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Abstract: This paper studies the mixed passive and H,, performance for uncertain neural networks
with interval discrete and distributed time-varying delays via feedback control. The interval discrete
and distributed time-varying delay functions are not assumed to be differentiable. The improved criteria
of exponential stability with a mixed passive and H,, performance are obtained for the uncertain neural
networks by constructing a Lyapunov-Krasovskii functional (LKF) comprising single, double, triple,
and quadruple integral terms and using a feedback controller. Furthermore, integral inequalities and
convex combination technique are applied to achieve the less conservative results for a special case of
neural networks. By using the Matlab LMI toolbox, the derived new exponential stability with a mixed
passive and H,, performance criteria is performed in terms of linear matrix inequalities (LMIs) that
cover H,, and passive performance by setting parameters in the general performance index. Numerical
examples are shown to demonstrate the benefits and effectiveness of the derived theoretical results. The
method given in this paper is less conservative and more general than the others.
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1. Introduction

During the past few decades, many researchers have studied neural networks because of their
applications in many fields such as parallel computation, fault diagnosis, image processing,
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optimization problems, industrial automation, and so on [1-5]. To acquire the above applications, we
need to first analyze the theoretical stability for the equilibrium point of neural networks. Further, the
important factor affecting system analysis is time delay. It is well known that time delay is a normal
phenomenon that appears in neural networks since the neural networks consist of a large number of
neurons that connect and communicate with each other into a diversity of axon sizes and lengths.
Moreover, the existence of time delay causing poor control performance, divergence, oscillation, and
instability to the system [6]. Stability analysis of neural networks with constant, discrete, and
distributed time-varying delays has received considerable attentions [7-9]. For example, [7], the
delay-dependent criterion for exponential stability analysis of neural networks with time-varying
delays satisfying 0 < n(¢) < n,7n(t) < u is obtained. In [8], the problem of dissipativity analysis for
neural networks with time-varying delays is investigated. However, practically time delay can occur
in an irregular fashion such as sometimes the time-varying delays are not differentiable. So, it inspires
us to study neural networks without the restriction on the derivative of time-varying delays.

On the other side, since external perturbation, uncertain or slowly varying parameters, an accurate
mathematical model does not get easy. Data tends to be uncertain in many applications [10-12].
Therefore, it is important to guarantee that the model is stable with respect to the uncertainties. Also,
uncertainty in neural networks cannot be avoided. Consequently the problem of robust stability
analysis for uncertain neural networks has many studied. For example, Subramanian et al. [13]
investigated the robust stabilization of uncertain neural networks with two additive time-varying
delays based on Wirtinger-based double integral inequality. In [14], Zeng et al. studied the robust
passivity analysis of uncertain neural networks with discrete and distributed delays by constructing an
augmented Lyapunov functional and combining a new integral inequality with the reciprocally convex
approach.

It is well known that passivity is a special case and a general theory of dissipativeness and it
performs an influential part in the designing of linear and nonlinear systems. It is widely applied in
many areas such as sliding mode control [15], fuzzy control [16], network control [17], and signal
processing [18]. The main property of passivity is that can keep the system internally stable.
Recently, the passivity problem has been studied in [14, 19-22]. In addition, the H,, theory is very
important due to the H, control design that exposes the control problem as a mathematical
optimization problem to find the controller solution. The H,, approaches are used in control theory to
synthesize controllers achieving stabilization with guaranteed performance [23,24]. The problem of
mixed H, and passivity analysis was first studied in [25,26]. It has received a lot of attention from
many researchers. For example, the mixed passive and H,, synchronization problems of complex
dynamical networks have been analyzed in [27, 28]. And, the combined H, and passivity state
estimation of memristive neural networks was studied in [29]. Nevertheless, a mixed passive and H.,
analysis problem for uncertain neural networks with interval discrete and distributed time-varying
delays has been few considered which is our motivation.

Inspired by above discussions, the problem of mixed passive and H., performance for uncertain
neural networks with interval discrete and distributed time-varying delays via feedback control is
studied. The main contributions of this paper are three aspects.

e In this work, the system consists of the interval discrete and distributed time-varying delays such
that does not necessitate being differentiable functions, which mean that a fast interval discrete and
distributed time-varying delays is approved. The lower bound of the delays does not restrict to be 0,
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the activation functions are different, and the output is general.

¢ By using the Lyapunov-Krasovskii stability theory, the new results of the exponential stability with
a mixed passive and H,, performance for the uncertain neural networks are obtained. Based on the
weighting parameter, the results are more general such that H,, performance or passive performance
for the uncertain neural networks are included.

e Different from the methods in [30-32], the Lyapunov-Krasovskii functional comprising single,
double, triple, and quadruple integral terms and integral inequalities are employed. Convex
combination idea and zero equation are used. The method used in this paper reveals less conservative
results when comparing with existing results [30-32].

This paper is formed in five sections as follows. In Section 2, network model and preliminaries are
provided. Section 3 shows exponential stability analysis with a mixed passive and H,, performance of
the uncertain neural network system, and the stability analysis of a special case neural network.
Numerical examples are given in Section 4 and conclusions are addressed in Section 5.

2. Network model and preliminaries

Notations

Throughout this paper, R and R” represent the set of real numbers and the n-dimensional Euclidean
spaces, respectively. M > (=)0 means that the symmetric matrix M is positive (semi-positive)
definite. M < (<)0 denotes that the symmetric matrix M is negative (semi-negative) definite. M” and
M~! denote the transpose and the inverse of matrix M, respectively. Ap.(M) and A;,(M) denote the
maximum eigenvalue and the minimum eigenvalue of matrix M, respectively. The symbol *
represents the symmetric block in a symmetric matrix. [/ is the identity matrix with appropriate
dimensions. e; represents the unit column vector having one element on its ith row and zeros
elsewhere. C([a;,a,], R") denotes the set of continuous functions mapping the interval [a;, a;] to R".

1
£,[0, c0) represents the space of functions ¢ : R* — R” with the norm |||z, = [ fow 12(0) d9]2 . For

n

12
? € R" the norm of 4, denoted by |[[¢}|, is defined by |[[J||= [Zlﬁilz] ;19 + V)|la
i=1

2 : 2
= max{ sup 1 + I, sup Iz + v)II"}.
—max{o3,5,}<v<0 —max{o3,02}<v<0
We consider the uncertain neural network model with interval discrete and distributed time-varying

delays of the form

X(t) == (A+ AA@D)x(t) + (B+ AB(1))f(x(2)) + (C + AC())k(x(t — 0 (1)))
1—01(7)
+ (D + AD(1)) h(x(s))ds + Ew(t) + U@),
1=0,(t)
t—01(1)

z2(t) =C1x(t) + Cox(t — o (1)) + C3f h(x(s))ds + Cs(t), 2.1

1=02(1)

x(t) =p(1), te€[-0,0],

where x(f) = [x1(2), x2(2), ..., x,(t)]T € R" is the neuron state vector, f(x(1)), k(x(f)), h(x(t)) € R" are
the neuron activation functions, z(r) € R”" is the output vector, w(f) € R” is the input vector such that
w(t) € L,[0, ), U(t) € R" is the control input, A = diag{a,,as, ...,a,} > 0, Bis the connection weight
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matrix, C is the discretely delayed connection weight matrix, D is the distributively delayed connection
weight matrix, E, Cy, C;, C3, C4 are given constant matrices, ¢(t) € C[[—o, 0], R"] is the initial function.
o(t) is the interval discrete time-varying delay that satisfies 0 < oy < o(f) < 0, where 0,0, € R.
0,(t) (i = 1,2) is the interval distributed time-varying delay that satisfies 0 < 6; < d,(¢) < 6,(¢) < 6,
where 01,0, € R. o = max{o»,d,} is known real constant, the time-varying uncertainties matrices
AA(t), AB(t), AC(t), and AD(¢) are given by

AA(@) =1iS1(DZy, AB(1) = J25:(0)Z,,
AC(1) =J353(0)%3, AD(1) = J4S4()Za,

and Ji,J5,J3,J4,21,2,,%23 and X4 are known constant matrices with appropriate dimensions,
S1(1), Sy(t), S3(t), S4(¢) are unknown uncertain matrices satisfying

STOS1(t) < I, SIMS2(t) <1, S;1S3(t) <1, S;)S4(t) < 1.

The neuron activation functions f(x(¢)), k(x(¢)) and h(x(¢)) satisfy the following conditions:

(A1) f is continuous and satisfies
Fr< Jilay) — filan) < F
a; — @
forall @) # @y, and F;, F € R, f,(0) = 0.
(A2) kis continuous and satisfies
K < ki(a1) — ki(a) < Ki+
a; — @
for all @) # a,, and K., K € R, k;(0) = 0.
(A3) his continuous and satisfies

H- < hi(ay) — hi(ay) <H
) — Qay

for all @) # a,, and H, H € R, h;(0) = 0.

The state feedback is considered with
U(t) = Kx(1).

Substitute U(¢) = Kx(t) into (2.1), we gain

X(t) =(K — A — AA@))x(t) + (B+ AB(1)) f(x(2)) + (C + AC(1))
1—01(1)

X k(x(t — o (1)) + (D + AD(1)) h(x(s))ds + Ew(t),
1=62(1)
1=61(1)

z2(t) =C1x(t) + Cox(t — o(1)) + C3f h(x(s))ds + C4w(t), 2.2)
1=02(1)

x(1) =¢(0), t€[-0,0]

Definition 2.1. [28] The uncertain NNs (2.2) with w(t) = 0 is exponentially stable, if there exist
constants by > 0 and b, > 0 such that

X1 < bre”™|Ix(W)ler-
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Definition 2.2. [28] For a given scalar v € [0, 1], the uncertain NNs (2.2) is exponentially stable and
meets a predefined passive and H., performance index vy, if the following conditions can be ensured
simultaneously:

(1) the uncertain NNs (2.2) is exponentially stable in sense of Definition 2.1.
(2) under zero initial condition, there exists a scalar vy > 0 such that the following inequality is
satisfied:

T Tp
f |-v" (0200 + 21 = vy (D ()| dt = - f | ()| dt, (2.3)
0 0

for any T, > 0 and any non-zero w(t) € L,[0, o).

Remark 1. The condition (2.3) includes passive performance index and H., performance index. If
v = 1, the condition (2.3) reduces to the H,, performance index; and if v = 0, the condition (2.3)
reduces to the passive performance index; when v takes the value in (0, 1), then the condition (2.3)
becomes to the mixed passive and H., performance index.

Lemma 2.3. /33, 34] Suppose 0 < n; < n, and x(t) € R", for any matrix M > 0 the following
inequalities hold:

—(m —nl)f KL (s)Mx(s)ds < — f_n X (s)dst x(s)ds,

("2 f A (s)Mx(s)ds dB < — f " (s dsap
m +B

XMf mf x(s)dsdp,
773 0 0 t 0_712 OHﬁt
—ng ff xT(s)Mx(s)dsdxld,BS—f ff xT(s)dsdAdp
- Jp +A -m Jp
XMf ff x(s)dsdAdp.
2

Lemma 2.4. [35] For a matrix M > 0, a differentiable function {x(a)la € [ai,a,]}, the following
inequality holds:

f - i (@)Mi(e)da > [x(az) — x(a)]" M [x(az) — x(a))] +

a a; —a a —a

) T a)
f x(a) da/] M [x(az) + x(a;) — 2 f x(a) da/] .
a a) —di a

Lemma 2.5. [36] For given matrices P, Q and R with R'R < I and a scalar a > 0, the following
inequality holds:

X | x(az) + x(ay) -

ay —a

PRQ + (PRQ)" < aPP" +a7'Q" Q.
Lemma 2.6. [37] Let P, Q, R be given matrices such that R > 0, then

>

T p—1
P _R}<O@Q+PR P <O.
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3. Main results

3.1. Mixed passive and H., analysis for neural networks

In this section, we will firstly find the sufficient conditions which guarantee the neural networks
without parameter uncertainties to be exponentially stable with a mixed passive and H,, performance.
That is we consider the following model

1—01(1)
x(t) = (K—-A)x(t)+ Bf(x(t)) + Ck(x(t — o (1)) + Df h(x(s))ds
1=02(1)
+Ew(t),
=01 (f)

Cix(®) + Cox(t — (1)) + C5 f h(x(s)) ds + Caw(2), 3.1

1=062(t)

(1)
X(t) = ¢(t)’ re [_Qa O]
In this paper, we define the denotations as follows

Fi=max{|F;||F71}, K;=max{IK;|,|Kl}, H;=max{|H;|,|H]},
F, =diag{F | F|,F;F;,...,F,F,},
. [F{+F{ F;+F; F, +F;
F2:d1ag{ I },
K, =diag{K| K|, K; K;,...,K, K, },
. [Ki+K{ K5 +K5 K, + K,
Kzzdlag{ L },
H, =diag{H,H{ ,H,H;,...,H,H,},
. (H;y+H{ H; +H; H, +H;
szdlag{ R R > },

N = [xT(t), (), X"t = o), x" (1 = o), X (1 — (1), fT(x(2)),

kT(x(t—a(t))),hT(x(t)),Gi f xT(s)ds,i f X (s)ds,
1 Jt-0 t

02 Jt-0y

1 —0| 1 t—o (1) 1—01(1)
_ f X (s)ds, —— f xI(s)ds, f K (x(s))ds,
o(t)—o t—o(t) oy —0o(t) -0 1—62(1)

—0 ! —o (1) t
f f A (s)ds dp, f f A (s)dsdp, a)T(t)].
—o(t) Jt+p -0 t+8

Theorem 3.1. For given scalars o, 07,01,02,81,B2,Y > 0, and v € [0, 1], if there exist eleven n X n
matrices P> 0,0, >0,0,>0,R, >0,R, >0, U >0,L>0,X; >0,X, >0,N > 0,Z and three n X n
positive diagonal matrices Y1 > 0,Y, > 0, Y3 > 0 such that the following LMlIs hold:

O+0, <0, (3.2)
0+0,<0, (3.3)
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wherein,
0, =- 615X1€1T5,
©, = —esXjely
O = 0(,1) 6(1,2)
B * 02,2’
with:
_91’1 91’2 —2R1 —2R2 UC{CZ 91,(, ﬂ]NTC H2Y3_
¥ 6, 0 0 0 BN'B BN'C 0
k % 6’3,3 O —2U 0 O 0
_ * ES *k 94’4 —2U O O 0
oL, 1) = % % s * 0s 5 0 Ky Y, 0
* * * * * -Y 0 0
* * s * * * -Y, 0
* * * * * * * Oss |
i oi-c? oi-c? ]
6R1 6R2 0 0 91’13 22 l)(2 22 l)(2 01,16
0 0 0 0 BN'D 0 0 BoNTE
6rR;, 0 o6U O 0 0 0 0
0(1,2) = 0 6R, 0 66U 0 0 0 0 ,
0 0 6U 6U vCiCs 0 0 65,16
0 0 0O O 0 0 0 0
0 0 0O O 0 0 0 0
| 0 0 0 O 0 0 0 0
[—12R; 0 0 0 0 0 0 0 ]
* -12R, 0 0 0 0 0 0
* * -12U 0 0 0 0 0
* * * 12U 0 0 0 0
022 = * * * Oz 0 0  6Oizi6l|’
* * * * * O1s14 —Xo 0
* * * * * *  Oi515 0
* * s * * * *  O6.16.
in which:
617 = Qi+ Qry—4R —4R, +vC]C| - F\Y, — H\Y3 +2B,Z - 23 N"A
G-oif @i
1 1 1 2
0, = P-BIN" +B.Z" —B,N"A, 6,6=F,Y, +B/N"B,
6113 = vCIC3+BIN'D, 6,16=vClCy—(1-v)yCl +BN"E,
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0-3 _ 0.3 2
620 = R +03Ry + (02— 0)'U = 2N" + = 36 0 X2,
035 = -0, —4R, —4U, Os4 = -0, —4R, — 40,
Oss = —8U—K Yo +vCiCy, 6516 =0vCrCy—(1-0v)yCl,

Oss = (62—061)°L—Ys, 6i3135=—L+vC;Cs,
01316 = UC3TC4 -1 - U)7C3T, O1a14 = =X — X,
Ois,5 = —X1—Xo, 0Ois16 = UCZC4 -2(1 - U))’CZ - 721’

then, the NNs (3.1) is exponentially stable with a mixed passive and H, performance. Moreover, the
controller is in the form
K=N'Z

Proof. Consider the model (3.1) with the following Lyapunov-Krasovskii functional

9
V(x(D),1) = > Vilx(®), 1),
i=1

where
Vi(x(t), 1) = x" ())Px(t),

Va(x(1), 1) = £ X' (5)Q1x(s) ds,

Va(x(0),1) = £ x'(5)Q2x(s) ds,

Vi(x(D),1) = o f 0 f,: ()R x(7) dT ds,

Vs(x(1), 1) = o) f 0 f t i (DRx(1) d7 ds, (3.4)
Ve(x(D),1) = (02 — 01) f - f t i (n)Ux(7)dr ds,

-5,
Va(x(1),1) = (62 — 61) f hT (x(7))Lh(x(7)) dt ds,

o2
Ve(x(2),1) = )f ff xT ()X, x(s)dsdAdp,

o3
Vo(x(2),1) = )f fff 21 ($)X,x(s) ds dp dA dp.

We find time derivatives of V;(x(?),1),i = 1,2,...,9, along the trajectories of (3.1), we achieve

Vi(x(2), 1) = x' ())Px(t) + 2T (H)Px(?), (3.5)
Vo(x(0), 1) = X" ()01 x(t) — X" (t = 071) Q1 x(t — 07y), (3.6)
Va(x(1), 1) = X" (1) Qxx(t) — X" (t = 02) Qa.x(t — 072), (3.7
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0
Vu(x(0), £) = oy f [xT(t)Rlx(t) — it + SR, x(t + s)] ds

= o2 i (R x(t) — o) f i’ ()R, x(a) da, (3.8)

-0

0
Vs(x(?), 1) = oy f [xT(z)sz(z) — (¢ + $)Ryi(t + s)] ds

= 025" (R x(t) — 0 f i’ (@)Ryx(a) da, (3.9)

t—0>

Ve(x(2), 1) = (03 — ) f - [)’CT(I)U)'C(I) — it + Ut + s)] ds

= (0 — 0> T (OUX(1) = (03 — o)) f - Pl ()Ux(e)da, (3.10)

-5
Vax(0).0) = 62— 61) | [A (()LA(x(®) = B (x(t + $))Lh(x(t + )| ds

-5,

1—01
= (62 = 61> ((O)LA(x(1)) — (62~ 61) f h' (x(@))Lh(x(@)) da
-0

< (6 — 61)°h" (x(1)) Lh(x(1))
1—01(1)

— (62(1) = 6:1()) f h' (x(@)Lh(x(@)) da, (3.11)

—62(0)
2 2
(0-2 - 0-1)
2
2 232
_ (0-2 - 0-1)
4
3 3
(0-2 - 0-1)

6
—0 0 0
X f f f | (0X25(0) = 5 (1 + @) Xai(t + ¢)| dp dAdp
-0 B A

_ (03— 07)
36

3_ 3 -0 0 t
_ % 601) f f f £ (5)X,5(s) ds dA dB. (3.13)
-0 B t+1

Utilizing Lemma 2.4., the following inequalities are easily obtained:

Vs(x(1), 1) =

-0 0
f f | OX1x(t) = X" (¢ + DXx(t + V)| dadp
-0 B

2 _ 2 -0 t
T OXix(t) - 22 201) f f TOXx(s)dsdB,  (3.12)
-0 t+8

Vo(x(), 1) =

()X, x(1)

—0 f (@R M) da < —[x(t) — x(t — o))" Ry [x() — x(t — 071)]

-0 , t .
=3x(®)+x(t —07) — — f x(a@) da]
01 Ji-o
X Ry | x(t) + x(t —0y) — 0% f x(@) da] , (3.14)
1 Jt-0
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o f F(@Rs(@) da < — [x(t) — x(t — )] Ro [x(8) - x(t - 0)]

-0

2 (" g
=3|x(t) + x(t — o) — — f x(@) da]

(o)

X Ry

x(t) + x(t — o) — 3 f x(@) da] , (3.15)

(o)

-0
—(oy —071) (@) Ux(a)da
1—0)

<= [x(t = o(0) — x(t — )] U [x(t — o(1)) — x(t — 072)]

2 (= (t) T
=3|x(t—o@) + x(t — 03) — x(a) da
[ 0-2 - O-(I) —0 :|
t—o (1)
XU|x(t—o(t) + x(t — o) — 2 x(a@) dcx]
0-2 - O-(t) 1—0)

— [x(t — 1) = x(t = ()] U [x(t — 1) = x(t — o°(1))]

2 [—01 T
-3 [x(t -0+ x(t—o@)) - o) —o f x(@) da]

—o (1)

f_m x(a) da] . (3.16)

—o (1)

X U|x(t— o) + x(t — o(t)) —

o(t)— oy

By utilizing Lemma 2.3, we achieve the following inequalities

1—01(1)

—(62(t) = 61(1)) f h' (x(@)Lh(x(@)) da

—62(1)

=61 (1) =61 (1)
< - f h' (x(a)) daL f h(x()) de, (3.17)

—62(1) 1=62(1)

2 _ 2 -0 t
& 201) f f ()X, x(s) ds dB
-0 t+8

—o (1) t —0 (1) t
< —f f x7(s) dsd,Ble f x(s)dsdp
-0 t+8 -0 43
—o (1) t —o (1) t
& f f x7(s)ds dBX, f f x(s)dsdB
-0 t+p -0 8
—0] ! —0] !
—(1-¢) f xT(s)ds dBX, f f x(s)ds dp
—o(t) Jt+p —o(t) Ji+B

-0 i —0] t
—f f xT(s) ds dpX, f x(s)dsdp, (3.18)
—o(t) Jt+B —o(1) Ji+B
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o (t) — 0'%
where € = —
03~ 07

3 _ 3 —0 0 t
_((72_9) f f f £ (5)Xai(s) ds dA dB
-0 B t+1

2 — o2 —o(t) -0t
< - [#xT(t) - f f xT(s)dsdB - f f xT(s)ds d,B]
2 -0 t+f3 —o(t) Jt+p
0.% _ O'% —o (1) t -0 t
——x(t) - x(s)dsdB — x(s)dsdp|.
2 -0 t+8 —o(t) Jt+8

It follows from (A1) that | £(x(1)) = F; x(0)| | fi(xi(t) = F{x(t)] < 0 for every i = 1,2, .

X X5

are equivalent to
F:+F;

| FrFteel - eiel
[X(t) ] F_z 1F+t 2 i [x(t)]s ’
fop| |_FLAF o [
3 i€; i€;
foreveryi=1,2,...,n.
Define Y, = diag{yi,y2,...,y.} > 0, then

n T F-F* T Fl_+Fl+ T
Z)"[ x(1) ] i ieiei T, G [ x(1)
WG| | FitF T f

i=1 r
2

e;e.

; e;e.

1

which is equivalent to

[ (1) ]T[—FlYl F2Y1H () ]> 0
fa@)| | Bvv =1 || fx@e)| T

Similarly, from (A2), (A3) define Y, = diag{y,¥,,...,¥,} >0,
Y; = diag{y, 92, ..., 9.} > 0 we have

[ xt—o@) 1" [-K Y, KY|[ x(z= o)
k(x(t—o(0)] | K2Yo =Y |[k(x(t = 0o(2)))

[ x@) | [-H\Ys H,Ys|[ x@) ]> 0
h(x(@®)| | HYs  =Y3 ||h(x(0)] —

We have zero equation as follows

0=2 [xT(t),BlNT + XT(t),BgNT] [ — &) + (N"'Z = A)x(t) + BF(x(D))

1—01(1)

+ Ck(x(t — o (1)) + Df h(x(s))ds + Ew(t)].

1=02(1)

AIMS Mathematics

(x(2))

|<0

>0

(3.19)

., n, which

(3.20)

(3.21)

(3.22)
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Adding above zero equation to V(x(t), f), we obtain the following inequality from (2.3), (3.5)—(3.22)

Vo), 1) + vz’ (02(0) = 201 = v)y2" (D) - Yo' ()
<&'(1) (0 + (1 - 9)0) (1), (3.23)

where, @ = ® + O, (i = 1,2) with ® and ©; are defined in (3.2), (3.3).
Since 0 < £ < 1, the term e®V + (1 —£)@® is a convex combination of @ and ®?. The combinations
are negative definite only if

e <0, (3.24)
0% <0. (3.25)

So, (3.24) and (3.25) are equivalent to (3.2) and (3.3), respectively.
Hence, we obtain

V(x(0), 1) + vz’ ()z(t) — 2(1 — v)yz' (Hw(t) — YT (Hw(t) < 0. (3.26)

Under the zero initial condition, for any 7, we find that

TP
f vz! (Dz(0) = 2(1 = v)yz' (Nw(1) - Y (Dw() dt
0

Tﬁ
< f V(x(®),1) + vz (D)z(t) — 2(1 — v)yz (Dw(r) — YT (w(t)dt < 0,
0

that is

T

Tp 14
f vz (Hz(f) = 2(1 — v)yz! (Hw(t) dt < * f o' (Hw(t)dt.
0 0

In this case, the condition (2.3) is guaranteed for any non-zero w(t) € £;[0, c0). If w(r) = 0, in sense
of equation (3.26), there exists a scalar v; > 0 such that

V(x(®), 1) < —vi x" (0)x(2). (3.27)
By the definitions of V;(x(¢), 1), it is easy to derive the following inequalities:
Vi(x(0), 1) < dmax (P)IIXOIF,
Vi(x(0),1) < o3 f I i" (@R, x(a) da,
-0

Vs(x(t),1) < 05 f i ()R k() da,

Ve(x(2),1) < (03 — 01)? L ()Ux(1) dr, (3.28)

-0

Va(x(0), 1) < (62 = 61) f T (x(T))Lh(x(1)) dr,
t—07
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(O'% - 0'%)2
4
(03— o)

Vo(x(1), 1) < —2 T

Ve(x(2), 1) < f xL ()X, x(s)ds,

f ()X x(s) ds.

We are now ready to deal with the exponential stability of (3.1). Consider the Lyapunov—Krasovskii

functional >V (x(t), t), where c is a constant. Using (3.27), (3.28), we have

%eZCtV(x(t), 1) = XV(x(1), 1) + 2ce* V(x(1), 1)

<ezw[ —u + ZC(AmaX(P) + 01 dmax (Q1) + 02 Amax (Q2) + 07 Aman (R1)

+ O_g/lmax(RZ) + 0—2(0—2 - Ul)zﬂmax(U)

202 — 02y
—2 U (X))

(03 — 07)?

36 12t + VIl

/lmax(XZ))

Let

M1 :/?vmax(P) + Ul/lmax(Ql) + O-Z/Imax(QZ) + U?/?vmax(Rl) + O_g/lmax(RZ)

2 242 3 3\2
o205 —07) o032 —0?)
#ﬁmax(xl)_f_#

/lmax X3).
4 36 (%2)
Now, we take ¢ to be a constant satisfying ¢ < 2U_1
M1

, and then achieve from (3.29) that

d
zteZ“V(x(r), 1) <0,

which, together with (3.4) and (3.28), imply that

9
FUV(x(1),1) < V(x(0),0) = > V(x(0),0)
i=1
0

Amax(P)IX(O)]* + f

—0] —02

0

xT(s)le(s)ds+f X7 (8)0ax(s) ds

<

0 0

+07 f (TR x(T) dT + 075 f i (T)Ryx(7) dt
0 0

+(0y —0)? A (Ux(T)dr + (6, — 6))° hT (x(7))Lh(x(1)) dt

-0 =02

222 A0 3032 0
+—(O-2 40-1)f xT(s)X1x(s)ds+%f ?'CT(S)Xsz(S)dS]

—02 o2

(3.29)

(3.30)
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<ptollx()lles»

where

Ho :/lmax(P) + O-l/lmax(Ql) + O-Z/Imax(QZ) + U?/lmax(R]) + O-S/lmax(RZ)

.....

2 252 3 332
o005 — O o0, — O
2( 2 1) /lmax(Xl) + 2( 2 1)

/lmax X 9
4 36 (X)

and therefore
V(x(0), 1) < proe” > |x(V)ler-

Noticing Apin(P)||x(0)|]> < V(x(£), 1), we obtain

OIP < #ﬁme—mnx(v)nd. (3.31)
Letting b, = 1 IU(EP) and b, = 2¢, we can rewrite (3.31) as

x> < by ||x(v)|-

Hence, the NNs (3.1) is exponentially stable with a mixed passive and H,, performance index y. The
proof is completed. O

3.2. Mixed passive and H., analysis for uncertain neural networks

In the second part, the criteria of exponential stability with a mixed passive and H,, performance
for the uncertain neural networks are obtained by using similar proof of Theorem 3.1 together with
Lemma 2.5, 2.6.

Theorem 3.2. For given scalars o,07,01,02,51,B2,Y > 0, and v € [0, 1], if there exist eleven n X n
matrices P > 0,0; > 0,0, > O,R; > O,R, > 0,U > 0,L > 0,X; > 0,X;, > O,N > 0,Z, positive

diagonal matrices Y1 > 0,Y, > 0,Y3; > 0 and eight positive constants a; >0 (i = 1,2,...,8) such that
the following LMIs hold:
¥Y+0,<0, (3.32)
¥Y+0,<0, (3.33)
wherein,
0, =- €15X1€{5,
0, =- 614X1€1T4,
B * 02,2)|’
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® NTJ, NTJ,

* —(le 0

* * -ayl

* * *
VY= % * *

% % %

% k %k

* * *

% *k %

N'J, N'J, N'J; N'J; N'J, NTJ, |

with: O(1,2) is defined in Theorem 3.1,

0(1,1) =

02,2) =

in which:

611 =01+ Qy — 4R, — 4R, +vC{C, — F\Y, — H\Y3 +2B,Z - 2B N" A

(0'% - (T%)2

0 0 0 0 0 0
0 0 0 0 0 0
-a3l 0 0 0 0 0

* —aql 0 0 0 0 ,

* * —asl 0 0 0

® % * —agl O 0

% * * * —a7l 0

* * * * * —agl |

>é171 91,2 —2R1 —2R2 UC{CQ 91,6 ﬂ]NTC H2Y3-

£ Gy 0 0 0 BN'B B,NT'C 0

* * 93,3 0 =2U 0 0 0

* * * 044 =2U 0 0 0

* * * * Oss 0 K>Y, 0

* * * * * Os 0 0

* * * * * * 57’7 0

* * * * * * * O3

[—12R, 0 0 0 0 0 0 0 ]

* —12R, 0 0 0 0 0 0

* * -12U 0 0 0 0 0

* * sk -12U0 0 0 0 0

* * * * Oz 0 0 Bi316
* * * * x  Ous X2 0

* * * * * * 015.15 0

* * * * * * *  O16.16.

2

0'%)2

92’2 :O'%Rl +0'§R2 + (0'2 —O'l)zU— 2,82NT +

4

1

4

X2 + a’lﬁ%Z{Zl,

Oo6 = — Y1 + @3B1Z0 50 + @335 5o,
077 =— Yo + asBiZi s + aeBr2) Zs,
913’13 =—-L+ UC§C3 + a/7,8%2£24 + a/g,8§2£24,

36

3 2
(0-2 - 0-?)

X, + 552y,

then, the uncertain NNs (2.2) is exponentially stable with a mixed passive and H., performance index

Y.
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Proof. We use the same Lyapunov-Krasovskii functional in Theorem 3.1, such that matrices A, B, C, D
are replaced by A + J1S1(1)X1, B+ J2S,(6)X,, C + J3S3(1)23, D + J4S4(1)Z4, respectively. Then applying
Lemma 2.5, we get

X" (D(=2B1N" AA(D)x(1)
<a X" (OBIZTZ 81 x(0) + a7 xT ()NT J,JT Nx(2),
X" (O(=BaNTAA@D)(1) + 1T () (=B AAT (H)N)x(t)
<@y X" (DBrZ Z1B2x(1) + aiy ' x" (1)NT J1 I Nx(2),
x"(OBINTAB() f(x(t)) + fT(x(1)B1AB ()N x(t)
<asfT (x))BIZS ToB1 f(x(D) + a3 x" (YN 1,05 Nx (1),
T (OBNTAB() f(x(t)) + fT(x(1)BAB ()N x(t)
<asfT (X(D)BZ Zofo f(x(1)) + @' X (NT 1T N(2),
x"(OBINTAC(K(x(t — o (1)) + k" (x(t — o ()))B1 ACT ()N x(1)
<ask” (x(t — o (1))B1 23 Z3B1k(x(t — (t))) + a5 x" (HN" J3J5 Nx(2),
K (OBNTACOK(x(t — o (1)) + k" (x(t — o7(1)))BACT (YN (1)

<aek” (x(t — (D)2 Z TaPaok(x(t — o°(1))) + ag' " ()N" J3J5 Nx(D),
t—01() =61 (1)

x" ()8 NTAD(t) h(x(s))ds + f h" (x(s)) dsBiAD” (H)Nx(t)
t—=62() 1=05(1)
1—01(1)

t—01(1)
<ay f h' (x(s)) dsB 2} 24, f h(x(s))ds

—62(1) 1=62(1)
+ a7 X" (ONT LLIT Nx(0),
=51 (1) =61 (1)

i1 (H)BNTAD(1) h(x(s))ds + f h' (x(s)) dsBoAD™ ()N x(t)
t—62(1) 1=62(1)
1—01(1)

t—01(1)
<ag f I (x(s5)) dsBrXi 248, f h(x(s))ds

—02(1) 1=62(1)
+ag' X" (ONT L JI N (D).

Then applying the similar proof of Theorem 3.1 and Lemma 2.6, we have

V(0) + vz’ (02(0) = 2(1 = v)yz' (N(1) - Yo' (Hw(D)
<0 (9D + (1 - )P?) £0),
where, P = ¥ + 0O, (i = 1,2) with ¥ and ©; are defined in (3.32), (3.33).

Since 0 < & < 1, the term eV + (1 —&)¥P® is a convex combination of ¥ and ¥®. The combinations
are negative definite only if

y <0, (3.34)
P <. (3.35)

Therefore, (3.34) and (3.35) are equivalent to (3.32) and (3.33), respectively. This completes the
proof. O
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In the third part, we will investigate the stability of a special model of the neural networks, in order
to compare the maximum delay with existing results.

Remark 2. We consider the following neural network model as a special case of the system (2.1)
x(t) = —Ax(t) + Bf(x(1)) + Ck(x(t — o(1))). (3.36)

Corollary 3.3. For given scalars 0,0, and 3,, if there exist nine n X n matrices P > 0,0, >
0,0, >0,R >0,R, >0,U > 0,X; >0,X, >0,N > 0 and two n X n positive diagonal matrices
Y1 > 0,Y, > 0 such that the following LMIs hold:

II+1II, <O, (3.37)
II+1I, <0, (3.38)
where
I, = - ensXjels,
I, = — ennXjel,,
Il = [9(1'»1')]13x13 ’
. T _
with (Qu)) (J iy ( . vy
9;1 1 = Ql + Q2—4R1 4R, — F1 Y, — ZﬁlNTA'l' 0—2 7 X — 0—2 X,
0., = P-BINT-BNTA, 6, ,=-2R, 6§, = 2R2, 9{1,@ = F2Yi + BiNTB,
QEI no = BIN'C, 9{1 8) — = 6Ry, 9(1,9) = 6R,, 9(1 12) = %XZ’ 9{1 13) = —5—X,
v (03 0')
0, = ORI +03Ry + (02— 0)’U =28,N" + —5=X,, 0, =BN"B,
922,7) = BNTC, 9(3 3 = —Q1 — 4R, - 4U, 6’E3 5 = 2U 9(3 g) = = 6R;, 923 10) = = 6U,
9(’4’4) = —-0,—-4R, - 4U, 9245) =2U, 9(49) = 6R,, 9(411) =6U, GES 5) = -8U - K, Ys,,
925,7) = K,Y,, 0(5 10) = =6U, 925 = =6U, 9{66) -Y, 9{7 7 = -Y,,
9{8,8) = —12R;, 0599) —12R,, 9E1010) -12U,
9{11 m = -120, 9212,12) —Xi1 =X, 9(12,13) = —Xo, 0213,13) = —X, - Xo,

another terms are 0,
then, the NNs (3.36) is exponentially stable.

Proof. We choose the following Lyapunov—Krasovskii functional candidate for the system (3.36) as

8
V(x(r), ) = ) Vilx(0), 1),
i=1

where
Vi(x(0), 1) = x" (1) Px(1),

Va(x(0), 1) =f ' (5)Q1x(s) ds,
V3(x(0), 1) =f ' (5)Qax(s) ds,
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0 t
Vi(x(0), 1) = oy f f i ()R x(1)dr ds,

0 t
Vs(x(2),1) = 05 f f 2T ()R (1) dr ds,
Ve(x(1),1) = (05 — 0}) f - f () Ux(t) dr ds,

2 _ 2 —0] 0 t
Va(x(0), 1) = (%—ﬁ f f f X (5)X, x(s) ds dA dB,
-0 B t+1

(0.3 _ 0.:;)) —01 0 0 1 T )
Va(a(). 1) = —2—- f f f f i(5)X2(s) ds dp dA dp.
-0 B A t+¢

By applying similar proof in Theorem 3.1, the system (3.36) is exponentially stable. O

Remark 3. Recently, the robust passivity problem of uncertain neural networks with interval discrete
and distributed time-varying delays has been studied in [14]. Also, robust reliable H., control problem
of uncertain neural networks with mixed time delays has been discussed in [23]. However, the problem
of mixed passive and H,, for uncertain neural networks with interval discrete and distributed time-
varying delays has not been investigated yet. The results in this paper provide the sufficient conditions
to assure that the uncertain neural network is exponentially stable with mixed passive and H, index
v. The conditions are obtained by constructing a Lyapunov-Krasovskii functional consisting novel
integral terms.

Remark 4. It is well known that time delay is a normal phenomenon that appears in neural networks
since the neural networks consist of a large number of neurons that connect with each other into a
diversity of axon sizes and lengths. Practically time delay can occur in an irregular fashion such as
sometimes the time-varying delays are not differentiable. So, in this work, the interval discrete and
distributed time-varying delays do not necessitate being differentiable functions.

Remark 5. It is well known that the H, theory is very important in the control problem. Besides, the
H., approaches are used in control theory to synthesize controllers achieving stabilization with an H,
norm bound limited to disturbance reduction. The passivity theory is widely used in system synthesis
and analysis, as the system with passivity performance can effectively reduce the impact of noise. In
fact, the passivity system does not produce energy by itself, but it will use the system’s energy. The main
property of passivity is that can keep the system internally stable. By the above mentioned, the obtained
results are based on mixed passivity and H, problem for uncertain neural networks with mixed time-
varying delays. In comparison between the design of mixed H./passive performance and a single
H,, or passive controller, the control problem under mixed H./passive performance consideration
is more general than a single H,, or passive controller for example, a simple actual mixed H., and
passive performance index is employed in handling with the event-triggered reliable control issue for
the fuzzy Markov jump systems (FMJSs), which can achieve the H,, or passive event-triggered reliable
control problem for FMJSs by turning some fixed parameters. Hence, this paper are more general and
convenient than the existing individual passive and H., problem.

Remark 6. In this work, the Lyapunov-Krasovskii functional consisting single, double, triple, and
quadruple integral terms, which full of the information of the delays o, 0,01, 02, and a state variable
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x(t). Furthermore, more information on activation functions has taken fully into the stability and
JOO) _ p = KO0 O) e BGHO)

. S w0 T Tha—aw) (1)
H? are addressed in the calculation. Hence, the construction and the technique for computation of

the Lyapunov-Krasovskii functional are the main key to improve results of this work. In the proof of
Theorems 3.1, 3.2, and Corollary 3.3, integral inequalities and convex combination technique are used
to bound the derivative of Lyapunov-Krasovskii functional, which provide tighter than the inequalities
in [30-32,38]. All of these lead to the improved results in our work as we can see the compared results
with some exiting works in numerical examples. However, the complex computation of the Lyapunov-
Krasovskii functional leads to the LMI derived in this work which contains many information of the
system. It is feasible for NNs with large number of neurons which can be solved by using the Matlab
LMI toolbox. Hence, for further work, it is interesting for researchers to improve the technique for a
simple Lyapunov-Krasovskii functional and also achieve better results.

performance analysis that is F; <

4. Numerical examples

In this section, we provided four numerical examples which are illustrated the effectiveness of the
proposed results. Moreover, two numerical examples show less conservative results than others.

Example 4.1. We consider the neural networks (3.36) with matrix parameters in [30]:

1 0 -1 05 -2 05
a= Lo 1] oe=los S5) e=[as G
0 0 02 0
Fl = Kl—lo 0], and Fz—Kz—[ 0 04]

By taking parameters 1 = B, = 1 and solving Example 4.1 using LMIs in Corollary 3.3, we obtain
maximum allowable values of o, for different o without the upper bound of differentiable delay (1)

as shown in Table 1. Table 1 shows that the results derived in this paper are less conservative than the
results in [30].

Table 1. The maximum allowable values of o, for different values of oy and .

Methods o u=0.8 u=0.9 Unknown u
[30] o, =05 0.8262 0.8215 -

Corollary 3.3 - - 0.9976

[30] o, =0.75 0.9669 0.9625 -

Corollary 3.3 - - 1.1233

[30] o =1 1.1152 1.1108 -

Corollary 3.3 - - 1.2710

Example 4.2. We consider the neural networks (3.36) with matrix parameters in [31, 32, 38]:

A = 1.5 0 B- 0.0503 0.0454 C= 0.2381 0.9320
B 0 07/ ~ | 0.0987 0.2075 | ~ | 0.0388 0.5062 |’
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0 0

0 0

Fl:Kl:[ 0 04

], and F2:K2:[0.15 0 ]
By taking parameters 1 = B, = 1 and solving Example 4.2 using LMIs in Corollary 3.3, we get
maximum allowable values of o, for oy = 0 without the upper bound of differentiable delay (u) as

shown in Table 2. Table 2 illustrates that the results obtained in this paper are less conservative than
the results in [31, 32, 38].

Table 2. The maximum allowable values of o, for oy = 0 and different values of p.

Methods u=0.5 u=0.55 Unknown u
[38] 3.0594 2.9814 -

[31] 3.3377 3.2350 -

[32] 3.4600 3.4100 -

Corollary 3.3 - - 3.5814

Example 4.3. We consider the neural networks (3.1) with oy = 0.5,0, = 1.75,6; = 0.2,6, = 1.0,v =
0.1,8,=0.9,5, =0.2,

oot ] e )

01 -0.5 0.1 -03 -0.2
0.15 0.1 05 0 10
D‘[ 0 —0.3]’ Cl‘[o 0.3]’ I‘[01]’
C2 = C3:C4:O.1I, F1:K1:H1:—O.41,
F2 = K2:H220.4I, hi(xi):tanh(xi),and
filx) = k(x)=02(lx;+1|—|x—1].
LMIs of (3.2), (3.3) in Theorem 3.1 are solved, we obtain
b [ 3.6577 -0.2200 [ 4.0338 0.0460
~ [ -02200 3.7479 |° <! 7| 0.0460 3.9284 |
0, = [ 4.1684 0.0580 [ 01741 -0.0295
> 7 100580 4.0614 |* 7' 7| -0.0295 0.1987 |’
R - [ 0.0292 -0.0121 [ 02121 -0.0178
> 7 | 00121 0.0394 |° © | -0.0178 0.2033 |’
. [ 3.6430 0.0277 [ 2.8416 0.0197
~ 100277 37766 |© ' 7| 0.0197 2.8239 |’
v - [ 0.0479 -0.0193 v | 23363 02470
> 7 ] 00193 00642 | 7 7| -0.2432 23840 |’
; - [ —13.6905 —0.9328 y | 39748 0
T | -0.5358 -12.9525 |0 ' 0 3.9748 |
v, - [ 04324 0 y. | 46765 0
27 0 04324 |7 37 0  4.6765 |
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The state feedback control is obtained by

-5.9479 -0.9843

UD =N"ZxD = | 316 _5.5335

x(t), t>0.

The maximum allowable values of o, for different values of oy are shown in Table 3. Furthermore,
we want to find the relation among the scalars o, v, and y. For three different values of v, we set
v =0 v=0.5 and v = 1, respectively, which means the passivity case, passivity and H, case, and
H,, case are studied, respectively. Moreover, we choose the values of o from 0, = 0.5 to 0, = 2 and
other parameters are fixed by oy = 0.2, 6, = 0.2, 6, = 0.8, 81 = 0.9, 8, = 0.2. By applying Theorem
3.1 and Matlab LMI toolbox to solve LMIs (3.2) and (3.3), we have the relation among the parameters
0, U, and vy, which is presented in Table 4. Figure 1 shows the response solution x(t) in Example 4.3
where w(t) = 0 and the initial condition ¢(t) = [-0.1 0.1]7. Figure 2 shows the response solution
x(t) in Example 4.3 where w(t) is Gaussian noise with mean 0 and variance 1 and the initial condition
() = [-0.1 0.1]7.

The numerical simulations are accomplished using the explicit Runge-Kutta-like method (dde45),
extrapolation and interpolation by spline of the third order.

Table 3. The maximum allowable values of o, for different values of o; in Example 4.3.

Method 0'1:0 0'1:().5 0'1:1 0'1:2 0'1:3
Theorem 3.1 2.1176 2.3865 2.5354 3.3564 4.1253

Table 4. The minimum allowable values of y for mixed passive and H,. analysis with
different values of 0, and v in Example 4.3.

Ymin 0, =05 oy =1 oy =1.5 oy =2
v=0 0.5672 0.6835 0.8135 0.9465
v=05 0.7752 0.9683 1.1035 1.2156
v=1 1.2331 1.4452 1.6862 1.7965

0.1

0.08

0.06

0.04

0.02f

-0.02

-0.04 1

-0.06

-0.08

2 4 6 8 10
Time

Figure 1. The trajectories of x;(¢) and x,(¢) with w(f) = 0 in Example 4.3.
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Figure 2. The trajectories of x;(#) and x,(¢) with Gaussian noise in Example 4.3.

2 4 6 8 10
Time

Example 4.4. We consider the uncertain neural networks (2.2) with oy = 0.7,0, = 1.5,6, =0.2,6, =
L,Lv=0.1,8,=09,8, =0.2,

A

Si(xi)

01 -0.5 0.1 -03 -0.2

[0.15 0.1] CIZ[O.S ()] I:[IO]
0 =03/ 0 03] o1/
C;=C4=0.11, F, =K, =H, =-04lI,
Ky=H,=041, J,=J,=J3=J4=0.21,

X =23 =24 =1, hi(x;) =tanh(x;), and

ki(x)) =02( x; + 1| = | x; = L|).

LMIs of (3.32), (3.33) in Theorem 3.2 are solved, we obtain

P

0,

R,

L

X,

Z

Y,

AIMS Mathematics

[ 2.8510 -0.1478 | 2.3154 0.1464
| —0.1478 27756 |’ "7 0.1464 2.0641 |’

[ 2.3534 0.1402 | 0.0523 -0.0200
| 0.1402 2.1063 |’ "7 | =0.0200 0.0680 |

[ 0.0131 -0.0077 | 0.2104 -0.0062
| -0.0077 0.0192 [*~ ~ | -0.0062 0.1748 |’

[ 2.2685 0.0108 [ 1.3348 0.0125
| 0.0108 2.3401 |> “' 7| 0.0125 1.3274 |’

[ 0.0224 -0.0103 N = 1.6053 —0.0435
-0.0103 0.0305 |’ | —0.0978 1.4801 |’

[ —-10.2677 -0.5664 ¥ = 3.0132 0
| —0.5137 -9.2901 |’ ' 0 3.0132 |’

[ 0.4054 0 v - 3.4945 0
0 04054 |7 37 0  3.4945 |

58] oot ] el )
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a; = 19270, a; =0.6465, a3 =1.2926, a4 =1.9011,
as = 0.0754, ac=0.6677, a;=12734, as=1.8989.

The state feedback control is obtained by

-6.4170 -0.5239
t>0.

UD=N"ZxO=|_3717 _3115]"® 12

The maximum allowable values of o, for different values of o are shown in Table 5. Furthermore,
we want to find the relation among the scalars o, v, and y. For three different values of v, we set
v=0 v=0J5 andv = 1, respectively, which means the passivity case, passivity and H,, case, and
H,, case are considered, respectively. Moreover, we choose the values of o, from oy = 0.5t0 05 =2
and other parameters are fixed by oy = 0.2, 6; = 0.2, 6, = 0.8, 81 = 0.9, B, = 0.2. By applying
Theorem 3.2 and Matlab LMI toolbox to solve LMIs (3.32) and (3.33), we have the relation among the
parameters 0, v, and 'y, which is presented in Table 6. Figure 3 shows the response solution x(t) in
Example 4.4 where w(t) = 0 and the initial condition ¢(t) = [-0.1 0.1]7. Figure 4 shows the response
solution x(t) in Example 4.4 where w(t) is Gaussian noise with mean 0 and variance 1 and the initial
condition ¢(t) = [-0.1 0.1]7.

Table 5. The maximum allowable values of o, for different values of o in Example 4.4.

Method o1 =0 o, =05 o =1 o =2 o =3
Theorem 3.2. 1.8308 2.2056 2.4233 3.1232 3.8142

Table 6. The minimum allowable values of y for mixed passive and H. analysis with
different values of 0, and v in Example 4.4.

Ymin 0, =05 oy =1 oy =1.5 oy =2
v=0 0.6354 0.7534 0.8756 0.9869
v=05 0.8965 1.0231 1.2231 1.4365
v=1 1.6352 1.7563 1.8641 1.9634

Remark 7. In this work, we choose o ,03,01,02,01,82,y are real numbers that satisfy 0 < oy <
o(t) <0, 0 <01 <01(t) <0,(t) < 0y, and y > 0. In practice, the designing of these parameters
can occur in an appropriate range. Furthermore, the suitable values of oy, 0,91, 02,51, 52 lead to the
smallest y for the mixed passive and H,, analysis.

Remark 8. The stability criteria of Theorem 3.1 in the form LMls (3.2) and (3.3) can be easily to
examine by using LMI toolbox in MATLAB [39]. The improved stability criteria by using the Lyapunov-
Krasovskii functional is based on LMIs and the dimension of the LMIs depends on the number of the
neurons in neural networks. Thus, the computational burden problem goes up. This problem is the
issue in studying needs of LMI optimization in applied mathematics and the optimization research.
Hence, in the further, new techniques should be considered to reduce the conservativeness caused by
the time-delays such as the delay-fractioning approach and so on.
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Remark 9. In the future work, it is very challenging to apply some lemmas or Lyapunov-Krasovskii

functional used in this paper to apply into the quaternion-valued case to get improved stability
conditions.

0.1

X0

0.08 x,00 [

0.06

0.04 H

0.02}

x(t)
o

-0.021

-0.04

-0.06

-0.08

-0.1
0

2 4 6 8 10
Time

Figure 3. The trajectories of x;(¢) and x,(¢) with w(t) = 0 in Example 4.4.
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-0.1
0

2 4 6 8 10
Time

Figure 4. The trajectories of x;(¢) and x,(¢) with Gaussian noise in Example 4.4.

5. Conclusion

The problem of mixed passive and H,, analysis for uncertain neural networks with the state
feedback control is investigated in this paper. We obtain the new sufficient conditions to guarantee
exponential stability with mixed passive and H., performance for the uncertain neural networks by
using a Lyapunov-Krasovskii functional consisting single, double, triple, and quadruple integral terms
with a feedback controller. Furthermore, integral inequalities and convex combination technique are
applied to achieve the less conservative results for a special case of neural networks with interval
discrete time-varying delays. The new criteria are in terms of linear matrix inequalities (LMIs) that
cover H, and passive performance by setting parameters in the general performance index. Finally,
numerical examples have been given to show the effectiveness of the proposed results and improve
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over some existing results in the literature. In the future work, the derived results and methods in this
paper are expected to be applied to other systems such as fuzzy control systems, complex dynamical
networks, quaternion-valued neural networks and so on [16,40,41].
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