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1. Introduction

Throughout this article, G will be a group with identity e, R a commutative ring with a nonzero unity
1 and M an R-module. R is said to be G-graded if R =

⊕
g∈G

Rg with RgRh ⊆ Rgh for all g, h ∈ G where

Rg is an additive subgroup of R for all g ∈ G. The nonzero elements of Rg are called homogeneous of
degree g. If x ∈ R, then x can be written as

∑
g∈G

xg, where xg is the component of x in Rg. Also, we set

h(R) =
⋃
g∈G

Rg, h∗(R) = h(R) \ {0}, and HU(R) the set of unital homogeneous elements. Moreover, it

has been proved in [10] that Re is a subring of R and 1 ∈ Re. Let I be an ideal of a graded ring R. Then
I is said to be graded ideal if I =

⊕
g∈G

(I ∩ Rg), i.e., for x ∈ I, x =
∑
g∈G

xg where xg ∈ I for all g ∈ G. An

ideal of a graded ring need not be graded. Let R be a G-graded ring and I is a graded ideal of R. Then
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R/I is G-graded by (R/I)g = (Rg + I)/I for all g ∈ G.
Assume that M is an unital R-module. Then M is said to be G-graded if M =

⊕
g∈G

Mg with RgMh ⊆

Mgh for all g, h ∈ G where Mg is an additive subgroup of M for all g ∈ G. The nonzero elements of
Mg are called homogeneous of degree g. It is clear that Mg is an Re-submodule of M for all g ∈ G.
Moreover, we set h(M) =

⋃
g∈G

Mg. Let N be an R-submodule of a graded R-module M. Then N is said

to be graded R-submodule if N =
⊕
g∈G

(N ∩ Mg), i.e., for x ∈ N, x =
∑
g∈G

xg where xg ∈ N for all g ∈ G.

An R-submodule of a graded R-module need not be graded. Let M be a G-graded R-module and N be
a graded R-submodule of M. Then M/N is a graded R-module by (M/N)g = (Mg + N)/N for all g ∈ G.

Lemma 1.1. ( [7], Lemma 2.1) Let R be a G-graded ring and M be a G-graded R-module.

(1) If I and J are graded ideals of R, then I + J and I
⋂

J are graded ideals of R.

(2) If N and K are graded R-submodules of M, then N + K and N
⋂

K are graded R-submodules of
M.

(3) If N is a graded R-submodule of M, r ∈ h(R), x ∈ h(M) and I is a graded ideal of R, then Rx, IN
and rN are graded R-submodules of M.

If N is a graded R-submodule of M, then AnnR(N) = {r ∈ R : rN = {0}} is a graded ideal of R
(see [8]), and (N :R M) = {r ∈ R : rM ⊆ N} is a graded ideal of R (see [3]). We refer to [9,10] for more
information on graded rings and graded modules.

The concept of graded prime submodules is one of the pillar stones of the theory of graded modules.
For years, there have been many studies and generalizations on this notions. See, for example, [1, 3, 4,
7, 11–13]. Recall from [3] that a graded prime R-submodule is a proper graded R-submodule N of M
having the property that rm ∈ N implies r ∈ (N :R M) or m ∈ N for each r ∈ h(R) and m ∈ h(M). Here
we denote the set of all graded prime R-submodules by GSpec(RM), in particular, we write GS pec(R)
to express the set of all graded prime ideals of R. Also, A graded R-module M is called a graded
multiplication R-module if N = (N :R M)M for every graded R-submodule N of M (see [6]). If
the only graded R-submodules of M are {0} and M itself, then we call M a graded simple R-module
(see [10]).

Recall that a subset S of R is called a multiplicatively closed subset (briefly, m.c.s.) of R if:

(1) 0 < S , and 1 ∈ S ,

(2) st ∈ S for all s, t ∈ S ,

(see [15]). Note that S I = h(R) − I is a m.c.s. of R for every I ∈ GS pec(R). The concept of S -prime
submodules was introduced in [13], where a submodule N of an R-module M is called S -prime if
(N :R M)

⋂
S = ∅, and there exists s ∈ S such that whenever rm ∈ N then sr ∈ (N :R M) or sm ∈ N

for each r ∈ R and m ∈ h(M). Our original goal was to investigate this notion, as it is, in the setting
of graded modules. But we noticed that the core of this new concept which is build on the following
property:

If rm ∈ N then sr ∈ (N :R M) or sm ∈ N for each r ∈ h(R) and m ∈ h(M),
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only requires the existence of the element s to establish most of the results obtained in [13], and not the
whole set S . In addition, we found that imposing the condition on S to be a m.c.s. is a tight assumption,
as it is shown in the following example, causing the exclusion of a wide range of submodules.

Example 1.2. Let T be an integral domain, and R = T [X]/ < X2 >. Then zero ideal in R can not be
an S -prime for m.c.s. S in R. Otherwise, if X denotes the class of X in R, then XX = 0, and so there
exists s = t ∈ S such that t X = 0, i.e.; tX ∈< X2 >. Hence t ∈< X >, and therefore s2 = t2 = 0, which
implies that 0 ∈ S , a contradiction.

Also, from another point of view, we are looking to introduce a concept which is, in a certain
sense, the closest extension of the class of graded prime submodules, meaning coming with a notion
encompassing submodules failing to be prime, but are ”almost prime”, such as < X2 > in R[X].

Based on these remarks, and other technical details, which will be more clear throughout the proofs
of our results, we choose to define the new idea of graded s-prime submodules. More precisely, let
s ∈ h∗(R) be a nonzero homogeneous element of R, and M be a graded R-module. Then a graded
R-submodule N of M is said to be a graded s-prime R-submodule if s < (N :R M), and whenever
rm ∈ N then sr ∈ (N :R M) or sm ∈ N for each r ∈ h(R) and m ∈ h(M). In particular, a graded ideal
I of R is called a graded s-prime ideal if I is a graded s-prime R-submodule of the R-module R. The
set of all graded s-prime R-submodules is denoted by GSpecs(RM), and we write GSpecs(R) to express
the set of all graded s-prime ideals of R. Notice that, every graded prime R-submodule of M is graded
s-prime for each homogeneous element s < (N :R M), however, the converse is not true in general, see
Example 2.3.

When working in the non-graded case, meaning G = {e} is the trivial group, one get the notion of
s-prime R-submodules, which is clearly a generalization of the concept of S -prime submodules studied
in [13]. To prove the efficiency of our new idea, Sections 2 and 3 are devoted to recover most of the
results in [13], not only in the classical case but in the full generality of the graded case. Among
several results, we prove that if N ∈ GSpecS (RM), then (N :R M) ∈ GSpecS (R), and the converse
is not true in general, see Example 2.7. But we show that converse holds in the interesting case of
graded multiplication R-module (Proposition 2.6). Also, we study the behavior of graded s-prime
submodules with respect to graded homomorphisms, localization of graded modules, direct product,
and idealization.

Section 4 is considered as the main part of this article, where we tackle the problem of existence of
s-prime modules. We succeeded to prove that if M is a graded-Noetherian R-module, then every
graded R-submodule N of M is s-prime for some s ∈ h∗(R), see Theorem 4.5. Applying this to the
case of trivial grading, we find that for a commutative ring R with a nonzero unity 1, and a Noetherian
R-module M, then for any R-submodule N of M there exists s ∈ R such that N ∈ S pecs(RM), here
S pecs(RM) stands for the set of all s-prime submodules of M, see Theorem 4.5. These are a
consequence of a more general result relating the existence s-prime modules to the maximality, with
respect to inclusion, of the graded R-submodule (N :M t) = {m ∈ M : tm ∈ N} of M in the set
DN = {(N :M t), s ∈ h∗(R) \ (N :R M)}, see Theorem4.4. Similar results are provided in the case of
grading by Z, a finite group, or polycyclic-by-finite group.

In the last section we treat the interesting case when (R,G) is a crossed product grading. We
succeeded to prove that if I =

⊕
g∈G

Ig is a graded ideal of R, then I ∈ GSpecs(R), for some s ∈ h∗(R), if

and only if Ie ∈ GSpect(R), for some t ∈ Re, see Theorem 5.1. In particular, if G is any group, and R is
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a Noatherian commutative ring with a nonzero unity 1, then any graded ideal of R[G] is s-prime for
some s ∈ h∗(R), see Theorem 5.2.

2. Graded s-prime submodules

In this section, we introduce and study the concept of graded s-prime submodules.

Definition 2.1. Let s ∈ h∗(R) be a nonzero homogeneous element of R, and let M be a graded unital
R-module. A graded R-submodule N of M is said to be a graded s-prime R-submodule if s < (N :R M),
and whenever rm ∈ N then sr ∈ (N :R M) or sm ∈ N for each r ∈ h(R) and m ∈ h(M).

As a direct result, we have:

Lemma 2.2. Let M be a G-graded R-module, N be a graded R-submodule of M, and s ∈ h∗(R).

(1) If N ∈ GSpec(RM), then N ∈ GSpecs(RM).

(2) For t ∈ HU(R), we have N ∈ GSpecs(RM) if and only if N ∈ GSpects(RM).

The next example shows that the converse of Lemma 2.2 (1) is not true in general.

Example 2.3. Consider R = Z and G = Z2. Then R is trivially G-graded by R0 = Z and R1 = {0}.
Consider the R-modules T = Z[i] and L = Z2[i]. Then T and L are G-graded by T0 = Z, T1 = iZ,
L0 = Z2 and L1 = iZ2. So, M = T × L is a G-graded R-module where M0 = T0 × L0 and M1 = T1 × L1.
Now, N = {0} × {0} is a graded R-submodule of M with (N :R M) = {0}. If we put s = 2, then s ∈ h∗(R).
Now we show that N ∈ GSpecs(RM). Let r ∈ h(R) and m ∈ h(M) such that rm ∈ N.
Case 1: If m ∈ M0, then m = (t0, l0) for some t0 ∈ Z and l0 ∈ Z2, and then rm = (rt0, rl0) ∈ N,
which implies that rt0 = 0 and rl0 = 0. If r = 0, then we are done. Assume that t0 = 0. Then
sm = 2(t0, l0) ∈ N. Hence, N ∈ GSpecs(RM).
Case 2: If m ∈ M1, then m = (t1, l1) for some t1 ∈ iZ and l1 ∈ iZ2, and then t1 = ia and l1 = ib for some
a ∈ Z and b ∈ Z2. So, rm = (ira, irb) ∈ N, which implies that ra = 0 and rb = 0. Hence, by Case (1),
N ∈ GSpecs(RM).

On the other hand, 2 ∈ h(R) and (0, 1) ∈ h(M) such that 2(0, 1) ∈ N, but 2 < (N :R M) and
(0, 1) < N. Hence, N is not graded prime R-submodule of M.

Proposition 2.4. Let M be a G-graded R-module, N be a graded R-submodule of M and s ∈ h∗(R).
Then N ∈ GSpecs(RM) if and only if IK ⊆ N implies sI ⊆ (N :R M) or sK ⊆ N for each graded ideal I
of R and graded R-submodule K of M.

Proof. Suppose that N ∈ GSpecs(RM). Suppose that IK ⊆ N for some graded ideal I of R and graded
R-submodule K of M.. Assume that sK * N. Then there exists k ∈ K such that sk < N, and then there
exists g ∈ G such that skg < N. Note that, kg ∈ K as K is graded submodule. Let r ∈ I. Then rh ∈ I for
all h ∈ G as I is graded ideal. Now, rhkg ∈ IK ⊆ N for all h ∈ G. Since N ∈ GSpecs(RM) and skg < N,
we have srh ∈ (N :R M) for all h ∈ G, and then sr ∈ (N :R M). Hence, sI ⊆ (N :R M). Conversely,
let r ∈ h(R) and m ∈ h(M) with rm ∈ N. Now, I = Rr is a graded ideal of R and K = Rm is a graded
R-submodule of M such that IK ⊆ N. Then by assumption, sI ⊆ (N :R M) or sK ⊆ N, and so either
sr ∈ (N :R M) or sm ∈ N. Therefore, N ∈ GSpecs(RM). �
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Corollary 2.5. Let R be a graded ring, P be a graded ideal of R and s ∈ h∗(R). Then P ∈ GSpecs(R) if
and only if IJ ⊆ P implies sI ⊆ P or sJ ⊆ P for each graded ideals I and J of R.

Proposition 2.6. Let M be a graded R-module and s ∈ h∗(R). If N ∈ GSpecs(RM), then (N :R M) ∈
GSpecs(R).

Proof. By ( [3], Lemma 2.1), (N :R M) is a graded ideal of R. Let ab ∈ (N :R M) for some a, b ∈ h(R).
Then we have ab ∈ h(R) and abm ∈ N for all m ∈ h(M). If sa ∈ (N :R M), there is nothing to prove.
Suppose that sa < (N :R M). Since N ∈ GSpecs(RM), sbm ∈ N for all m ∈ h(M). Now, Let t ∈ M and
suppose that t =

∑
g∈G

tg where tg ∈ Mg for all g ∈ G, and then sbtg ∈ N for all g ∈ G, which implies that

sbt = sb

∑
g∈G

tg

 =
∑
g∈G

sbtg ∈ N, so that sb ∈ (N :R M). Therefore, (N :R M) ∈ GSpecs(R). �

The next example shows that the converse of the above result is not true in general.

Example 2.7. Consider R = Z and G = Z4. Then R is trivially G-graded by R0 = Z and R1 = R2 =

R3 = {0}. Consider the R-module T = Z[i]. Then T is G-graded by T0 = Z, T2 = iZ and T1 = T3 = {0}.
So, M = T × T is a G-graded R-module where Mg = Tg × Tg for all g ∈ G. Choose m = (2, 0) ∈ h(M),
then N = Rm is a graded R-submodule of M with (N :R M) = {0} ∈ GSpec(R). On the other hand,
N < GSpec(RM) since 2 ∈ h(R) and (3, 0) ∈ h(M) such that 2(3, 0) ∈ N, but 2 < (N :R M) and
(3, 0) < N.

The case of graded multiplication R-modules is of special interest since we get a positive answer
for the converse. Indeed, we have:

Proposition 2.8. Let M be a graded multiplication R-module and s ∈ h∗(R). If (N :R M) ∈ GSpecs(R),
then N ∈ GSpecs(RM).

Proof. Let I be a graded ideal of R and K be a graded R-submodule of M with IK ⊆ N. Then
we have that I(K :R M) ⊆ (IK :R M) ⊆ (N :R M). Since (N :R M) ∈ GSpecs(R), by Corollary
2.5, we have sI ⊆ (N :R M) or s(K :R M) ⊆ (N :R M). Thus, we have that sI ⊆ (N :R M) or
sK = s(K :R M)M ⊆ (N :R M)M = N. By Proposition 2.4, N ∈ GSpecs(RM). �

Recall that for a graded multiplication R-module M, the product of two graded R-submodules N,K
of M is defined by NK = (N :R M)(K :R M)M (see [6]). As a consequence of Proposition 2.6 and
Proposition 2.4, we have the following specific result.

Corollary 2.9. Suppose that M is a graded multiplication R-module, s ∈ h∗(R), and N is a graded R-
submodule of M with s < (N :R M). Then N ∈ GSpecs(RM) if and only for every graded R-submodules
L,K of M with LK ⊆ N, we have sL ⊆ N or sK ⊆ N.

Proposition 2.10. Let M be a graded multiplication R-module, and let N ∈ GSpecs(RM) for some
s ∈ h∗(R). If K, L are graded R-submodules of M such that K

⋂
L ⊆ N . Then sK ⊆ N or sL ⊆ N.

Proof. Suppose that sL * N. Then sm < N for some m ∈ L, and then there exists g ∈ G such that
smg < N, where mg ∈ L as L is graded submodule. Let r ∈ (K :R M). Then rh ∈ (K :R M) for all h ∈ G
as (K :R M) is a graded ideal, and then rhmg ∈ (K :R M)L ⊆ L

⋂
K ⊆ N. Since N ∈ GSpecs(RM) and

smg < N, we have that srh ∈ (N :R M) for all h ∈ G, and then sr ∈ (N :R M), so that s(K :R M) ⊆ (N :R

M). Since M is a graded multiplication R-module, sK = s(K :R M)M ⊆ (N :R M)M = N. �
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Let M be a graded R-module. Then the set of all homogeneous zero divisors of M is HZ(M) =

{r ∈ h(R) : rm = 0 for some nonzero m ∈ h(M)}.

Theorem 2.11. Let M be a finitely generated graded R-module and s ∈ h∗(R). If every proper graded
R-submodule of M is graded s-prime, then we have:

(1) HZ(M) = AnnR(M)
⋂

h(R).

(2) If t is a homogeneous element such that t < HZ(M), then tM = M.

Proof. (1) Let r ∈ HZ(M). Then r ∈ h(R) and there is a nonzero m ∈ M with rm = 0. Since the
graded zero submodule is graded s-prime and rm = 0, we have sr ∈ AnnR(M) or sm = 0. If
sm = 0, then s ∈ AnnR(m). Now, let K = AnnR(m)M, then K is a graded R-submodule of M
such that s ∈ (K :R M), and then K = AnnR(m)M = M. By ( [5], Corollary 2.5), 1 − x ∈
AnnR(M) ⊆ AnnR(m) for some x ∈ AnnR(m), implying that AnnR(m) = R and so m = 0, which is a
contradiction. Therefore, sr ∈ AnnR(M) and hence s ∈ (AnnM(r) :R M). Since AnnM(r) = (0 :M r)
is a graded R-submodule of M, by Lemma 4.1, we must have AnnM(r) = M, i.e.; r ∈ AnnR(M).
Thus, HZ(M) = AnnR(M)

⋂
h(R).

(2) Suppose that t is a homogeneous element such that t < HZ(M). If t2M = M, then M = t2M ⊆ tM,
and so tM = M. If t2M , M, then t2M is s-prime with (t)(tM) ⊆ t2M, hence by Proposition 2.4,
we have stM ⊆ t2M. Using the fact that t < HZ(M), we deduce that sM ⊆ tM, i.e.; s ∈ (tM :R M),
and hence tM = M as desired.

�

Corollary 2.12. Let M be a finitely generated graded R-module, N be a graded R-submodule of M,
and s ∈ h∗(R). Suppose that every proper graded R-submodule of M is graded s-prime. Then we have
N = M if (N :R M) , AnnR(M).

Proof. Let x ∈ (N :R M) \ AnnR(M). By the above theorem, we have M = xM, and so M = xM ⊆
(N :R M)M ⊆ N. Hence N = M. �

Since for a graded multiplication R-module (N :R M) = (0 :R M) = AnnR(M) if and only if N = 0,
we have:

Corollary 2.13. Let M be a finitely generated graded multiplication R-module, and s ∈ h∗(R). If every
proper graded R-submodule of M is graded s-prime. Then M is a simple graded R-module.

In particular, we get the following result:

Corollary 2.14. Let R be a graded ring, and s ∈ h∗(R). If every proper graded ideal of R is graded
s-prime. Then R is a graded field.

3. Behavior of graded s-prime submodules

In the section we study the behavior of graded s-prime submodules with respect to graded
homomorphisms, localization of graded modules, direct product, and idealization.

Let M and T be G-graded R-modules. Then an R-homomorphism f : M → T is said to be a graded
R-homomorphism if f (Mg) ⊆ Tg for all g ∈ G (see [10]).
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Proposition 3.1. Let M and T be G-graded R-modules, and s ∈ h∗(R). Assume that f : M → T is a
graded R-homomorphism.

(1) If K ∈ GSpecs(RT ) and s < ( f −1(K) :R M), then f −1(K) ∈ GSpecs(RM).

(2) If f is a graded R-epimorphism and N ∈ GSpecs(RM) with Ker( f ) ⊆ N, then f (N) ∈ GSpecs(RT ).

Proof. (1) Clearly, f −1(K) is a graded R-submodule of M. Let rm ∈ f −1(K) for some r ∈ h(R),
m ∈ h(M). Then f (rm) = r f (m) ∈ K. Since K ∈ GSpecs(RT ), we have sr ∈ (K :R T ) or
s f (m) = f (sm) ∈ K. Now we show that (K :R T ) ⊆ ( f −1(K) :R M). Let x ∈ (K :R T ). Then
xT ⊆ K. Since f (M) ⊆ T , we have that f (xM) = x f (M) ⊆ xT ⊆ K, which implies that xM ⊆
xM+Ker( f ) = f −1( f (xM)) ⊆ f −1(K) and hence x ∈ ( f −1(K) :R M). As (K :R T ) ⊆ ( f −1(K) :R M),
we have either sr ∈ ( f −1(K) :R M) or sm ∈ f −1(K). Hence, f −1(K) ∈ GSpecs(RM).

(2) Clearly, f (N) is a graded R-submodule of T . We have s < ( f (N) :R T ). Otherwise, f (sM) =

s f (M) ⊆ sT ⊆ f (N), and so sM ⊆ sM + Ker( f ) ⊆ N + Ker( f ) = N, which implies that sM ⊆ N.
Thus s ∈ (N :R M) , which contradicts that N ∈ GSpecs(RM). Now, let r ∈ h(R), t ∈ h(T )
with rt ∈ f (N). Since f is an R-epimorphism, there is an m ∈ h(M) such that t = f (m), and
so rt = r f (m) = f (rm) ∈ f (N). Using the fact that |mboxKer( f ) ⊆ N , we get rm ∈ N. But
N ∈ GSpecs(RM) and (N :R M) ⊆ ( f (N) :R T ), imply that sr ∈ ( f (N) :R T ) or st = s f (m) =

f (sm) ∈ f (N). Thus f (N) ∈ GSpecs(RT ).
�

For the sake of completeness we give the proof of the graded version of the following two classical
result.

Lemma 3.2. Let M be a graded R-module, L be a graded R-submodule of M, and N be an
R-submodules of M such that L ⊆ N. Then N is a graded R-submodule of M if and only if N/L is a
graded R-submodule of M/L.

Proof. Suppose that N is a graded R-submodule of M. Clearly, N/L is an R-submodule of M/L. Let
x + L ∈ N/L. Then x ∈ N and since N is graded, x =

∑
g∈G

xg where xg ∈ N for all g ∈ G and then

(x + L)g = xg + L ∈ N/L for all g ∈ G. Hence, N/L is a graded R-submodule of M/L. Conversely, let
x ∈ N. Then x =

∑
g∈G

xg where xg ∈ Mg for all g ∈ G and then (xg + L) ∈ (Mg + L)/L = (M/L)g for

all g ∈ G such that
∑
g∈G

(x + L)g =
∑
g∈G

(xg + L) =

∑
g∈G

xg

 + L = x + L ∈ N/L. Since N/L is graded,

xg + L ∈ N/L for all g ∈ G which implies that xg ∈ N for all g ∈ G. Hence, N is a graded R-submodule
of M. �

Proposition 3.3. Let M be a graded R-module, L be a graded R-submodule of M, and s ∈ h∗(R).

(1) If K ∈ GSpecs(RM) and s < (K :R L), then L
⋂

K ∈ GSpecs(RL).

(2) Suppose that N is an R-submodule of M with L ⊆ N. Then N ∈ GSpecs(RM) if and only if
N/L ∈ GSpecs(R(M/L)).
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Proof. (1) Clearly, L
⋂

K is a graded R-submodule of L. Consider the graded R-homomorphism
f : L → M defined by f (m) = m for all m ∈ L. Then f −1(K) = L

⋂
K. Also, we have

s < ( f −1(K) :R L). Otherwise we get sL ⊆ f −1(K) = L
⋂

K ⊆ K and thus s ∈ (K :R L)
⋂

S , which
is a contradiction. The result holds by Proposition 3.1 (1).

(2) Suppose that N ∈ GSpecs(RM) with L ⊆ N. Then by Lemma 3.2, N/L is a graded R-submodule of
M/L. Consider the graded R-epimorphism f : M → M/L defined by f (m) = m + L for all m ∈ M.
By Proposition 3.1 (2), N/L ∈ GSpecs(R(M/L)). Conversely, by Lemma 3.2, N is a graded R-
submodule of M. Let rm ∈ N for some r ∈ h(R), m ∈ h(M). Then r(m+ L) = rm+ L ∈ N/L. Since
N/L ∈ GSpecs(R(M/L)), we have sr ∈ (N/L :R M/L) = (N :R M) or s(m + L) = sm + L ∈ N/L.
Therefore, we have sr ∈ (N :R M) or sm ∈ N. Hence, N ∈ GSpecs(RM).

�

Let M be a G-graded R-module, and N be a graded R-submodule of M. If s and t are elements of
h∗(R) such that N is both s-prime and t-prime, then one can directly deduce that N is also st-prime
whenever st < (N :R M). This have been said, then it is natural to focus on graded modules of fractions
with respect to multiplicative sets lying outside (N :R M).

Consider a nonempty subset S of R. We call S a multiplicatively closed subset (briefly, m.c.s.) of R
if (i) 0 < S , (ii) 1 ∈ S , and (iii) ss′ ∈ S for all s, s′ ∈ S (see [15]). Note that S I = h(R)−I is a m.c.s. of R
for every I ∈ GSpec(R). Let S ⊆ h(R) be a m.c.s and M be a graded R-module. Then S −1M is a graded
S −1R-module with (S −1M)g =

{
m
s ,m ∈ Mh, s ∈ S ∩ Rhg−1

}
and (S −1R)g =

{
a
s , a ∈ Rh, s ∈ S ∩ Rhg−1

}
for

all g ∈ G. It is obvious that
S ∗ =

{
x ∈ h(R) : x

1 is a homogeneous unit of S −1R
}

is a m.c.s of R containing S .

Proposition 3.4. Let M be a graded R-module, and N be a graded R-submodule of M. Suppose that
S ⊆ h(R) is a m.c.s verifying (N :R M)

⋂
S = ∅. If N ∈ GSpecs(RM) for some s ∈ S , then S −1N is a

graded prime S −1R-submodule of S −1M.

Proof. Suppose that N ∈ GSpecs(RM) for some s ∈ S . Let r
a ∈ h(S −1R) and m

b ∈ h(S −1M) such that
r
a .

m
b ∈ S −1N. Then urm ∈ N for some u ∈ S . Since N ∈ GSpecs(RM), we have sur ∈ (N :R M) or

sm ∈ N, which implies that r
a = sur

sua ∈ S −1(N :R M) ⊆ (S −1N :S −1R S −1M) or m
b = sm

st ∈ S −1N. Hence,
S −1N is a graded prime S −1R-submodule of S −1M. �

Now, we are going to prove that the converse of Proposition 3.4 is not true in general. Firstly, we
need the introduce following:

Definition 3.5. A graded commutative ring R with unity is said to be a graded field if every nonzero
homogeneous element of R is unit.

The next example shows that a graded field need not be a field.

Example 3.6. Let R be a field and suppose that F =
{
x + uy : x, y ∈ R, u2 = 1

}
. If G = Z2, then F is

G-graded by F0 = R and F1 = uR. Let a ∈ h(F) such that a , 0. If a ∈ F0, then a ∈ R and since R is
a field, we have a is a unit element. Suppose that a ∈ F1. Then a = uy for some y ∈ R. Since a , 0,
we have y , 0, and since R is a field, we have y is a unit element, that is zy = 1 for some z ∈ R. Thus,
uz ∈ F1 such that (uz)a = uz(uy) = u2(zy) = 1.1 = 1, which implies that a is a unit element. Hence, F
is a graded field. On the other hand, F is not a field since 1 + u ∈ F − {0} is not a unit element since
(1 + u)(1 − u) = 0.
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Lemma 3.7. Let R be a graded field and M be a graded R-module. Then every proper graded R-
submodule of M is graded prime.

Proof. Let N be a proper graded R-submodule of M. Suppose that r ∈ h(R) and m ∈ h(M) such that
rm ∈ N. If r = 0, then r = 0 ∈ (N :R M). If r , 0, then r is unit as R is graded field, and then r−1 ∈ R
with r−1(rm) = m ∈ N. Hence, N is a graded prime R-submodule of M. �

The required example is:

Example 3.8. Consider R = Z and G = Z2. Then R is trivially G-graded by R0 = Z and R1 = {0}.
Consider the R-module T = Q[i]. Then T is G-graded by T0 = Q and T1 = iQ. So, M = T × T is a
G-graded R-module where M0 = T0×T0 and M1 = T1×T1. Now, N = Z×{0} is a graded R-submodule
of M with (N :R M) = {0}. Consider S = Z − {0} is a m.c.s of h(R). Then S −1R = Q is a graded
field, and then by Lemma 3.7, S −1N is a graded prime S −1R-submodule of S −1M. On the other hand,
assume that s ∈ S , and choose a prime number p with gcd(s, p) = 1. Then p ∈ h(R) and ( 1

p , 0) ∈ h(M)
such that p( 1

p , 0) = (1, 0) ∈ N, but sp < (N :R M) and s( 1
p , 0) = ( s

p , 0) < N. Hence, N is not graded
S -prime R-submodule of M.

The following result gives a partial affirmative answer for the converse of Proposition 3.4.

Proposition 3.9. Suppose that M is a finitely generated graded R-module, S ⊆ h(R) is a m.c.s, and N
is a graded R-submodule of M such that (N :R M)

⋂
S = ∅. For s ∈ S , we have N ∈ GSpecs(RM) if

and only if S −1N is a graded prime R-submodule of S −1M and (N :M t) ⊆ (N :M s) for all t ∈ S .

Proof. Suppose that N ∈ GSpecS (RM). Then the result holds by Lemma 2.2 and Proposition 3.4.
Conversely, let r ∈ h(R) and m ∈ h(M) with rm ∈ N. Then r

1
m
1 ∈ S −1N. Since S −1N is a graded prime

R-submodule of S −1M and M is finitely generated, we have that r
1 ∈ (S −1N :S −1R S −1M) = S −1(N :R

M) or m
1 ∈ S −1N. Then ur ∈ (N :R M) or vm ∈ N for some u, v ∈ S . By assumption, we have

(N :M t) ⊆ (N :M s) for all t ∈ S . Therefore, if ur ∈ (N :R M) then rM ⊆ (N :M u) ⊆ (N :M s) and thus
sr ∈ (N :R M). If vm ∈ N , a similar argument proves that sm ∈ N. Therefore, N ∈ GSpecs(RM). �

Let R1 and R2 be G-graded rings. Then R = R1 × R2 is a G-graded ring with Rg = (R1)g × (R2)g for
all g ∈ G (see [10]).

Lemma 3.10. Let R1 and R2 be G-graded rings and R = R1 × R2. Then P = P1 × P2 is a graded ideal
of R if and only if P1 is a graded ideal of R1 and P2 is a graded ideal of R2.

Proof. Suppose that P is a graded ideal of R. Clearly, P1 is an ideal of R1 and P2 is an ideal of R2. Let
a ∈ P1. Then (a, 0) ∈ P, and then (a, 0)g = (ag, 0) ∈ P for all g ∈ G as P is graded ideal, which implies
that ag ∈ P1 for all g ∈ G. Hence, P1 is a graded ideal of R1. Similarly, P2 is a graded ideal of R2.
Conversely, it is clear that P is an ideal of R. let (a, b) ∈ P. Then a ∈ P1 and b ∈ P2, and then ag ∈ P1

and bg ∈ P2 for all g ∈ G as P1 and P2 are graded ideals, which implies that (a, b)g = (ag, bg) ∈ P for
all g ∈ G. Hence, P is a graded ideal of R. �

Lemma 3.11. Let R1 and R2 be G-graded rings, R = R1 × R2 and s = (s1, s2) ∈ h∗(R). Suppose that
P = P1 × P2 is a graded ideal of R. Then P ∈ GSpecs(R) if and only if P1 ∈ GSpecs1

(R1) and s2 ∈ P2

or P2 ∈ GSpecs2
(R2) and s1 ∈ P1.
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Proof. Suppose that P ∈ GSpecS (R). By Lemma 3.10, P1 is a graded ideal of R1 and P2 is a graded
ideal of R2. Now, (1, 0), (0, 1) ∈ h(R) with (1, 0)(0, 1) = (0, 0) ∈ P, and so s(1, 0) = (s1, 0) ∈ P or
s(0, 1) = (0, s2) ∈ P. Thus s1 ∈ P1 or s2 ∈ P2. We may assume that s1 ∈ P1. Since or s < P, we
have s2 < P2. Let ab ∈ P2 for some a, b ∈ h(R2). Since (0, a)(0, b) ∈ P and P ∈ GSpecS (R) , we
have either s(0, a) = (0, s2a) ∈ P or s(0, b) = (0, s2b) ∈ P and then s2a ∈ P2 or s2b ∈ P2. Therefore,
P2 ∈ GSpecS 2

(R2). The other case can be treated in the same way.
Conversely, assume that s1 ∈ P1 and P2 ∈ GSpecs2

(R2), and so s < P. Let (a, b)(c, d) = (ac, bd) ∈ P
for some a, c ∈ h(R1) and b, d ∈ h(R2). Then bd ∈ P2 and so s2b ∈ P2 or s2d ∈ P2. Now we have
s(a, b) = (s1a, s2b) ∈ P or s(c, d) = (s1c, s2d) ∈ P. Therefore, P ∈ GSpecS (R). Likewise, one can show
that P ∈ GSpecS (R). �

Let M1 be a G-graded R1-module, M2 be a G-graded R2-module and R = R1×R2. Then M = M1×M2

is G-graded R-module with Mg = (M1)g× (M2)g for all g ∈ G (see [10]). Similarly to Lemma 3.10, one
can prove the following:

Lemma 3.12. Let M1 be a G-graded R1-module, M2 be a G-graded R2-module, R = R1 × R2 and
M = M1 × M2. Then L = N × K is a graded of R-submodule of M if and only if N is a graded
R1-submodule of M1 and K is a graded R2-submodule of M2.

Proposition 3.13. Suppose that M = M1 × M2 is a graded R-module and s = (s1, s2) ∈ h∗(R), where
Mi is a G-graded Ri-module, R = R1 × R2. Assume that L = N × K is a graded R-submodule of M.
Then L ∈ GSpecS (RM) if and only if N ∈ GSpecs1

(R1 M1) and s2 ∈ (K :R2 M2) or K ∈ GSpecs2
(R2 M2)

and s1 ∈ (N :R1 M1).

Proof. Suppose that L ∈ GSpecs(RM). By Lemma 3.12, N is a graded R-submodule of M1 and K is
a graded R-submodule of M2. Now, by Proposition 2.6 (1), (L :R M) = (N :R1 M1) × (K :R2 M2) ∈
GSpecS (R) and so by Lemma 3.11, either s1 ∈ (N :R1 M1) or s2 ∈ (K :R2 M2). We may assume that s1 ∈

(N :R1 M1). Now, we show that K ∈ GSpecs2
(R2 M2). Let rm ∈ K for some r ∈ h(R2), m ∈ h(M2). Then

(1, r) ∈ h(R) and (0,m) ∈ h(M) such that (1, r)(0,m) = (0, rm) ∈ L. Since L ∈ GSpecs(RM), we have
s(1, r) = (s1, s2r) ∈ (L :R M) or s(0,m) = (0, s2m) ∈ L. This implies that s2r ∈ (K :R2 M2) or s2m ∈ K.
Therefore, K ∈ GSpecs2

(R2 M2). In the other case, it can be similarly proved that N ∈ GSpecs1
(R1 M1).

Conversely, suppose that s1 ∈ (N :R1 M1) and K ∈ GSpecs2
(R2 M2), and so s < (L :R M) =

(N :R1 M1) × (K :R2 M2). Suppose that (r1, r2)(m1,m2) = (r1m1, r2m2) ∈ L for some (r1, r2) ∈ h(R),
(m1,m2) ∈ h(M). Then r2m2 ∈ K, and since K ∈ GSpecs2

(R2 M2), we have s2r2 ∈ (K :R2 M2) or
s2m2 ∈ K. Therefore s(r1, r2) = (s1r1, s2r2) ∈ (L :R M) or s(m1,m2) = (s1m1, s2m2) ∈ N × K = L.
Hence, L ∈ GSpecs(RM). Similarly one can show that if N ∈ GSpecs1

(R1 M1) and s2 ∈ (K :R2 M2), then
L ∈ GSpecs(RM). �

Now, using induction and Proposition 3.13, we get the following general result:

Proposition 3.14. Suppose that M = M1 × ... × Mn is a graded R-module and s = (s1, ..., sn) ∈ h∗(R),
where Mi is a G-graded Ri-module, R = R1 × ... × Rn. Assume that N = N1 × ... × Nn is a graded
R-submodule of M. Then N ∈ GSpecs(RM) if and only if Ni ∈ GSpecsi

(Ri Mi) for some i, and s j ∈

(N j :R j M j) for all j , i.

Let M be an R-module. The idealization R(+)M = {(r,m) : r ∈ R and m ∈ M} of M is a
commutative ring with componentwise addition and multiplication; (x,m1) + (y,m2) = (x + y,m1 + m2)
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and (x,m1)(y,m2) = (xy, xm2 + ym1) for each x, y ∈ R and m1,m2 ∈ M. Let G be an abelian group and
M be a G-graded R-module. Then X = R(+)M is G-graded by Xg = Rg(+)Mg for all g ∈ G. Note that,
Xg is an additive subgroup of X for all g ∈ G. Also, for g, h ∈ G,
XgXh = (Rg(+)Mg)(Rh(+)Mh) = (RgRh,RgMh + RhMg) ⊆ (Rgh,Mgh + Mhg) ⊆ (Rgh,Mgh) = Xgh as G is
abelian, (see [14]). If S is a m.c.s. of h(R) and N is a graded R-submodule of M, then S (+)N is a
m.c.s. of h(R(+)M).

Lemma 3.15. Let G be an abelian group, M be a G-graded R-module, P be an ideal of R and N be
an R-submodule of M such that PM ⊆ N. Then P(+)N is a graded ideal of R(+)M if and only if P is a
graded ideal of R and N is a graded R-submodule of M.

Proof. Follows from [14, Proposition 3.3]. �

Proposition 3.16. Let G be an abelian group, M be a G-graded ring, s ∈ h∗(R), and P be a graded
ideal of R with s < P. Then the following are equivalent:

(1) P ∈ GSpecs(R).

(2) P(+)M ∈ GSpec(s,m)(R(+)M), for every m ∈ h(M).

(3) P(+)M ∈ GSpec(s,0)(R(+)M).

Proof. (1) ⇒ (2) : Suppose that P ∈ GSpecs(R). Let (x, a)(y, b) = (xy, xb + ya) ∈ P(+)M for some
x, y ∈ h(R), a, b ∈ h(M). Then we have xy ∈ P. Since P ∈ GSpecs(R), we get sx ∈ P or sy ∈ P, and so
(s,m)(x, a) ∈ P(+)M or (s,m)(y, b) =∈ P(+)M. Therefore, P(+)M ∈ GSpecS (+){0}(R(+)M).

(2)⇒ (3) : Trivial.
(3) ⇒ (1) : Suppose that P(+)M ∈ GSpec(s,0)(R(+)M). Let xy ∈ P for some x, y ∈ h(R). Then

(x, 0)(y, 0) ∈ P(+)M. Since P(+)M ∈ GSpec(s,0)(R(+)M), we have (s, 0)(x, 0) = (sx, 0) ∈ P(+)M or
(s, 0)(y, 0) = (sy, 0) ∈ P(+)M, and hence sx ∈ P or sy ∈ P. Thus, P ∈ GSpecs(R). �

4. Existence of graded s-prime submodules

In this section we will tackle the problem of existence of s-prime modules.

Lemma 4.1. Let M be a G-graded R-module and N be a graded R-submodule of M. If r ∈ h(R), then
(N :M r) = {m ∈ M : rm ∈ N} is a graded R-submodule of M.

Proof. Clearly, (N :M r) is an R-submodule of M. Let m ∈ (N :M r). Then rm ∈ N. Now, m =
∑
g∈G

mg

where mg ∈ Mg for all g ∈ G. Since r ∈ h(R), r ∈ Rh for some h ∈ G and then rmg ∈ RhMg ⊆ Mhg ⊆

h(M) for all g ∈ G such that
∑
g∈G

rmg = r

∑
g∈G

mg

 = rm ∈ N. Since N is graded, rmg ∈ N for all g ∈ G

which implies that mg ∈ (N :M r) for all g ∈ G. Hence, (N :M r) is a graded R-submodule of M. �

Lemma 4.2. Let M be a G-graded R-module, and N be a graded R-submodule of M. Suppose that
s, t ∈ h∗(R) such that st < (N :R M) and N ∈ GSpecs(RM). Then we have the following:

(1) (N :M t) ⊆ (N :M s).
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(2) ((N :R M) :R t) ⊆ ((N :R M) :R s).

Proof. (1) Let m ∈ (N :M t). Then mg ∈ (N :M t) for all g ∈ G as (N :M t) is graded submodule by
Lemma 4.1, and then tmg ∈ N for all g ∈ G. Since N ∈ GSpecs(RM) and st < (N :R M), smg ∈ N
for all g ∈ G, and then sm ∈ N, that is m ∈ (N :M s).

(2) Directly follows from (1).
�

Proposition 4.3. Let M be a G-graded R-module, N be a graded R-submodule of M, and s ∈ h∗(R).

(1) If (N :M s) ∈ GSpec(RM), then N ∈ GSpecs(RM).

(2) Suppose that s2 < (N :R M). If N ∈ GSpecs(RM) then (N :M s) ∈ GSpec(RM).

Proof. (1) Assume that (N :M s) ∈ GSpec(RM), and let rm ∈ N for some r ∈ h(R), m ∈ h(M). Since
rm ∈ (N :M s) and (N :M s) ∈ GSpec(RM), we have r ∈ ((N :M s) :R M) or m ∈ (N :M s), and then
rs ∈ (N :R M) or sm ∈ N. Hence, N ∈ GSpecS (RM).

(2) Suppose that s2 < (N :R M) and N ∈ GSpecs(RM). By Lemma 4.1, (N :M s) is a graded R-
submodule of M. Let r ∈ h(R), m ∈ h(M) with rm ∈ (N :M s). Then (sr)m ∈ N. Since
N ∈ GSpecs(RM) , we have s2r ∈ (N :R M) or sm ∈ N. If sm ∈ N, then there is nothing to prove.
Suppose that sm < N. Then s2r ∈ (N :R M) and so r ∈ ((N :R M) :R s2) ⊂ ((N :R M) :R s)) by
Lemma 4.2. Hence, we have that r ∈ ((N :M s) :R M) and so (N :M s) ∈ GSpec(RM).

�

Now, letDN = {(N :M t), s ∈ h∗(R)\(N :R M)}, notice that (N :M s) = M if and only if s ∈ (N :R M).
Since N = (N :M 1), DN is nonempty and we have:

Theorem 4.4. Let M be a graded R-module, and N be a graded R-submodule of M. If (N :M s)
is a maximal element in DN , with respect to inclusion, then (N :M s) ∈ GSpec(RM), and thus N ∈
GSpecs(RM)

Proof. Suppose that (N :M s) is a maximal element in DN , with respect to inclusion. Let rm ∈ N for
some r ∈ h(R), m ∈ h(M). Since (N :M s) ⊆ (N :M sr), then by maximality we have (N :M sr) = M
or (N :M s) = (N :M sr). If (N :M sr) = M, then srM ⊆ N, and so rM ⊆ (N :M s). Hence
r ∈ ((N :M s) :R M). In case (N :M s) = (N :M sr), then m ∈ (N :M r) ⊆ (N :M sr) = (N :M s).

�

Recall that M is said to be graded-Noetherian R-module if M satisfies the ascending, respectively
graded-Artinian descending chain condition for graded submodules of M. It is straightforward to verify
that M is graded-Noetherian if and only if every graded submodule is finitely generated, and also if
and only if each non-empty family of graded submodules of M has a maximal element. Similarly, M
is graded-Artinian if and only if each non-empty family of graded submodules of M has a minimal
element, see [10]). Note that an Artinian module is always Noetherian, see [5].

In particular, If M is a graded-Noetherian R-module, then DN always has a maximal element, hence
we have:

Theorem 4.5. Let M be a graded-Noetherian R-module, and N be a graded R-submodule of M. Then
there exists s ∈ h∗(R) such that N ∈ GSpecs(RM).
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Applying this to the case of trivial grading, we find:

Theorem 4.6. Let R a commutative ring with a nonzero unity 1, and M be a Noetherian R-module.
Then for any R-submodule N of M there exists s ∈ R such that N ∈ S pecs(RM).

If R is Z-graded, then a graded R-module M is graded-Noetherian if and only if M is Noetherian as
a R-module, see [10] Theorem 5.4.7. Thus we have:

Corollary 4.7. Let R be a Z-graded ring, and M be a graded-R-module. If M is an Artinian or a
Noetherian R-module, then for every graded R-submodule N of M there exists s ∈ h∗(R) such that
N ∈ GSpecs(RM).

Example 4.8. A typical example for Z-graded rings are polynomial ring. Indeed, let T be a
commutative ring with a nonzero unity 1, if we put Tn = T Xn for n ≥ 0, and Tn = 0 for n < 0, then
R = T [X] is a Z-graded ring. Since R[X] is Noetherian whenever R is Noetherian, the above result
enables us to produce many examples of graded s-prime modules.

Suppose that R is G-graded ring, with G being a finite group, and let M be a graded R-module. Then
by [10], Corollary 5.4.3, the following assertions are equivalent:

(1) M is graded-Noetherian (resp graded-Artinian).

(2) M is Noetherian (resp Artinian) as an Re- module.

(3) M is Noetherian (resp Artinian) in R-mod.

Proposition 4.9. Let G be a finite group, R be a G-graded ring, and M be a graded-R-module. If
M is an Artinian or a Noetherian Re-module, then for every graded R-submodule N of M there exists
s ∈ h∗(R) such that N ∈ GSpecs(RM).

Recall that a group G is called polycyclic-by-finite if there is a finite series e = G0 /G1 / ... /Gn = G
of subgroups such that each Gi−1 is normal in Gi and Gi/Gi−1 is either finite or cyclic for each i, [10].

Also, the ring R is called strongly graded of type G if 1 ∈ RσRσ−1 for all σ ∈ G, which is equivalent
to RτRσ = Rτσ for all τ, σ ∈ G, see [10].

The importance of this type of grading lies in that fact that a graded-R-module M =
⊕
g∈G

Mg will

be a Noetherian R-module if Me is a Noetherian Re-module. Since a graded-R-module M is graded-
Noetherian if it is Noetherian as an R-module, we have the following:

Proposition 4.10. Let G be a polycyclic-by-finite group, R be a strongly graded ring of type G, and M
be a graded-R-module. If Me is a Noetherian Re-module, then for every graded R-submodule N of M
there exists s ∈ h∗(R) such that N ∈ GSpecs(RM).

5. graded s-prime submodules and crossed product grading

Another interesting type of grading is the so-called crossed product. More precisely, a grading
(R,G) is called crossed product over supp(R,G) if for every g ∈ supp(R,G), Rg contains a unit.
By [2, Proposition 1.7], this is equivalent to the following: for each g ∈ supp(R,G), Rg = Reug for
some unit ug ∈ Rg. For example, consider a commutative ring T with a nonzero unity 1, and let
Rn = T Xn, n ∈ Z, where X is an indeterminate. Then the ring of Laurent polynomials R = T [X, X−1] is
a Z-graded ring, and it is clearly crossed product, see [10] for more examples.
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Theorem 5.1. Let (R,G) be a crossed product grading, and I =
⊕
g∈G

Ig be a graded ideal of R. Then

I ∈ GSpecs(R), for some s ∈ h∗(R), if and only if Ie ∈ GSpect(R), for some t ∈ Re.

Proof. Suppose that I ∈ GSpecs(R) for some s ∈ h∗(R). Since R is crossed product and s is a
homogeneous element, we have s = tug for some t ∈ Re and a unit ug ∈ Rg. Then by Lemma 2.2, we
have I ∈ GSpect(R). Now, let ab ∈ Ie for some a, b ∈ Re, since I is t-prime we get ta ∈ I or tb ∈ I.
Hence ta ∈ I ∩ Re = Ie or tb ∈ I ∩ Re = Ie, and so Ie ∈ GSpect(R) as desired. For the converse, Assume
that Ie ∈ GSpect(R) for some t ∈ Re, and let ab ∈ I where a, b ∈ h∗(R). Again by the crossed product
property, we have a = aeug and b = beuh, for some ae, be ∈ Re and units ug ∈ Rg, uh ∈ Rh. Therefore
aebeuguh = ab ∈ I, and so aebe ∈ I, hence aebe ∈ Ie. Since Ie ∈ GSpect(R), we get tae ∈ Ie or tbe ∈ Ie,
which implies that ta ∈ I or tb ∈ I. Thus I ∈ GSpect(R). �

Now, let G be an abelian group, and consider a commutative ring T with a nonzero unity 1. Then
the group ring R = T [G] is a G-graded ring by taking Rg = Tg, g ∈ G, and (R,G) is clearly a crossed
product grading. Since Re = T , using the above theorem and Theorem 4.6 we get the following:

Theorem 5.2. Let G be an abelian group, R be a commutative ring with a nonzero unity 1. If R is a
Noatherian ring, then any graded ideal of R[G] is s-prime for some s ∈ h∗(R).
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