domains among which we can mention: the
modeling of the mechanical phenomena, the image processing and some physical problems. To model
the movement of some non-Newtonian fluids, O. Ladyzhenskaya proposed in [17] the following
system

(1.1)

u= (ul’ Uz, ..., l/ln), u; € LOO(Oa T9 Ll (Q)) N LP(O’ Ta Wl’p(Q))9i = 19 e n,
A — div(|Vul’~> Vu) = 0 of distributions sense in Q x (0, T).

Let u(x, t) be the concentration of a particle component (or the density of heat) in Q. The equation

o — div(a(x, t,u, Vu)Vu) = b(x,t,Vu) + c(x,t,u), in Qx(0,7T),
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describes the evolution of the concentration during the propagation of particles in Q. Here c(x,, u)
describes a source if it is positive or a bowl if it is negative, the diffusion coefficient a(x, ¢, u, Vu)
reflects the intrinsic ability of diffusion in particles in the medium. Needful to say, it has a numerous
generalizations, we can also do with p(x)-Laplacian denoted by A,,,), which has an exponent variable
property.

The fact that p(x)-Laplacian is not homogeneous, makes non-linearities more complicated than
the operator p-Laplacian. Studies of various mathematical systems with variable exponent growth
conditions have received considerable attention in recent years, which is justified by their various
physical applications. However, few papers have treated evolutionary equations of non-local p(x)-
Laplacian type (Please see [1,5,12,13,24,25]). Viscoelastic materials demonstrate properties between
those of elastic materials and viscous fluid. As a consequence of the widespread use of polymers
and other modern materials which exhibit stress relaxation, the theory of visco-elasticity has provided
important applications in materials science and engineering (Please see [7,8,10,11,19,21,22]).

The viscoelastic materials show a behavior which is something between that of elastic solids and
Newtonian fluids. Indeed, the stresses in these media depend on the entire history of their deformation,
not only on their current state of deformation or their current state of motion. This is the reason why
they are called materials with memory. The viscoelastic equations with fading memory in a bounded
space has been deeply studied by several authors, in view of its wide applicability.

The lack of stability of solutions of viscoelastic partial differential equations is a huge restriction
for qualitative studies. In the present paper, we consider

!
ow — div(Iwal"(")‘szw) +0o() f w(t—s)Awds = [wPO= 2y, (1.2)
0

for x € Q, 0 < t < oo with initial and boundary conditions
w(x,0) = wy (x) € Wy?(Q), (1.3)

w=0on 0Qx (0,T), (1.4)

where g(-) and p(:) are two continuous functions on Q such that

2<qg-<q(0) g <p-<p)=<ps<q.(n), (1.5)

with .
oo =f T 0
+oo if n<qy.

The viscoelastic term is represented as fot u(t—s)Awds, it is called ”weak-viscoelastic” when
it comes with the time weighted function o(¢), which is considered as a dissipative term and causes
stability of systems. The nonlinear term [w|"®~2w is known as the source of instability. The importance
of our study lies in the study of the interaction between the exponents of source term and the Laplacian
with the presence of weak-viscoelastic term. We take the exponents as a variable functions, with their
difficulties in the mathematical point of view, to obtain a very large applications. These contributions
extend the early results in literature.
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We assume that g(x) satisfies the Zhikov-Fan condition, i.e. for all x,y € Q,

K )
lg(x) —q()| £ ———— with |[x—y[ <k, (1.6)
—log|x -yl

with K >0, 0 <k < 1and
ess inf (g.(x) — p(x)) > 0.
xeQ

Since the relaxation function u lies with the stability of solutions, we state assumptions on u and o
as: u, o € CI(R*,R") satisfy

e 1 1
o'(®) <0, W' (1) < —p(r) <0, j(; p(s) ds < (— - —) g-llolly, - (1.7)

+ —

For positive constant C depending only on Q determined by Lemma 2.1, we set for some constant
A > 0 (will be specified later)

q—

P+—q- -
a=(‘1‘) . Ei=pa, p=—L (1.8)
Cp+

Problem (1.2)—(1.4) is related to the parabolic problem and when the exponents g(x) = ¢, p(x) = p,
the existence/non-existence results have been extensively studied (please see [2—4, 14, 15,23]).

Extinction phenomenon for parabolic equation with nonlinearities in divergence form are
investigated in [18], under nonlinear boundary flux in bounded star-shaped region. The authors
assumed conditions on weight function to guarantee that the solution exists globally or blows up at
finite time. Moreover, using the modified differential inequality, upper and lower bounds for the
blow-up time of solutions were derived in higher dimensional spaces.

In the case where ¢(-) and p(-) are constants, the existence of local solutions of initial-boundary
value problem

Au—Agu=u?u+ f(x,0)in Qx0,7),

is proved by Akagi in [2] for initial data uy € L'(Q) and 2 < g < p < +o0 and Q is an open bounded
domain in R”, under r > n(p — q)/q. For the case where ¢g(-) and p(-) are two measurable functions,
it is well known that some additional techniques must be used to study the existence/nonexistence of
solutions for (1.2)—(1.4) and of course the classical methods may be failed unless some developments
are made.

For the case of nonlocal p(x)-Laplacian equations and in the absence of the memory term (u = 0),
problem (1.2)—(1.4) has been studied by Otani [20]. The author treated the question of existence and
qualitative studies of solutions of (1.2)—(1.4) and showed that the difficulties come from the use of
non-monotone perturbation theory. To complete these studies, the questions of blow-up of solutions
for the same problem are discussed later by many authors.

In this paper we shall establish a blow-up result of solutions for problem (1.2)—(1.4) in the Lebesgue
and Sobolev spaces with variable exponents and positive initial energy.
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2. Preliminary and well known results

We try to list here some useful mathematical tools.
First, let p : Q — (1, o0) be a measurable function. Denoting by

p- =essinf p(x) and p, =esssupp(x).
xeQ x€Q

We define the p(-) modular of a measurable function w : Q@ — R U {00} as

Qo) = [l dxkess suph (1.
Q\Q

X#EQoo

where
Qe = {x €Q; p(x) = oo}.

The special Orlicz Musielak space LP(Q) is a Lebesgue space with variable-exponent and it
consists of all the measurable function w defined on Q for which

Q) (Aw) < oo, for some A > 0.

Let N

be the Luxembourg norm on this space (see [16]).
The Sobolev space W40 (Q) consists of functions w € LI/(Q) whose distributional gradient V,w
exists and satisfies |V,w| € L¥9(Q). This space is a Banach with respect to the norm

Wl g) = Wllyey + 1TVWllg0 -
Lemma 2.1 (Corollaries 8.2.5 and 8.3.2 in [9]). (1) If (1.6) holds with q(x), then
Wllye) < CIV. Wiy - ¥ € W),
where Q is a bounded domain and C > 0 is a constant. The norm of space Wé Q) is given by
Wl gy = VWl » Y € Wy ™ ().

@ If )
geC(Q). p: Q— [l,),

is a measurable function and

esxsegznf (g (x)—px) >0,
with
bo M
T =g,
then
Wy (Q) > LO(Q),
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with continuous and compact embedding and

IWllpey < Cs [IVWllyq 5

pC) =
where Cs > 0 is an embedding constant.

Proposition 2.2 (Section 1 and Lemma 3.2.20 in [9]). Let 1 < p_ < p, < +00. The spaces L’ (Q) and

WLPO(Q) are separable, uniformly convex, reflexive Banach spaces. The conjugate space of LPO(Q) is
LY O(Q), where
1 1

—+
p(x)  p'(x)
Forw € LPO(Q) and v € L") (Q), we have

f w(x)v(x)dx
Q

Lemma 2.3 (Lemma 3.2.4 in [9]). If p(.) > 1 is a measurable function on Q and w € LPO(Q), then
Wll,., < 1 and Qpy(w) < 1 are equivalent. For w € LPO(Q), we have

(D) Wl < 1implies Qpey(w) < [Wll ).

(2) [Wllyy > 1 implies Qpy(w) = Wl (.-

=1, Vxe Q.

1 1
< Wl VI
(p ( ,) ) pC) )4QK

Lemma 2.4 (Section 2 in [6], Lemma 3.2.5 in [9]). If p(.) € [1, 00) is a measurable function on ), then

min{[[wil7 ), WD)} < Qpy(w) < max{{wil} ), 1wl

14Ok P()} 140K P()}

forallw € LPO(Q).

Lemma 2.5 (Lemma 3.2.20 in [9]). If pi(.) = p2(.) = 1 a.e. in Q, there is a continuous inclusion
LPOQ) c L7?Y(Q) and for all w € LP1O(Q),

Wllpa) < 2l Wl py )

where
1 1

rx) - p(x) pix)’

The following notation will be used throughout this paper

(uow)t) = fo u(t = ) V(@) = vl ds,

for v € L*(Q) and ¢ > 0. We have the following technical Lemma.

Lemma 2.6. Let k € N. For any Alv € C! (O, T, Hé(Q)) withp =0,1,...,k— 1, we have

fO'(l)f u(t = )AL (s)0,v(t) ds dx
Q 0
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Proof. Since

holds, we have

( 1)K+1 d

[ (1) (uo Viv) ()]

”K [(oj\<ndﬁf

—1) _1\«+1
()dmwwwwm+()<wwmf
_eh,

2

Vo[ a’x]

VKv(t)| dx

_1\k+1
3.0 (0 Vi) (1 + &dqunmf

f ANywdx = (-1) f VivViwdx,
Q Q

f o(1) f u(t = $)AW(s)0v(t) ds dx
Q 0

V)| dx.

(=)o () f u(t — s) f VEO () [Viv(s) — Viv(t) + Viu(r)] dxds
0 Q

1ot [ ate=s5) | Tiawo[Vi) - Vivo] dxds
0 Q

+(—1)"U(t)f,u(s)dsti@,v(t)Viv(t)dx.
0 Q

Consequently, we have

which implies

AIMS Mathematics

f o (1) f w(t — A W(s)0v(t) ds dx

Q 0

_ (_1)K+1 ! d

= > U(t)fo,u(t—S)th;2
(-1 ' d

| ,u(s)clsd—tl2

f(r(t)f u(t = s)ALv(s)o,v(t) ds dx

1K+ld
- & [mewa
“) [mfmqf
awwwf
0 Q

_1\k+1
S o f V)| dx
2 o

VAv(s) - Vo) dxds

Vo[ dx,

VAv(s) - Vo) dx ds]

VKv(t)| dx ds]

Viv(s) — Viv(zf)|2 dxds
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VAv(s) - Vo) dxds

+(_1)K8,0'(t) f t,u(t—s) f
2 0 Q
_1\«+1 !

+( D a,o'(t)f,u(s)dsf

2 0 Q

This completes the proof. O

Vo[ dx.

3. Main results

Here, we present without proof, the first known result concerning local existence (in time) for
problem (1.2)—(1.4). (see [22])

Theorem 3.1. Assume that (1.5), (1.6) and (1.7) hold. Then problem (1.2)—(1.4) has a unique local
solution w satisfying

w e C ([0, Tol; Wy ?(Q)), dw € C([0,Tol, LAQ)) N L? ([0, Tol: Hy(Y)).

for Ty > 0 depending on |wolly 4-

Now, to prove the blow up result, we should define the energy functional E (¢), associated with our
problem by

(x) (x)
E@® = f M dx — f M dx + 1o'(t)(,u o V.w)(®)
Q q (x) Q p (x) 2

1 t
——O'(l‘)f u(s) dsf V. w(x, D) dx.
2 0 o
Lemma 3.2. Let w be a solution of (1.2)—(1.4) with (1.5)—(1.7). Then the energy functional satisfies
20,E(1) = =218,wll; + o(1)(@ut © Vw) = () IV.wll3

+0,0(t) (u o V,w) — 0,0(t) f u(s)ds ||wa||§
0
0.

IA

Proof. Multiplying (1.2) by d,w, integrating by parts over €, using (1.7) and Lemma 2.6, we get the
desired result. m|

By using conditions (1.6), (1.8) and thanks to

5 1/2 , 1/r
(fg|w|dx) s(fQ|w|dx) 2,

there exists a constant

1 1 0
PRSI ||<r||mf u(s) ds,
q+ q- 0
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by (1.5) and (1.7), we have

1 1 1
— <A< —< =, (3.1
p- g+ 2
such that
,t p(x) 1
E@®)>2 f IV w(x, D)9 dx — f wx, DT dx + —o(t)(u o V,w)(0). (3.2)
Q o pW 2
Let f be a function defined by
f: R* — R
g = Y -Cye,
Then f is increasing in (0, @), decreasing for ¢ > «a, f () — —co asy — +oo
and
f@ = 2" =E, (3.3)
q-P+

q—

— (49— \pr+-a-
for a = ( CP+) .

Lemma 3.3. Let w be strong solution of (1.2)—(1.4) with (1.5)—(1.7) and initial condition satisfying

0< E(0) < E, and L IV wol?™ dx > a. (3.4)
Then there exists a constant 3 > « such that
A fg IV w1 dx + %O‘(t)(ﬂ o V.w)(®) > 3, (3.5)
and
j; W@ dx > CBP~, (3.6)

forallt € [0, Ty).

Proof. We define the sets
Q ={xeQ/wl <1},

and
Q. ={xeQ/wl>1},

By (3.2) and the Sobolev embedding, we get

E (1)

\%

(x)
Pl fQ IV w(x, H]7 dx - fg % dx + %O‘(t)(y o V,w)(1)

1 f IV w(x, )7 dx + %O'(I)(u o V.w)(t)
Q

A%

1
_ —[ w(x, HIP® dx + f Iw(x, 1P dx]
P Q.

- Q-
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\% v
s

\%

\%

A | IVow(x, 017 dx + %O'(I)(u o V.w)(t)

1
—[ Iw(x, - dx+ | wx, 0P dx]
Q+

f IV w(x, )7 dx + O'(t)(u o V,.w)(t)

f w(x, 0|+ dx
Q

A | IVow(x, 011 dx + 1a(r)(u o V,.w)(t)
Q

2CP+ /2
< ( f IV w(x, ) dx)p

P f IV w(x, D7 dx + —O'(t)(u o V.w)(?)
2Cl’+

FB|[\.)

Since E(0) < E;, there exists 8 > « such that f(5) =
£, 1V.w(x, 0)P dx) < E(0), which implies that [ [V.w(x,0)" dx > 8.
Now, to establish (3.5), we suppose by contradiction that

1

[(i - q—_O'(fo)

for some 7y > 0 and by continuity of

f IV w(x, OIFY dx + o(£)(u o V,w)(1)

]P+/¢J+ 3.7)

E(0), by using (3.7) we have

o 1/q+
uhmﬂj\%wuﬁW”M»amonmwm] <B,
0 Q

7 f V.o, O dx + o (1) (u 0 V,w)(10),
Q

we have to choose 7, such that

Ki—%dmo

To

Again the use of (3.7) leads to

p(x) 1/q+
p@ydr) | V(e DY dx+ oo Vonto)| <.
Q

1 1 ‘o +

E(t) > ﬂK;—;%WMJ‘MﬂﬁXmeWﬁW”w+0®wowm%ﬁm)
+  4- 0 Q

> f(B) = EQ).

which is not possible, since E(¢) < E(0),Vt € [0,T). Then (3.5) is proved.
We use (3.2) and (3.7) to prove (3.6)

A f IV w(x, HIPY dx + o(t)(u o Vow)(r) < E(0) +
Q

this imply

I

AIMS Mathematics

Iw(x, HPY dx

p(x)

Q

w(x, DIPY dx

b

p(x)

> 2 f IV w(x, DY dx + o(£)(u o V,w)(1) — E(0)
Q
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> B - E(0)
= B = 1B
Therefore the desired results are proved. O

Combining with the estimates obtained in the above Lemmas, we state the main result concerned
with finite time blow-up.

Theorem 3.4. Assume that (1.5)—(1.7) hold. Given w, € W(;’q(') (Q) satisfying (3.4), any solution of
(1.2) with (1.3) and (1.4) blows up in finite time t* < co.

Proof. Set H(t) < E, — E(t). We define

L) = % fQ w0 dx.
By differentiating L, we get
OL(r) = [, wowdx
= [, w|div (Vw07 Vow) = o) [; (2 = $) Agw () ds + w2 w| dx
= — [ IVow@)|"™ dx + [ w@I"™ dx

+ oo @ [ u (e =) Vow (s) Vow (1) ds dx.
Using Cauchy Schwarz’s inequality and Lemma 2.6 to obtain

f V.w(s)Vow (f) dx
Q

f IV.w (@) dx — f Vaw (@) (Viw (1) — Vw (s)) dx

%

fIV w () dx—f [Vow (D] X Co [Vow (1) = Vow (5)] dx

C;
2C2 IIV w @l - IIVxW(f) Vw93,

for some positive constant Cy > 0 (to be determined later). Then, we have

2

2C2 -1 ("
oL@ = - f V.ow()|" dx + f W™ dx + — =0 () [IV.w DI[3 f u(s) ds
Q Q 0 0

2

G
—— 00 o V.w) (®).

By using Young’s inequality, (1.8) and Lemma 2.6 for some constant ¢ > 0, we obtain
O,L(1) > —c f IV w1 dx + f W(@O)IP? dx — o (f) (u o V,w) (). (3.8)
Q Q
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We then substitute for o(¢) (u o V,w) (¢) from (3.2), hence (3.8) becomes
oLt > -c f IV ()" dx + f Iw()P™ dx
Q Q
2
- |2E® -4 f IV ()1 dx + — f Vo (0)* dx| (3.9)
Q P+ Ja
2 (x) (x)
> (1-=) [ w@P® dx— (-2 | IVaw®™ dx+2H() - 2E,,
P+ Ja Q
where 0 < H(t) < E; — E(t). By using (1.8) and (3.6), the estimate (3.9) takes the form
2
A,L(t) > 2H() + (1 - —) f W@ dx — (c — Q) f IV ()" dx - 2E,
P+ Ja Q

> (1- 2 (%)") fg W™ dx - (c = A) fg IV ()7 dx.

P+ P-

This implies that, we can choose ¢ > Cy + A to get

@unz(—f“ Lﬂmwmm+%Qﬂmwmm me@WWﬂ
p- Q

where Cy = 1 — [% Then

\%

1 2
d,L (1) CO[Z /l _Z f w@P® dx +

2
De(@ fwmwwx

[Co;(ﬂ—p—)—pzlf+ )] f w(t)l”Y dx.
. _

1
kﬁmwmw—fmeWwﬂ
Ap+ Ja Q

W%

Since

1

f W)™ dx — f IV w()Y dx.
Aps Jao Q
Then

\%

0L (1)

C ( f w(@)P® dx + f Iw(t)[P® dx)

f o dx)” f ol dx)"").

auazcufthmY7
Q,

\%

This implies that

and

LW = G f P dx)"",
Q_

AIMS Mathematics Volume 6, Issue 5, 4331-4344.



4342

Then
@L@O" = " fg w(I dx,
and +
@GL@Y" > ;" fg W) dx.
By addition, it leads to 7
(O, L ()" + (0,L )"+ > C3L(t),¥t >0, (3.10)
where C; = mm{Cz/” Cz/p*} Or
(0,L (t))””*[l + (O, (z))z(”l’f”f’*)] > C3L(1). (3.11)
Using (3.10) and since 0 < L(0) < L(T), we have for any ¢ > 0 either
O, L))" > %L(t) > %L(O). (3.12)
Or
O, L (D))" > %L(t) > %L(O), (3.13)
which gives, in turn
QL) > (%L(O))p/ (3.14)
Or
8L > ( 210)"". (3.15)

Therefore d,L () > y, where y = min {(C23 )p /2, (%)m/z}’ since p% ~ L_

A,L(t)> 6 (L(1)T forallt>O0,

where .

6=(Céﬂ—1)(2(1 ol ||2q) > 0.

A direct integration of (3.16) over [0, 7] yields

5 _ (1 _ 4 -t
(L) <(1 2)6t+(L(0)) ,

which implies that
1

(@o)'=7 - (£ -1)61)"

along with 1 — £ < 0. Finally, we have

L(t) >

L(t) — +co when t — "7, where " =

AIMS Mathematics

< 0and (1.6), (3.11) yields
(3.16)

O
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