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1. Introduction

In this work, we study the split feasibility problem (shortly, (SFP)) which is formulated as follows:

Find a point x∗ ∈ C such that Ax∗ ∈ Q, (1.1)

where C and Q are nonempty closed convex subsets of real Hilbert spaces H1 and H2, respectively,
and A : H1 → H2 is a bounded linear operator. This problem was first proposed by Censor and
Elfving [5] in Euclidean spaces (for recent results on the problem (SFP), see [10, 12, 13, 25]). There
are some related topic for splitting problems see [14, 17, 22, 24]. Many applications in real world such
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as image reconstruction, signal recovery and intensity-modulated radiation therapy (shortly, (IMRT))
can be seen as solving the problem (SFP).

Byrne [3, 4] proposed the following projection algorithm for solving the problem (SFP):

xk+1 = PC(xk − αA∗(I − PQ)Axk) (1.2)

where α ∈ (0, 2/‖A∗A‖), A∗ is the adjoint operator of A, PC and PQ are projections onto C and Q,
respectively. This method is often called the CQ-algorithm. However, it is observed that, in general,
the projections PC and PQ are not an easy task to be computed.

To eliminate this difficulty, Fukushima [15] introduced the level sets C and Q which are defined by

C = {x ∈ H1 : c(x) ≤ 0}, Q = {y ∈ H1 : q(y) ≤ 0} (1.3)

where c : H1 → R and q : H2 → R are convex and subdifferential functions, and ∂c and ∂q are
bounded operators. Fukushima [15] also introduced a relaxed projection algorithm for solving
variational inequality problem and gave numerical experiments to support main result.

In 2004, Yang [27] presented a relaxed CQ-algorithm for solving the problem (SFP), by replacing
PC and PQ by PCk and PQk , respectively. In this case, Ck and Qk are defined by

Ck = {x ∈ H1 : c(xk) ≤ 〈ξk, xk − x〉}, (1.4)

where ξk ∈ ∂c(xk), and
Qk = {y ∈ H2 : q(Axk) ≤ 〈ζk, Axk − y〉}, (1.5)

where ζk ∈ ∂q(Axk).
It is easily seen that C ⊂ Ck and Q ⊂ Qk for all k ≥ 1. We note that PCk and PQk are easily computed

since these sets are half-spaces.
Precisely, Yang [27] proposed the following relaxed CQ-algorithm:

xk+1 = PCk(xk − αk(A∗(I − PQk)Axk)), (1.6)

where {αn} is a sequence in (0, 2/‖A∗A‖), A∗ is the adjoint operator of A and Ck and Qk are given
by (1.4) and (1.5), respectively.

Recently, Gibali et al. [16] (see also Qu and Xiu [20]) proposed the modification of the relaxed CQ-
algorithm by using the linesearch technique in real Hilbert spaces. For each k ≥ 1, define a mapping
Fk : H1 → H2 by

Fk(x) =
1
2
‖Ax − PQk Ax‖2, ∇Fk(x) = A∗(I − PQk)Ax. (1.7)

They constructed the following algorithm:

Algorithm 1.1. Given constants γ > 0, ` ∈ (0, 1) and µ ∈ (0, 1). Let x1 be arbitrary in H1. For each
k ≥ 1, calculate

yk = PCk(xk − αk∇Fk(xk)), (1.8)

where αk = γ`mk and mk is the smallest nonnegative integer such that

αk‖∇Fk(xk) − ∇Fk(yk)‖ ≤ µ‖xk − yk‖. (1.9)

Construct the next iterative step xk+1 by

xk+1 = PCk(xk − αk∇Fk(yk)). (1.10)
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There have been various methods invented for solving the problem (SFP) (see, for example, [5–12,
14–19,21,26]). It is observed that, in each iteration, we have to find the integer mk such that (1.9) holds.
So it takes CPU time and number of iterations in convergence. It is our aim to design new linesearch
that takes CPU time less than Algorithm 1.1 and others.

Recently, Tian and Zhang [23] proposed a new regularized CQ algorithm without a priori knowledge
of the operator norm to solve the split feasibility problem and provided strong convergence theorem in
Hilbert spaces. Later, Dang et. al. [11] introduced inertial relaxed CQ algorithms for the split feasibility
problem and proved asymptotical convergence. In 2018, Dong et. al. [13] introduced the projection
and contraction methods for solving the split feasibility problem using the inverse strongly monotone
property of the underlying operator of the SFP.

Motivated by the previous works, we modify algorithm of Gibali et al. [16] and propose the
relaxed CQ-algorithm with the new linesearch in real Hilbert spaces and prove some weak
convergence theorems of the proposed method under mild assumptions. Finally, we give some
computational results to compare with the algorithms of Gibali et al. [16] and Yang [27]. Numerical
experiments show that our algorithm has a better performance than others.

2. Preliminaries

In this section, we give some definitions and lemmas which are used in the proof. Throughout this
paper, we use the following notations:
• ⇀ denotes the weak convergence;
• ωw(xk) = {x : ∃(xkn) ⊂ (xk) such that xkn ⇀ x} denotes the weak ω-limit set of (xk).

Let H be a real Hilbert space. We recall the following definition.

(1) A mapping T : H → H is said to be firmly nonexpansive if, for all x, y ∈ H,

〈x − y,T x − Ty〉 ≥ ‖T x − Ty‖2. (2.1)

(2) A function f : H → R is said to be convex if

f (λx + (1 − λ)y) ≤ λ f (x) + (1 − λ) f (y) (2.2)

for all λ ∈ (0, 1) and for all x, y ∈ H.

A differentiable function f is convex if and only if there holds the inequality:

f (z) ≥ f (x) + 〈∇ f (x), z − x〉 (2.3)

for all z ∈ H.
(3) An element g ∈ H is called a subgradient of f : H → R at x if

f (z) ≥ f (x) + 〈g, z − x〉 (2.4)

for all z ∈ H, which is called the subdifferentiable inequality. The set of subgradients of f at x is
denoted by ∂ f (x).

(4) A function f : H → R is said to be subdifferentiable at x if it has at least one subgradient at x.
A function f is said to be subdifferentiable if it is subdifferentiable at all x ∈ H.
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(5) A function f : H → R is said to be weakly lower semi-continuous (shortly, w-lsc) at x if xk ⇀ x
implies

f (x) ≤ lim inf
k→∞

f (xk). (2.5)

(6) A projection of H onto a nonempty closed convex subset C ⊂ H is defined by

PC x := arg min
y∈C
‖x − y‖2 (2.6)

for all x ∈ H.
Next, we give some useful lemmas for our proof.

Lemma 2.1. [2] Let C be a nonempty closed convex subset of a real Hilbert space H. Then, for any
x ∈ H, the following assertions hold:

(1) 〈x − PC x, z − PC x〉 ≤ 0 for all z ∈ C;
(2) ‖PC x − PCy‖2 ≤ 〈PC x − PCy, x − y〉 for all x, y ∈ H;
(3) ‖PC x − z‖2 ≤ ‖x − z‖2 − ‖PC x − x‖2 for all z ∈ C.

From Lemma 2.1, we see that the operator I − PC is also firmly nonexpansive, where I denotes the
identity operator, i.e., for any x, y ∈ H,

〈(I − PC)x − (I − PC)y, x − y〉 ≥ ‖(I − PC)x − (I − PC)y‖2. (2.7)

Lemma 2.2. [1] Let S be a nonempty closed convex subset of a real Hilbert space H and {xn} be a
sequence in H satisfying the following properties:

(a) lim
k→∞
‖xk − x‖ exists for each x ∈ S ;

(b) ωw(xk) ⊂ S .
Then {xk} converges weakly to a point in S .

Now, we give our main results in this paper.

3. Main results

In this section, we introduce a new relaxed projection algorithm using the linesearch technique and
prove its weak convergence. We have already defined the mappings Fk and ∇Fk as in (1.7). Our
algorithm is generated by the following manner:

Algorithm 3.1. Given constants γ > 0, ` ∈ (0, 1) and µ ∈
(
0,

1
4
)
. Let x1 be arbitrary in H1. For each

k ≥ 1, calculate
yk = PCk(xk − αk∇Fk(xk)). (3.1)

Construct the next iterative step xk+1 by

xk+1 = PCk(yk − αk∇Fk(yk)), (3.2)

where αk = γ`mk and mk is the smallest nonnegative integer such that

αk max{‖∇Fk(xk+1) − ∇Fk(yk)‖, ‖∇Fk(yk) − ∇Fk(xk)‖}
≤ µ(‖xk+1 − yk‖ + ‖yk − xk‖). (3.3)
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It is remarked that Algorithm 3.1 is based on extra-gradient type method which was firstly
introduced by Noor [28, 29].

Following the proof line as in [20], we obtain the following lemma:

Lemma 3.2. Let γ > 0, ` ∈ (0, 1) and µ ∈ (0, 1
4 ). Then, the linesearch (3.3) terminates after a finite

number of steps. In addition, we have the following:

µ`

L
< αk ≤ γ (3.4)

for all k ≥ 1, where L = ‖A‖2.

Proof. From [20], we know that

‖∇Fk(xk+1) − ∇Fk(yk)‖ ≤ L‖xk+1 − yk‖ (3.5)

and
‖∇Fk(yk) − ∇Fk(xk)‖ ≤ L‖yk − xk‖. (3.6)

It follows that

max{‖∇Fk(xk+1) − ∇Fk(yk)‖, ‖∇Fk(yk) − ∇Fk(xk)‖}
≤ ‖∇Fk(xk+1) − ∇Fk(yk)‖ + ‖∇Fk(yk) − ∇Fk(xk)‖
≤ L(‖xk+1 − yk‖ + ‖yk − xk‖). (3.7)

The second part is obtained by [20]. Hence the linesearch (3.3) is well-defined. This completes the
proof. �

In what follows, we denote S by the solution set of the problem (SFP) and also assume that S is
nonempty.

Theorem 3.3. The sequence {xk} generated by Algorithm 3.1 converges weakly to a point in S .

Proof. Let z ∈ S . Since C ⊆ Ck and Q ⊆ Qk, it follows that z = PC(z) = PCk(z) and Az = PQ(Az) =

PQk(Az). Hence ∇Fk(z) = 0. Using Lemma 2.1 (c), we get

‖xk+1 − z‖2 = ‖PCk(yk − αk∇Fk(yk)) − z‖2

≤ ‖yk − αk∇Fk(yk) − z‖2 − ‖xk+1 − yk + αk∇Fk(yk)‖2

= ‖yk − z‖2 + ‖αk∇Fk(yk)‖2 − 2αk〈∇Fk(yk), yk − z〉 − ‖xk+1 − yk‖
2

−‖αk∇Fk(yk)‖2 − 2αk〈∇Fk(yk), xk+1 − yk〉

= ‖yk − z‖2 − 2αk〈∇Fk(yk), yk − z〉 − ‖xk+1 − yk‖
2

−2αk〈∇Fk(yk), xk+1 − yk〉. (3.8)

Also, we obtain

‖yk − z‖2 = ‖PCk(xk − αk∇Fk(xk)) − z‖2

≤ ‖xk − αk∇Fk(xk) − z‖2 − ‖yk − xk + αk∇Fk(xk)‖2
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= ‖xk − z‖2 + ‖αk∇Fk(xk)‖2 − 2αk〈∇Fk(xk), xk − z〉

−‖yk − xk‖
2 − ‖αk∇Fk(xk)‖2 − 2αk〈∇Fk(xk), yk − xk〉

= ‖xk − z‖2 − 2αk〈∇Fk(xk), xk − z〉 − ‖yk − xk‖
2

−2αk〈∇Fk(xk), yk − xk〉. (3.9)

Due to (2.7) and ∇Fk(z) = 0, we have

2αk〈∇Fk(yk), yk − z〉 = 2αk〈∇Fk(yk) − ∇Fk(z), yk − z〉

= 2αk〈AT (I − PQk)Ayk − AT (I − PQk)Az, yk − z〉

= 2αk〈(I − PQk)Ayk − (I − PQk)Az, Ayk − Az〉

≥ 2αk‖(I − PQk)Ayk‖
2. (3.10)

It also follows that
2αk〈∇Fk(xk), xk − z〉 ≥ 2αk‖(I − PQk)Axk‖

2. (3.11)

From (2.3) and (3.8), we have

2αk〈∇Fk(yk), xk+1 − yk〉

= 2αk〈∇Fk(yk) − ∇Fk(xk+1), xk+1 − yk〉 + 2αk〈∇Fk(xk+1), xk+1 − yk〉

≥ −2αk‖∇Fk(yk) − ∇Fk(xk+1)‖‖xk+1 − yk‖

+2αk(
1
2
‖(I − PQk)Axk+1‖

2 −
1
2
‖(I − PQk)Ayk‖

2)

= −2αk‖∇Fk(yk) − ∇Fk(xk+1)‖‖xk+1 − yk‖

+αk‖(I − PQk)Axk+1‖
2 − αk‖(I − PQk)Ayk‖

2. (3.12)

Also, we have

2αk〈∇Fk(xk), yk − xk〉 ≥ −2αk‖∇Fk(yk) − ∇Fk(xk)‖‖yk − xk‖

+αk‖(I − PQk)Ayk‖
2 − αk‖(I − PQk)Axk‖

2. (3.13)

Combining (3.8)–(3.13), by Lemma 3.2, we obtain

‖xk+1 − z‖2

≤ ‖xk − z‖2 − 2αk〈∇Fk(xk), xk − z〉 − ‖yk − xk‖
2 − 2αk〈∇Fk(xk), yk − xk〉

−2αk〈∇Fk(yk), yk − z〉 − ‖xk+1 − yk‖
2 − 2αk〈∇Fk(yk), xk+1 − yk〉

≤ ‖xk − z‖2 − 2αk‖(I − PQk)Axk‖
2 − ‖yk − xk‖

2

+2αk‖∇Fk(yk) − ∇Fk(xk)‖‖yk − xk‖ − αk‖(I − PQk)Ayk‖
2

+αk‖(I − PQk)Axk‖
2 − 2αk‖(I − PQk)Ayk‖

2 − ‖xk+1 − yk‖
2

+2αk‖∇Fk(yk) − ∇Fk(xk+1)‖‖xk+1 − yk‖ + αk‖(I − PQk)Ayk‖
2

≤ ‖xk − z‖2 − αk‖(I − PQk)Axk‖
2 − ‖yk − xk‖

2

+2αk‖∇Fk(yk) − ∇Fk(xk)‖‖yk − xk‖ − 2αk‖(I − PQk)Ayk‖
2 − ‖xk+1 − yk‖

2

+2αk‖∇Fk(yk) − ∇Fk(xk+1)‖‖xk+1 − yk‖. (3.14)
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Using (3.3) and (3.4), we have

‖xk+1 − z‖2

≤ ‖xk − z‖2 −
µ`

L
‖(I − PQk)Axk‖

2 − ‖yk − xk‖
2

+2µ(‖xk+1 − yk‖ + ‖yk − xk‖)‖yk − xk‖ − 2
µ`

L
‖(I − PQk)Ayk‖

2

−‖xk+1 − yk‖
2 + 2µ(‖xk+1 − yk‖ + ‖yk − xk‖)‖xk+1 − yk‖

= ‖xk − z‖2 −
µ`

L
‖(I − PQk)Axk‖

2 − ‖yk − xk‖
2 + 2µ‖xk+1 − yk‖‖yk − xk‖

+2µ‖yk − xk‖
2 − 2

µ`

L
‖(I − PQk)Ayk‖

2 − ‖xk+1 − yk‖
2 + 2µ‖xk+1 − yk‖

2

+2µ‖yk − xk‖‖xk+1 − yk‖

≤ ‖xk − z‖2 −
µ`

L
‖(I − PQk)Axk‖

2 − ‖yk − xk‖
2 + µ‖xk+1 − yk‖

2

+µ‖yk − xk‖
2 + 2µ‖yk − xk‖

2 − 2
µ`

L
‖(I − PQk)Ayk‖

2 − ‖xk+1 − yk‖
2

+2µ‖xk+1 − yk‖
2 + µ‖yk − xk‖

2 + µ‖xk+1 − yk‖
2

= ‖xk − z‖2 −
µ`

L
‖(I − PQk)Axk‖

2 − (1 − 4µ)‖yk − xk‖
2 − (1 − 4µ)‖xk+1 − yk‖

2

−2
µ`

L
‖(I − PQk)Ayk‖

2. (3.15)

This implies that
‖xk+1 − z‖ ≤ ‖xk − z‖ (3.16)

and hence lim
k→∞
‖xk − z‖ exists. Moreover, {xk} is bounded. From (3.15), we also have

lim
k→∞
‖yk − xk‖ = 0 (3.17)

and
lim
k→∞
‖xk+1 − yk‖ = 0. (3.18)

Moreover, we have
lim
k→∞
‖(I − PQk)Axk‖ = 0. (3.19)

So, we obtain

‖xk+1 − xk‖ = ‖xk+1 − yk + yk − xk‖

≤ ‖xk+1 − yk‖ + ‖yk − xk‖ → 0 (3.20)

as k → ∞. Since {xk} is bounded, assume that ωw(xk) is nonempty. Let x∗ ∈ ωw(xk). Then there exists
a subsequence {xkn} of {xk} such that xkn ⇀ x∗.

Now, we show that x∗ ∈ S . Since xkn+1 ∈ Ckn by the definition of Ckn , we get

c(xkn) ≤ 〈ξkn , xkn − xkn+1〉, (3.21)
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where ξkn ∈ ∂c(xkn). By the boundedness of ∂c and (3.20), we have

c(xkn) ≤ ‖ξkn‖‖xkn − xkn+1‖ → 0 (3.22)

as n→ ∞. By the w-lsc of c, xkn ⇀ x∗ and (3.22), it follows that

c(x∗) ≤ lim inf
n→∞

c(xkn) ≤ 0. (3.23)

Hence x∗ ∈ C.
Next, we show that Ax∗ ∈ Q. Since PQkn

(Axkn) ∈ Qkn , we have

q(Axkn) ≤ 〈ηkn , Axkn − PQkn
(Axkn)〉, (3.24)

where ηkn ∈ ∂q(Axkn). So, we have

q(Axkn) ≤ ‖ηkn‖‖Axkn − PQkn
(Axkn)‖ → 0 (3.25)

as n→ ∞. Since xkn ⇀ x∗, Axkn ⇀ Ax∗. The w-lsc of q and (3.25) imply that

q(Ax∗) ≤ lim inf
n→∞

q(Axkn) ≤ 0. (3.26)

Hence Ax∗ ∈ Q. Using Lemma 2.2, we conclude that the sequence {xk} converges weakly to a point in
S . This completes the proof. �

Remark 3.4. Algorithm 3.1 in Theorem 3.3 is quite different from that of Gibali et al. [16]. To be more
precise, the linesearch (3.3) is defined by a new way of two step method.

Remark 3.5. Theorem 3.3 is more convenient than the results of Yang [27] in practice. In fact, we do
not require the information of the operator norm which is not easy in computation.

4. Numerical experiments

In this section, we provide some numerical experiments in signal recovery to compare our algorithm
with those of Yang [27] and Gibali et al. [16]. In signal processing, the compressed sensing can be
formulated as inverting the equation system:

y = Ax + ε, (4.1)

where x ∈ RN is a vector with m nonzero components to be recovered, y ∈ RM is the observed or
measured data with noisy ε and A : RN → RM (M < N) is a bounded linear observation operator. Here
A is sparse and the range of it is not closed in most inverse problems and thus A is often ill-condition
and the problem is also ill-posed.

When x is a sparse expansion, to find solutions of the problem (4.1) can be seen as solving the
following LASSO problem:

min
x∈RN

1
2
‖y − Ax‖2 such that ‖x‖1 ≤ t, (4.2)

where t > 0 is a given constant. The sparse vector x ∈ RN is generated from the uniform distribution
in the interval [−2, 2] with m nonzero elements. The matrix A ∈ RM×N is generated from a normal
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distribution with mean zero and variance one. The observation y is generated by white Gaussian noise
with signal-to-noise ratio SNR=40. The process is started with t = m and initial point x1 is picked
randomly.

Let C = {x ∈ RN : ‖x‖1 ≤ t} and Q = {y}. Then the minimization problem (4.2) can be seen as
the problem (SFP) and, since the projection onto the closed convex C does not have a closed form
solution, we make use of the subgradient projection. Define a convex function c(x) = ‖x‖1 − t and
denote the level set Ck by:

Ck = {x : c(xk) + 〈ξk, x − xk〉 ≤ 0}, (4.3)

where ξk ∈ ∂c(xk). Then the orthogonal projection onto Ck can be calculated by the following:

PCk(x) =

x, if c(xk) + 〈ξk, x − xk〉 ≤ 0,
x − c(xk)+〈ξk ,x−xk〉

‖ξk‖2
ξk, otherwise.

(4.4)

The subdifferential ∂c at xk is

∂c(xk) =


1, xk > 0,
[−1, 1], xk = 0,
−1, xk < 0.

(4.5)

In our experiment, we consider two cases as follows:

Case 1: N = 512, M = 256 and m = 10;
Case 2: N = 4096, M = 2048 and m = 100.

Next, we give some numerical results by using the relaxed CQ-algorithms defined by Yang [27],
Gibali et al. [16] and our algorithms (Algorithm 3.1).

The iteration is stopped when the following criteria is satisfied:

MSE =
1
N
‖x∗ − x‖2 < 10−5, (4.6)

where x∗ is an estimated signal of x.

In what follows, let αk =
1
‖A‖2

in the CQ-algorithm by Yang [27]. Define γ = 2, ` = 0.5 and µ = 0.2

in that of Gibali et al. [16]. Then the numerical results are reported as follows:

Remark 4.1. (1) In Figures 1 and 4, we see that the signal recovered by Algorithm 3.1 in both Case
1 and Case 2 has number of iterations and cpu time less than algorithm of Yang [27] and Gibali et
al. [16]. In the algorithm of Yang [27], the stepsize αk depends on the operator norm ‖A‖ whenever the
matrix has a large dimension, it may be compute very hard and has a costly cpu time. It is observed
that our new linesearch has a less cpu time than that of Gibali et al. [16].

(2) In Figures 2 and 5, we plot the error value of iterations. We see that the errors of Algorithm 3.1
decrease faster than those of other algorithms. Also, in Figures 3 and 6, the objective function values
obtained by Algorithm 3.1 have a better convergence behaviour than other algorithms.
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Figure 1. From top to bottom: original signal, observation data, recovered signal by Gibali
et al., Yang and Algorithm 3.1 with N = 512 and M = 256, respectively.
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Figure 2. MSE versus number of iterations in case N=512, M=256.
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Figure 3. The objective function value versus number of iterations in case N=512, M=256.

Figure 4. From top to bottom: original signal, observation data, recovered signal by Gibali
et al., Yang and Algorithm 3.1 with N = 4096 and M = 2048, respectively.
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Figure 5. MSE versus number of iterations in case N=4096, M=2048.
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Figure 6. The objective function value versus number of iterations in case N=4096, M=2048.

5. Conclusions

In this paper, we proposed the relaxed CQ-algorithm with new two steps by using a new linesearch
in real Hilbert spaces. The computation of matrix inverse and norm of operators is not required in
our algorithm. Also, we gave in a simple and novel way how the sequence generated by the method
weakly converges to a solution of the problem (SFP). All the results are compared to the relaxed CQ-
algorithms of Yang [27] and Gibali et al. [16]. Finally, we found that the proposed algorithm is effective
and outruns other known methods in the literature.
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