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1. Introduction

In the past years, fractional differential equations and coupled systems of those equations have
attracted a lot of regard from many researches as they have played a key role in many basic sciences
such as chemistry, control theory, biology and other arenas [1–3]. In addition, boundary conditions of
differential models are strongest tools to extend applications of those equations. In fact, differential
equations of fractional models can be extended by creating different types of boundary conditions.
Newly, many authors have studied various types of boundary conditions to obtain new results of
differential models. The following hybrid differential equation was studied by Dhage and
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Lakshmikantham [4]: 
d
dt

[ x(t)
h(t, x(t))

]
= ω(t, x(t)), a.e t ∈ J,

x(t0) = x0 ∈ R,

in which h and ω are continuous functions from J × R into R \ {0} and R, respectively. Based on the
above work, the Caputo hybrid boundary value problem of the form:

CDp
0+

[ x(t)
h(t, x(t))

]
= ω(t, x(t)), a.e t ∈ J := [0, L],

a1
x(0)

h(0, x(0))
+ a2

x(L)
h(L, x(L))

= d,

was studied by Hilal and Kajouni [5] in which 0 < p < 1, h and ω are continuous functions from J ×R
into R \ {0} and R, respectively and a1, a2, d are real constants with a1 + a2 , 0. For some more results
on hybrid boundary value problems see [6–9] and references therein.

The fractional hybrid modeling is of great significance in different engineering fields, and it can be
a unique idea for the future combined research between various applied sciences, for example see [10]
in which a fractional hybrid modeling of a thermostat is simulated. For some recent results on hybrid
fractional differential equations we refer to [11–13].

As in modern mathematics coupled fractional system have been applied to develop differential
models of high complexity system, Ntouyas and Al-Sulami [14] have considered the following coupled
system: 

CDα1u(t) = f1(t, u(t), v(t)), t ∈ [0, L], 0 < α1 ≤ 1,
RLDα2v(t) = f2(t, u(t), v(t)) t ∈ [0, L] 1 < α2 ≤ 2,
u(0) = λ CDpv(η), 0 < p < 1,
v(0) = 0, v(L) = γIqu(ξ),

where CDα1 and RLDα2 indicate Caputo and Riemann-Liouville fractional derivitves of orders α1 and
α2 respectively, f1, f2 : [0, L] × R × R → R are continuous functions, Iq is the Riemann-Liouville
fractional integral, λ, γ ∈ R and η, ξ ∈ (0, L). They have applied Banach’s fixed point theorem and
Leray-Schauder alternative to obtain main results. Nonlocal boundary value problems involving mixed
fractional derivatives have been considered in [15] and references cited therein.

Here, we combine mixed fractional derivatives and hybrid fractional differential equations. More
precisely, in this paper the existence of solutions for the coupled hybrid system

CDα1
u(t)

f1(t, u(t), v(t))
= f2(t, u(t), v(t)), t ∈ J := [0, L], 0 < α1 ≤ 1,

RLDα2
v(t)

g1(t, v(t), u(t))
= g2(t, u(t), v(t)) t ∈ J := [0, L] 1 < α2 ≤ 2,

(1.1)

is investigated supplemented with boundary conditions:
u(0)

f1(0, u(0), v(0))
= θ CDp v(η)

g1(η, u(η), v(η))
, 0 < p < 1,

v(0)
g1(0, u(0), v(0))

= 0,
v(L)

g1(L, u(L), v(L))
= γIq u(ξ)

f1(ξ, u(ξ), v(ξ))
.

(1.2)
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where CDα1 , RLDα2 are the Caputo and Riemann-Liouville fractional derivatives of orders α1 ∈ (0, 1]
and α2 ∈ (1, 2] respectively, Iq is the Riemann-Liouville fractional integral, f2, g2 ∈ C(J × R × R,R),
f1, g1 ∈ C(J × R × R,R \ {0}), θ, γ ∈ R and η, ξ ∈ (0, L). An existence result is obtained via a new
extension of Darbo’s theorem associated to measures of noncompactness.

Here we emphasize that the proposed coupled hybrid system includes:

• different orders of fractional derivatives (α1 ∈ (0, 1] and α2 ∈ (1, 2]);
• two different kinds of fractional derivatives (Caputo and Riemann-Liouville);
• nonlocal type boundary conditions which contain both fractional derivatives and integrals.

We have organized the structure of the paper as follows. Section 2 presents some main concepts
which will be applied in the future. In the next section, we prove an existence result for the
problem (1.1) and (1.2). Finally, we construct an example to illustrate the obtained result.

2. Preliminaries

Now some basic notations are recalled from [2].

Definition 2.1. The Riemann-Liouville fractional integral of order α > 0 of a continuous function
ξ : (0,∞)→ R, is defined as

Iαξ(t) =
1

Γ(α)

∫ t

0

ξ(s)
(t − s)1−αds,

where Γ(α) is the Euler Gamma function.

Definition 2.2. For a continuous function ξ : (0,∞)→ R, the Reimann-Liouville fractional derivative
of order α > 0, n − 1 < α < n, n ∈ N is defined as:

RLDα
0+
ξ(t) =

1
Γ(n − σ)

( d
dt

)n
∫ t

0
(t − s)n−σ−1ξ(s)ds.

Definition 2.3. Given a continuous function ξ : [0,∞) −→ R, the Caputo derivative of order α > 0 is
defined as

CDα
0+
ξ(t) =RL Dα

0+

(
ξ(t) −

n−1∑
k=0

tk

ki
ξ(k)(0)

)
, t > 0, n − 1 < α < n.

Now we present some basic facts about the notion measure of noncompactness.
Assume that Z is the real Banach space with the norm ‖·‖ and zero element θ. For a nonempty subset

X of Z, the closure and the closed convex hull of X will be denoted by X and Conv(X), respectively.
Also, MZ and NZ denote the family of all nonempty and bounded subsets of Z and its subfamily
consisting of all relatively compact sets, respectively.

Definition 2.4. [16, 19] We say that a mapping h : MZ −→ [0,∞) is a measure of noncompactness, if
the following conditions hold true:
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(1) The family Kerh = {X ∈ MZ : h(X) = 0} is nonempty and Ker h ⊆ NZ.
(2) X1 ⊆ Y1 =⇒ h(X1) ≤ h(Y1).
(3) h(X) = h(X).
(4) h(Conv(X)) = h(X).
(5) h(αX + (1 − α)Y) ≤ αh(X) + (1 − α)h(Y) for α ∈ [0, 1].
(6) For the sequence {Xn} of closed sets from MZ in which Xn+1 ⊆ Xn for n = 1, 2, . . . and lim

n→∞
h(Xn) =

0, we have
⋂∞

n=1 Xn , ∅ .

In [17], some generalizations of Darbo’s theorem have been proved by Samadi and Ghaemi. Also,
in [18], Darbo’s theorem was extended and the following result was presented which is basic for our
main result.

Theorem 2.1. Let T be a continuous self-mapping on the set D where D denotes a nonempty bounded,
closed and convex subset of a Banach space Z. Assume that for all nonempty subset X of D we have

θ1((h(X)) + θ2(h(T (X))) ≤ θ2(h(X)) (2.1)

where h is an arbitrary measure of noncompactness defined in Z and (θ1, θ2) ∈ U. Then T has a fixed
point in D.

In Theorem 2.1, let U indicate the set of all pairs (θ1, θ2) where the following conditions hold true:

(U1) θ1(tn)9 0 for each strictly increasing sequence {tn};
(U2) θ2 is strictly increasing function;
(U3) If {αn} is a sequence of positive numbers, then limn→∞ αn = 0←→ limn→∞ θ2(αn) = −∞.

(U4) Let {ln} be a decreasing sequence in which ln → 0 and θ1(ln) < θ2(ln) − θ2(ln+1), then we have∑∞
n=1 ln < ∞.

Next, the definition of a measure of noncompactness in the space C([0, 1]) is recalled which will be
applied later. Fix Y ∈ MC[0,1] and for ε > 0 and y ∈ Y we define

ϕ(y, ε) = sup
{
|y(t) − y(s)| : t, s ∈ [0, 1], |t − s| ≤ ε

}
,

ϕ(Y, ε) = sup
{
ϕ(y, ε) : y ∈ Y

}
,

ϕ0(Y) = limε→0 ϕ(Y, ε).

(2.2)

Banas and Goebel [16] proved that ϕ0(Y) is a measure of noncompactness in the space C([0, 1]).

3. Existence results

Now the coupled system (1.1) and (1.2) is investigated in the space C([0, 1]).
First following Lemma 2.5 of [14], the following lemma is presented which will be applied later.

Lemma 3.1. Assume that the functions φ and h are continuous real-valued functions on [0, L]. Then,
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the functions u and v satisfy the system

CDα1
u(t)

f1(t, u(t), v(t))
= φ(t), t ∈ [0, L], 1 < α1 ≤ 2,

RLDα2
v(t)

g1(t, u(t), v(t))
= h(t), t ∈ [0, L], 1 < α2 ≤ 2,

u(0)
f1(0, u(0), v(0))

= θ CDp v(η)
g1(η, u(η), v(η))

,

v(0)
g1(0, u(0), v(0))

= 0,
v(L)

g1(L, u(L), v(L))
= γIq u(ξ)

f1(ξ, u(ξ), v(ξ))
,

(3.1)

if and only if u and v satisfy the system

u(t) = f1(t, u(t), v(t))
[
Iα1φ(t) +

θ

∆

{
− Tα2−1Iα2−ph(η)

+
Γ(α2)

Γ(α2 − p)
ηα2−p−1(γIq+α1φ(ξ) − Iα2h(L)

}]
,

v(t) = g1(t, u(t), v(t))
[
Iα1h(t) +

tα2−1

∆

{
Iα2h(L) − γIq+α1φ(ξ)

−θγ
ξq

Γ(1 + q)
Iα2−ph(η)

}]
,

(3.2)

where ∆ = Lα2−1 + θγ
Γ(α2)ξpηα2−p−1

Γ(1 + q)Γ(α2 − p)
. For convenience we set the notations:

M1 =
Lα1

Γ(1 + α1)
+

1
|∆|
|θ||γ|

Γ(α2)
Γ(α2 − p)

ηα2−p−1ξq+α1

Γ(q + α1 + 1)
, (3.3)

M2 =
Tα2−1ηα2−p−1|θ|

|∆|

[ LΓ(α2)
Γ(α2 − p)Γ(α2 + 1)

+
η

Γ(1 + α2)

]
, (3.4)

M3 =
Lα2−1|γ|ξq+α1

|∆|Γ(q + α1 + 1)
, (3.5)

M4 =
Lα2

Γ(1 + α2)

(
1 +

Lα2−1

|∆|

)
+

Lα2−1

|∆|
|θ||γ|

ξqηα2−p

Γ(1 + q)Γ(α2 − p + 1)
. (3.6)

Now we present the main result of this section as follows:

Theorem 3.1. Suppose that we have the following assumptions:

(D1) The functions f2, g2 : I × R × R −→ R are continuous provided that

| f2(t, u, v)| ≤ l1, |g2(t, u, v)| ≤ l2,

| f2(t, u1, v1) − f2(t, u2, v2)| ≤ k1|u1 − u2| + k2|v1 − v2|,

|g2(t, u1, v1) − g2(t, u2, v2)| ≤ γ1|u1 − u2| + γ2|v1 − v2|,

where l1, l2, k1, k2, γ1, γ2 ≥ 0 , t ∈ I and u, v, u1, u2, v1, v2 ∈ R.
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(D2) The continuous functions f1, g1 have been defined from I × R × R into R \ {0} provided that

| f1(t, u1, v1) − f1(t, u2, v2)| ≤
1
6

e−d(|u1 − u2| + |v1 − v2|),

|g1(t, u1, v1) − g1(t, u2, v2)| ≤
1
6

e−d(|u1 − u2| + |v1 − v2|),

| f1(t2, u, v) − f1(t1, u, v)| ≤ |t2 − t1|,

|g1(t2, u, v) − g1(t1, u, v)| ≤ |t2 − t1|.

where d > 0, t, t1, t2 ∈ [0, L] and u, v, u1, u2, v1, v2 ∈ R. Moreover, assume that
M = sup

{
| f1(t, 0, 0)| : t ∈ [0, L]

}
and N = sup

{
|g1(t, 0, 0)| : t ∈ [0, L]

}
.

(D3) There exists a positive solution r0 of the following inequality:

e−d2r0(M1l1 + M2l2 + M3l1 + M4l2) + M(M1l1 + M2l2) + N(M3l1 + M4l2) ≤ r0.

exists. Moreover, assume that

M(k1 + k2) <
1
6

e−d and 2r0(k1 + k2) + M1l1 + M2l2 + M3l1 + M4l2 < 1.

Then the coupled hybrid fractional system (1.1) and (1.2) has a solution on [0, L].

Proof. Define G : C([0, L],R) ×C([0, L],R) −→ C([0, L],R) ×C([0, L],R) by

G(u, v)(t) = (G1(u, v)(t),G2(u, v)(t)),

where

G1(u, v)(t) = f1(t, u(t), v(t))
[
Iα1 f (t) +

θ

∆

{
− Lα2−1Iα2−pg(η)

+
Γ(α2)

Γ(α2 − p)
ηα2−p−1(γIq+α1 f (ξ) − Iα2g(L)

}]
,

G2(u, v)(t) = g1(t, u(t), v(t))
[
Iα1g(t)

+
tα2−1

∆

{
Iα2g(L) − γIq+α1 f (ξ) − θγ

ξq

Γ(1 + q)
Iα2−pg(η)

}]
,

with f (t) = f2(t, u(t), v(t)) and g(t) = g2(t, u(t), v(t)). Assume that the space C([0, L],R) ×C([0, L],R)
has been equipped with the norm ‖(u, v)‖ = ‖u‖ + ‖v‖, where ‖u‖ = sup{|u(t)| : t ∈ [0, L]}. Define
Dr0 = {u ∈ C([0, L],R) : ‖u‖ ≤ r0}. First we show that G(Dr0 × Dr0) ⊆ Dr0 × Dr0 . Given t ∈ [0, L] and
u, v ∈ Dr0 , we earn

|G1(u, v)(t)| ≤ | f1(t, u(t), v(t))|(M1l1 + M2l2)
≤ | f1(t, u(t), v(t)) − f1(t, 0, 0)|(M1l1 + M2l2) + | f1(t, 0, 0)|(M1l1 + M2l2)
≤ e−d(|u(t)| + |v(t)|)(M1l1 + M2l2) + M(M1l1 + M2l2)
≤ e−d2r0(M1l1 + M2l2) + M(M1l1 + M2l2).
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The above estimate yields that

‖G1(u, v)‖ ≤ e−d2r0(M1l1 + M2l2) + M(M1l1 + M2l2). (3.7)

Similarly we can prove that

‖G2(u, v)‖ ≤ e−d2r0(M3l1 + M4l2) + N(M3l1 + M4l2). (3.8)

Consequently, we have

‖G(u, v)‖ ≤ e−d2r0(M1l1 + M2l2 + M3l1 + M4l2)
+N(M3l1 + M4l2) + M(M1l1 + M2l2).

(3.9)

Due to (3.9) and (D3) we derive that G(Dr0×Dr0) ⊆ Dr0×Dr0 . Now we verify the continuity property of
G on Dr0×Dr0 . Let (x1, y1), (u1, v1) ∈ Dr0×Dr0 and ε > 0 be arbitrarily such that ‖(x1, y1)−(u1, v1)‖ < ε

2 .

Given t ∈ [0, L] we get

|G1(x1, y1)(t) −G1(u1, v1)(t)|

≤ | f1(t, x1(t), y1(t)) − f1(t, u1(t), v1(t))|
[
Iα1 | f2(t, x1(t), y1(t))|

+
|θ|

|∆|

{
Lα2−1Iα2−p|g2(η, x1(η), y1(η))| +

Γ(α2)
Γ(α2 − p)

ηα2−p−1(|γ|Iq+α1 | f2(ξ, x1(ξ), y1(ξ))|

+Iα2 |g2(L, x1(L), y1(L))|
}]

+ | f1(t, u1(t), v1(t))|
[
Iα1

∣∣∣ f2(t, x1(t), y1(t)) − f2(t, u1(t), v1(t))
∣∣∣

+
|θ|

|∆|

{
Lα2−1Iα2−p

∣∣∣g2(η, x1(η), y1(η)) − g2(η, u1(η), v1(η))
∣∣∣

+
Γ(α2)

Γ(α2 − p)
ηα2−p−1(|γ|Iq+α1

∣∣∣ f2(ξ, x1(ξ), y1(ξ)) − f2(ξ, u1(ξ), v1(ξ))
∣∣∣

+Iα2
∣∣∣g2(L, x1(L), y1(L)) − g2(L, u1(L), v1(L))

∣∣∣}]
≤ e−d(‖x1 − u1‖ + ‖y1 − v1‖)(M1l1 + M2l2) + | f1(t, x1(t), y1(t))|

[
(k1‖x1 − u1‖

+k2‖y1 − v1‖)Iα1(1) +
|θ|

∆|

{
Lα2−1(γ1‖x1 − u1‖ + γ2‖y1 − v1‖)Iα2−p(1)

+
Γ(α2)

Γ(α2 − p)
ηα2−p−1(|γ|k1‖x1 − u1‖ + k2‖y1 − v1‖)Iq+α1(1)

+(γ1‖x1 − u1‖ + γ2‖y1 − v1‖)Iα2(1)
}]

≤ e−dε(M1l1 + M2l2) + | f1(t, x1(t), y1(t))|
[
(k1ε + k2ε)Iα1(1)

+
|θ|

|∆|

{
Lα2−1(γ1ε + γ2ε)Iα2−p(1) +

Γ(α2)
Γ(α2 − p)

ηα2−p−1(|γ|k1ε + k2ε)Iq+α1(1)

+(γ1ε + γ2ε)Iα2(1)
}]
.
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Due to the above estimate we conclude that

‖G1(x1, y1) −G1(u1, v1)‖

≤ e−dε(M1l1 + M2l2) + (e−dr0 + M)
[
(k1ε + k2ε)Iα1(1)

+
|θ|

∆

{
Lα2−1(γ1ε + γ2εIα2−p(1) (3.10)

+
Γ(α2)

Γ(α2 − p)
ηα2−p−1(|γ|k1ε + k2ε)Iq+α1(1) − (γ1ε + γ2ε)Iα2(1)

}]
.

Similarly, for (x1, y1), (u1, v1) ∈ Dr0 × Dr0 and t ∈ [0, L] we conclude that

|G2(x1, y1)(t) −G2(u1, v1)(t)|

≤ |g1(t, x1(t), y1(t)) − g1(t, u1(t), v1(t))|
[
Iα1 |g2(t, x1(t), y1(t))|

+
Lα2−1

|∆|

{
Iα2 |g2(L, x1(L), y1(L))| + |γ|Iq+α1 | f2(ξ, x1(ξ), y1(ξ))|

+θγ
ξq

Γ(1 + q)
Iα2−p|g2(η, x1(η), y1(η))|

}]
+|g1(t, u1(t), v1(t))|

[
Iα1 |g2(t, x1(t), y1(t)) − g2(t, u1(t), v1(t))|

+
Lα2−1

|∆|

{
Iα2 |g2(L, x1(L), y1(L)) − g2(L, u1(L), v1(L))|

+|γ|Iq+α1 | f2(ξ, x1(ξ), y1(ξ)) − f2(ξ, u1(ξ), v1(ξ))|

+|θ||γ|
ξq

Γ(1 + q)
Iα2−p|g2(η, x1(η), y1(η)) − g2(η, u1(η), v1(η))|

}]
.

Consequently, we get

‖G2(x1, y1) −G2(u1, v1)‖

≤ e−dε(M3`1 + M4`2) + (e−dr0 + N)
[
(γ1ε + γ2ε)Iα1(1)

+
Lα2−1

|∆|

{
(γ1ε + γ2ε)Iα2(1) + |γ|(k1ε + k2ε)Iq+α1(1) (3.11)

+|θ||γ|
ξq

Γ(1 + q)
(γ1ε + γ2ε)Iα2−p(1)

}]
.

In view of (3.10) and (3.11) we earn

‖G(x1, y1) −G(u1, v1)‖ ≤ E1(ε) + E2(ε), (3.12)

where E1(ε), E2(ε) −→ 0. Hence G is continuous on Dr0 × Dr0 .
Next we show that the condition (2.1) of Theorem 2.1 is fulfilled. Let X1, X2 ⊆ Dr0 and ϕ(X) =

ϕ0(X1) + ϕ0(X2) where Xi, i = 1, 2 indicate the natural projection of X into C(I).
For convenience we put
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H1(x, y)(t) = Iα1 f (t) +
θ

∆

{
− Lα2−1Iα2−pg(η) +

Γ(α2)
Γ(α2 − p)

ηα2−p−1(γIq+α1 f (ξ) − Iα2 g(L)
}
,

H2(x, y)(t) = Iα1 g(t) +
tα2−1

∆

{
Iα2 g(L) − γIq+α1 f (ξ) − θγ

ξq

Γ(1 + q)
Iα2−pg(η)

}
.

Let t1, t2 ∈ [0, L] and ε > 0 be arbitrarily such that |t2 − t1| ≤ ε. Thus for (x1, y1) ∈ X1 × X2 we get

|G1(x1, y1)(t2) −G1(x1, y1)(t1)|
= | f1(t2, x1(t2), y1(t2))H1(x1, y1)(t2) − f1(t1, x1(t1), y1(t1))H1(x1, y1)(t1)|
≤ | f1(t2, x1(t2), y1(t2))H1(x1, y1)(t2) − f1(t2, x1(t1), y1(t1))H1(x1, y1)(t2)|
+| f1(t2, x1(t1), y1(t1))H1(x1, y1)(t2) − f1(t1, x1(t1), y1(t1))H1(x1, y1)(t2)|
+| f1(t1, x1(t1), y1(t1))||H1(x1, y1)(t2) − H1(x1, y1)(t1)|

≤ e−d 1
6

(|x1(t2) − x1(t1)| + |y1(t2) − y1(t1)|)(M1l1 + M2l2) + |t2 − t1|(M1l1 + M2l2)

+

[1
6

e−d(|x1(t1)| + |y1(t1)|) + M
]
(k1|x1(t2) − x1(t1)| + k2|y1(t2) − y1(t1)|)

≤
1
6

e−d(ϕ(X1, ε) + ϕ(X2, ε))(M1l1 + M2l2)

+ε(M1l1 + M2l2) +

[1
6

e−d2r0 + M
]
(k1ϕ(X1, ε) + k2ϕ(X2, ε)).

Consequently, from assumption (D3) and the above estimate we conclude that

ϕ(G1(X1 × X2), ε) ≤
1
6

e−d(ϕ(X1, ε) + ϕ(X2, ε))(M1l1 + M2l2) + ε(M1l1 + M2l2)

+

[1
6

e−d2r0 + M
]
(k1ϕ(X1, ε) + k2ϕ(X2, ε)).

Hence we have
ϕ0(G1(X1 × X2)) ≤ e−d 1

2
(ϕ0(X1) + ϕ0(X2)). (3.13)

Similarly, we prove that

ϕ0(G2(X1 × X2)) ≤
1
2

e−d(ϕ0(X1) + ϕ0(X2)). (3.14)

Combining (3.13) and (3.14) we conclude that

ϕ(G(X) ≤ ϕ(G(X1 × X2)) ×G(X2 × X1))
= ϕ0(G(X1 × X2)) + ϕ0(G(X2 × X1))

≤
1
2

e−d((ϕ0(X1) + ϕ0(X2)) +
1
2

e−d(ϕ0(X2) + ϕ0(X1)).
(3.15)

By taking logarithms, we earn

d + ln(ϕ(G(X1 × X2))) ≤ ln(ϕ(X)). (3.16)
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Hence we obtain all conditions of Theorem 2.1 with θ1(t) = d and θ2(t) = ln(t). Consequently, from
Theorem 2.1 a fixed point of the mapping G is obtained which implies that the coupled system (1.1)
and (1.2) has a solution on [0, L] and the proof is completed.

�
Now an example is presented to show the applicability of the obtained result.

Example 3.1. We consider the following hybrid nonlocal system of mixed fractional derivatives:

CD
1
2

u(t)
e−d(|u(t)|+|v(t)|+1)

6(1+ t
8 )

=
e−td

100
cos

(u(t) + v(t)
100

)
, t ∈ [0, 1],

RLD
3
2

v(t)
e−d

6(|u(t)|+|v(t)|+1)(1+t)

=
e−t

100
sin

(u(t) + v(t)
50

)
, t ∈ [0, 1].

u(0)
f1(0, u(0), v(0))

=
√

3 CD
1
2

v( 1
3 )

g1( 1
3 , u( 1

3 ), v(1
3 ))
,

v(0)
g1(0, u(0), v(0))

= 0,
v(1)

g1(1, u(1), v(1))
=
√

2I
1
2

u( 1
2 )

f1(1
2 , u(1

2 ), v(1
2 ))
.

(3.17)

Here, we have

α1 =
1
2
, θ =

√
3, p =

1
2
, η =

1
3
, α2 =

3
2
, γ =

√
2, q =

1
2
, ξ =

1
2
, d a positive real number,

f2(t, u(t), v(t)) =
e−td

100
cos

(u(t) + v(t)
100

)
, g2(t, u(t), v(t)) =

e−t

100
sin

(u(t) + v(t)
50

)
,

f1(t, u(t), v(t)) =
e−d(|u(t)| + |v(t)| + 1)

6(1 + t
8 )

,

g1(t, u(t), v(t)) =
e−d

6(|u(t)| + |v(t)| + 1)(1 + t)
.

The above system is a special case of the system (1.1) and (1.2). Now we show that the conditions of
Theorem 3.1 are satisfied. Due to the definitions of f2 and g2, given t ∈ [0, 1] and u, v, u1, u2, v1, v2 ∈ R

we have

| f2(t, u, v)| ≤
1

100
, |g2(t, u, v)| ≤

1
100

,

| f2(t, u1, v1) − f2(t, u2, v2)| ≤
1

10000
|u1 − u2| +

1
10000

|v1 − v2|,

|g2(t, u1, v1) − g2(t, u2, v2)| ≤
1

10000
|u1 − u2| +

1
10000

|v1 − v2|.

Consequently, f2 and g2 satisfy condition (D1) with l1 = l2 = 1
100 and k1 = k2 = γ1 = γ2 = 1

10000 .

Besides, obviously the functions f1 and g1 satisfy the condition (D2). Furthermore, M = e−d

6 and
N = e−d

6 . To verify condition (D3), given that M1 ≈ 1.52, M2 ≈ 0.58, M3 ≈ 0.25 and M4 ≈ 1.26, so the
existent inequality in (D3) has the form
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e−d2r0

(
1.52 ×

1
100

+ 0.58 ×
1

100
+ 0.25 ×

1
100

+ 1.26 ×
1

100

)
+

e−d

6

(
1.52 ×

1
100

+ 0.58 ×
1

100

)
+

e−d

6

(
0.25 ×

1
100

+ 1.26 ×
1

100

)
≤ r0.

Obviously, the above inequality has a positive solution r0, for example r0 = e−d. Moreover, we have

M(k1 + k2) =
e−d

6

( 2
10000

)
≤

e−d

6
,

2r0(k1 + k2) + M1l1 + M2l2 + M3l1 + M4l2

= 2e−d
( 2
10000

)
+ 1.52 ×

1
100

+ 0.58 ×
1

100
+ 0.25 ×

1
100

+ 1.26 ×
1

100
< 1.

Therefore all conditions of Theorem 3.1 are satisfied. Hence, by Theorem 3.1 the system (3.17) has a
solution on [0, 1].

4. Conclusions

We have studied a nonlocal coupled hybrid fractional system consisting from one Caputo and one
Riemann-Liouville fractional derivatives and nonlocal hybrid boundary conditions. An existence result
is established via a new generalization of Darbo’s fixed point theorem associated with measures of
noncompactness. The obtained result is well illustrated by a numerical example. The result obtained
in this paper is new and significantly contributes to the existing literature on the topic.
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