Mathematics

Correction

Correction: Fekete-Szegö problem for Bi-Bazilevič functions related to Shell-like curves

Halit Orhan ${ }^{1, *}$, Nanjundan Magesh ${ }^{2}$ and Chinnasamy Abirami ${ }^{3}$
${ }^{1}$ Department of Mathematics, Faculty of Science, Ataturk University, 25240 Erzurum, Turkey
${ }^{2}$ Post-Graduate and Research Department of Mathematics, Government Arts College for Men, Krishnagiri 635001, Tamilnadu, India
${ }^{3}$ Faculty of Engineering and Technology, SRM University, Kattankulathur-603203, Tamilnadu, India
* Correspondence: Email: orhanhalit607@gmail.com.

Abstract

The purpose of this note is to give some mistyping corrections for our published article in [1].

Keywords: univalent functions; bi-univalent functions; shell-like function; Bazilevič function;
Fibonacci number; Fekete-Szegö inequality
Mathematics Subject Classification: 30C45, 30C50

A correction on

Fekete-Szegö problem for bi-Bazilevič functions related to Shell-like curves,
by H. Orhan, N. Magesh and C. Abirami. AIMS Mathematics, 2020, 5(5): 4412-4423.
DOI:10.3934/math. 2020281.

These errata give the following correct statements for the corresponding statements on the cited page of our published article [1].

In page 4418, correcting the Eqs (2.6) and (2.8) as given below (0.1) and (0.2) respectively, with calculations as in pages 4417-4419, we obtain desired bounds as stated in Theorem 2.1. (page 4417). Since ξ and μ are missing in (2.6) and (2.8), now it is corrected and given as below:

$$
\begin{equation*}
(2 \lambda+\mu)\left[\left(\frac{\mu-1}{2}\right) a_{2}^{2}+\left(1+\frac{6 \delta \xi}{2 \lambda+\mu}\right) a_{3}\right]=\frac{1}{2}\left(p_{2}-\frac{p_{1}^{2}}{2}\right) \tau+\frac{3 p_{1}^{2}}{4} \tau^{2}, \tag{0.1}
\end{equation*}
$$

and

$$
\begin{equation*}
(2 \lambda+\mu)\left[\left(\frac{\mu+3}{2}+\frac{12 \delta \xi}{2 \lambda+\mu}\right) a_{2}^{2}-\left(1+\frac{6 \delta \xi}{2 \lambda+\mu}\right) a_{3}\right]=\frac{1}{2}\left(q_{2}-\frac{q_{1}^{2}}{2}\right) \tau+\frac{3 q_{1}^{2}}{4} \tau^{2} . \tag{0.2}
\end{equation*}
$$

The above corrected equations provide the corrected bound $\left|a_{3}\right|$ of Theorem 2.1, in page 4417 and page 4419 as follows:

$$
\left|a_{3}\right| \leq \frac{\left\{(2 \lambda+\mu)(\mu-1) \tau+2(1-3 \tau)(\lambda+\mu+2 \delta \xi)^{2}\right\}|\tau|}{(2 \lambda+\mu+6 \delta \xi)\left[[(2 \lambda+\mu)(\mu+1)+12 \delta \xi] \tau+2(1-3 \tau)(2 \delta \xi+\lambda+\mu)^{2}\right]}
$$

So, the aforementioned modifications correct the bound $\left|a_{3}\right|$ appeared in Corollaries 3.1 to 3.6.

Conflict of interest

The authors declare no conflict of interest.

References

1. H. Orhan, N. Magesh, C. Abirami, Fekete-Szegö problem for bi-Bazilevič functions related to Shell-like curves, AIMS Math., 5 (2020), 4412-4423.

AIMS Press
© 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)

