Mathematics

Research article

Existence result for a Kirchhoff elliptic system involving p-Laplacian operator with variable parameters and additive right hand side via sub and super solution methods

Salah Boulaaras ${ }^{1,2}$, Rafik Guefaifia ${ }^{3}$, Bahri Cherif ${ }^{1, *}$ and Taha Radwan ${ }^{1,4}$
${ }^{1}$ Department of Mathematics, College of Sciences and Arts, ArRass, Qassim University, Kingdom of Saudi Arabia
${ }^{2}$ Laboratory of Fundamental and Applied Mathematics of Oran (LMFAO), University of Oran 1, Ahmed Benbella, Oran, Algeria
${ }^{3}$ Department of Mathematics and Computer Science, Larbi Tebessi University, Tebessa, Algeria
${ }^{4}$ Department of Mathematics and Statistics, Faculty of Management Technology and Information Systems, Port Said University, Port Said, Egypt

* Correspondence: Email: shriefa@qu.edu.sa; Tel: +966556811930.

Abstract

The paper deals with the study of the existence result for a Kirchhoff elliptic system with additive right hand side and variable parameters involving p-Laplacian operator by using the sub-super solutions method. Our study is an natural extension result of our previous once in (Math. Methods Appl. Sci. 41 (2018), 5203-5210), where in the latter we discussed only the simple case when the parameters are constant.

Keywords: Kirchhoff elliptic systems; existence; positive solutions; sub-supersolution; multiple parameters
Mathematics Subject Classification: 35J60, 35B30, 35B40

1. Introduction

Consider the following system

$$
\left\{\begin{array}{l}
-M_{1}\left(\int_{\Omega}|\nabla u|^{p} d x\right) \Delta_{p} u=\alpha(x) f(v)+\beta(x) g(u) \text { in } \Omega \tag{1.1}\\
-M_{2}\left(\int_{\Omega}|\nabla v|^{p} d x\right) \Delta_{p} v=\gamma(x) h(u)+\eta(x) l(v) \text { in } \Omega \\
u=v=0 \text { on } \partial \Omega
\end{array}\right.
$$

where $\Delta_{p} z=\operatorname{div}\left(|\nabla z|^{p-2} \nabla z\right), 1<p<N$, the p-Laplacian operator, $\Omega \subset \mathbb{R}^{N}(N \geq 3)$ is a bounded smooth domain with C^{2} boundary $\partial \Omega$, and $M_{i}: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}, i=1,2$, are continuous functions with further conditions to be given later, $\alpha, \beta, \gamma, \eta \in C(\bar{\Omega})$.

This nonlocal problem originates from the stationary version of Kirchhoff's work [15] in 1883.

$$
\begin{equation*}
\rho \frac{\partial^{2} u}{\partial t^{2}}-\left(\frac{P_{0}}{h}+\frac{E}{2 L} \int_{0}^{L}\left|\frac{\partial u}{\partial x}\right|^{2} d x\right) \frac{\partial^{2} u}{\partial x^{2}}=0 \tag{1.2}
\end{equation*}
$$

where Kirchhoff extended the classical d'Alembert's wave equation by considering the effect of the changes in the length of the string during vibrations. The parameters in (1.2) have the following meanings: L is the length of the string, h is the area of the cross-section, E is the Young modulus of the material, ρ is the mass density, and P_{0} is the initial tension.

Recently, Kirchhoff elliptic equations have been heavily studied, we refer to [1-21,23, 24].
In [1], Alves and Correa proved the validity of Sub-super solutions method for problems of Kirchhoff class involving a single equation and a boundary condition

$$
\left\{\begin{array}{l}
-M\left(\|u\|^{2}\right) \Delta u=f(x, u) \text { in } \Omega \\
u=0 \text { on } \partial \Omega
\end{array}\right.
$$

with $f \in C(\bar{\Omega} \times \mathbb{R})$.
By using a comparison principle that requires M to be non-negative and non-increasing in $[0,+\infty)$, with $H(t):=M\left(t^{2}\right) t$ increasing and $H(\mathbb{R})=\mathbb{R}$, they managed to prove the existence of positive solutions assuming f increasing in the variable u for each $x \in \Omega$ fixed.

For systems involving similar class of equations, this result can not be used directly, i.e. the existence of a subsolution and a supersolution does not guarantee the existence of the solution.

Therefore, a further construction is needed. As in [22], where we studied the system

$$
\left\{\begin{array}{l}
-A\left(\int_{\Omega}|\nabla u|^{2} d x\right) \Delta u=\lambda_{1} f(v)+\mu_{1} g(u) \text { in } \Omega \tag{1.3}\\
-B\left(\int_{\Omega}|\nabla v|^{2} d x\right) \Delta v=\lambda_{2} h(u)+\mu_{2}(x) l(v) \text { in } \Omega \\
u=v=0 \text { on } \partial \Omega
\end{array}\right.
$$

Using a weak positive supersolution as first term of a constructed iterative sequence $\left(u_{n}, v_{n}\right)$ in $W_{0}^{1, p}(\Omega) \times W_{0}^{1, p}(\Omega)$, and a comparison principle introduced in [1], the authors established the convergence of this sequence to a positive weak solution of the considered problem.

To complement our above works in [22], where we discussed only the simple case when the parameters are constant, we are working in this paper for proving the existence result for problem (1.1) by considering the complicated case when the parameters α, β, γ and η in the right hand side are variable. We also give a better subsolution providing easier computations compared with the last work in [22].

2. Existence result

Definition 1. $(u, v) \in\left(W_{0}^{1, p}(\Omega) \times W_{0}^{1, p}(\Omega)\right)$, is called a weak solution of (1.1) if it satisfies

$$
\begin{aligned}
& M_{1}\left(\int_{\Omega}|\nabla u|^{p} d x\right) \int_{\Omega}|\nabla u|^{p-2} \nabla u \nabla \phi d x=\int_{\Omega} \alpha(x) f(v) \phi d x+\int_{\Omega} \beta(x) g(u) \phi d x \text { in } \Omega, \\
& M_{2}\left(\int_{\Omega}|\nabla v|^{p} d x\right) \int_{\Omega}|\nabla v|^{p-2} \nabla v \nabla \psi d x=\int_{\Omega} \gamma(x) h(u) \psi d x+\int_{\Omega} \eta(x) l(v) \psi d x \text { in } \Omega
\end{aligned}
$$

for all $(\phi, \psi) \in\left(W_{0}^{1, p}(\Omega) \times W_{0}^{1, p}(\Omega)\right)$.
Definition 2. Let $(\underline{u}, \underline{v}),(\bar{u}, \bar{v})$ be a pair of nonnegative functions in $\left(W_{0}^{1, p}(\Omega) \times W_{0}^{1, p}(\Omega)\right)$, they are called positive weak subsolution and positive weak supersolution (respectively) of (1.1) if they satisfy the following

$$
\begin{aligned}
& M_{1}\left(\int_{\Omega}|\nabla \underline{u}|^{p} d x\right) \int_{\Omega}|\nabla \underline{u}|^{p-2} \nabla \underline{u} \nabla \phi d x \leq \int_{\Omega} \alpha(x) f(\underline{v}) \phi d x+\int_{\Omega} \beta(x) g(\underline{u}) \phi d x, \\
& M_{2}\left(\int_{\Omega}|\nabla \underline{v}|^{2} d x\right) \int_{\Omega}|\nabla \underline{v}|^{p-2} \nabla \underline{v} \nabla \psi d x \leq \int_{\Omega} \gamma(x) h(\underline{u}) \psi d x+\int_{\Omega} \eta(x) l(\underline{v}) \psi d x
\end{aligned}
$$

and

$$
\begin{aligned}
& M_{1}\left(\int_{\Omega}|\nabla \bar{u}|^{p} d x\right) \int_{\Omega}|\nabla \bar{u}|^{p-2} \nabla \bar{u} \nabla \phi d x \geq \int_{\Omega} \alpha(x) f(\bar{v}) \phi d x+\int_{\Omega} \beta(x) g(\bar{u}) \phi d x, \\
& M_{2}\left(\int_{\Omega}|\nabla \bar{v}|^{p} d x\right) \int_{\Omega}|\nabla \bar{v}|^{p-2} \nabla \bar{v} \nabla \psi d x \geq \int_{\Omega} \gamma(x) h(\bar{u}) \psi d x+\int_{\Omega} \eta(x) l(\bar{v}) \psi d x
\end{aligned}
$$

for all $(\phi, \psi) \in\left(W_{0}^{1, p}(\Omega) \times W_{0}^{1, p}(\Omega)\right)$, with $\phi \geq 0$ and $\psi \geq 0$, and $(\underline{u}, \underline{v}),(\bar{u}, \bar{v})=(0,0)$ on $\partial \Omega$.
Lemma 1. (Comparison principle [24]) Let $M: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$be a continuous increasing function such that

$$
\begin{equation*}
M(s)>m_{0}>0, \text { for all } s \in \mathbb{R}^{+} . \tag{2.1}
\end{equation*}
$$

If u, v are two non-negative functions verifying

$$
\left\{\begin{array}{l}
-M\left(\int_{\Omega}|\nabla u|^{p} d x\right) \Delta_{p} u \geq-M\left(\int_{\Omega}|\nabla v|^{p} d x\right) \Delta_{p} v \text { in } \Omega \tag{2.2}\\
u=v=0 \text { on } \partial \Omega
\end{array}\right.
$$

then $u \geq v$ a.e. in Ω.

Proof. Thanks to [24]. Define the functional $J: W_{0}^{1, p}(\Omega) \rightarrow \mathbb{R}$ by the formula

$$
J(u)=\frac{1}{p} \widehat{M}\left(\int_{\Omega}|\nabla u|^{p} d x\right), u \in W_{0}^{1, p}(\Omega)
$$

where

$$
\widehat{M}(s)=\int_{0}^{s} M(\xi) d \xi
$$

It is obvious that the functional J is a continuously Gâteaux differentiable whose Gâteaux derivative at the point $u \in W_{0}^{1, p}(\Omega)$ is the functional $J^{\prime} \in W_{0}^{-1, p}(\Omega)$, given by

$$
J^{\prime}(u)(\varphi)=M\left(\int_{\Omega}|\nabla u|^{p} d x\right) \int_{\Omega}|\nabla u|^{p-2} \nabla u \nabla \varphi d x, \varphi \in W_{0}^{1, p}(\Omega) .
$$

It is obvious that J^{\prime} is continuous and bounded since the function M is continuous.
We will show that J^{\prime} is strictly monotone in $W_{0}^{1, p}(\Omega)$.
Indeed, for any $u, v \in W_{0}^{1, p}(\Omega), u \neq v$, without loss of generality, we may assume that

$$
\int_{\Omega}|\nabla u|^{p} d x \geq \int_{\Omega}|\nabla v|^{p} d x
$$

Otherwise, changing the role of u and v in the following proof.
Therefore, we have

$$
\begin{equation*}
M\left(\int_{\Omega}|\nabla u|^{p} d x\right) \geq M\left(\int_{\Omega}|\nabla v|^{p} d x\right) \tag{2.3}
\end{equation*}
$$

Since $M(s)$ is a monotone function.
Using Cauchy's inequality, we have

$$
\begin{equation*}
\nabla u \cdot \nabla v \leq|\nabla u||\nabla v| \leq \frac{1}{2}\left(|\nabla u|^{2}+|\nabla v|^{2}\right) . \tag{2.4}
\end{equation*}
$$

Using (2.4) we get

$$
\begin{equation*}
\int_{\Omega}|\nabla u|^{p} d x-\int_{\Omega}|\nabla u|^{p-2} \nabla u \cdot \nabla v d x \geq \frac{1}{2} \int_{\Omega}|\nabla u|^{p-2}\left(|\nabla u|^{2}-|\nabla v|^{2}\right) d x, \tag{2.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{\Omega}|\nabla v|^{p} d x-\int_{\Omega}|\nabla v|^{p-2} \nabla v \cdot \nabla u d x \geq \frac{1}{2} \int_{\Omega}|\nabla v|^{p-2}\left(|\nabla v|^{2}-|\nabla u|^{2}\right) d x . \tag{2.6}
\end{equation*}
$$

If $|\nabla u(x)| \geq|\nabla v(x)|$ for all $x \in \Omega$, using (2.3)-(2.6) we have

$$
\begin{align*}
I_{1}: & =J^{\prime}(u)(u)-J^{\prime}(u)(v)-J^{\prime}(v)(u)+J^{\prime}(v)(v) \tag{2.7}\\
= & M\left(\int_{\Omega}|\nabla u|^{p} d x\right)\left(\int_{\Omega}|\nabla u|^{p} d x-\int_{\Omega}|\nabla u|^{p-2} \nabla u . \nabla v d x\right) \\
& -M\left(\int_{\Omega}|\nabla v|^{p} d x\right)\left(\int_{\Omega}|\nabla v|^{p-2} \nabla v \cdot \nabla u d x-\int_{\Omega}|\nabla v|^{p} d x\right) \\
\geq & \frac{1}{2} M\left(\int_{\Omega}|\nabla u|^{p} d x\right) \int_{\Omega}|\nabla u|^{p-2}\left(|\nabla u|^{2}-|\nabla v|^{2}\right) d x \\
& -\frac{1}{2} M\left(\int_{\Omega}|\nabla v|^{p} d x\right)_{\Omega}|\nabla u|^{p-2}\left(|\nabla u|^{2}-|\nabla v|^{2}\right) d x \\
= & \frac{1}{2} M\left(\int_{\Omega}|\nabla v|^{p} d x\right) \int_{\Omega}\left(|\nabla u|^{p-2}-|\nabla v|^{p-2}\right)\left(|\nabla u|^{2}-|\nabla v|^{2}\right) d x \\
\geq & \frac{m_{0}}{2} \int_{\Omega}\left(|\nabla u|^{p-2}-|\nabla v|^{p-2}\right)\left(|\nabla u|^{2}-|\nabla v|^{2}\right) d x .
\end{align*}
$$

If $|\nabla v(x)| \geq|\nabla u(x)|$ for all $x \in \Omega$, changing the role of u and v in (2.3)-(2.7), we have

$$
\begin{align*}
I_{2}: & =J^{\prime}(v)(v)-J^{\prime}(v)(u)-J^{\prime}(u)(v)+J^{\prime}(u)(u) \tag{2.8}\\
= & \left.M\left(\int_{\Omega}|\nabla v|^{p} d x\right) \int_{\Omega}|\nabla v|^{p} d x-\int_{\Omega}|\nabla v|^{p-2} \nabla v \cdot \nabla u d x\right) \\
& -M\left(\int_{\Omega}|\nabla u|^{p} d x\right)\left(\int_{\Omega}|\nabla u|^{p-2} \nabla u . \nabla v d x-\int_{\Omega}|\nabla u|^{p} d x\right) \\
\geq & \frac{1}{2} M\left(\int_{\Omega}|\nabla v|^{p} d x\right) \int_{\Omega}|\nabla v|^{p-2}\left(|\nabla v|^{2}-|\nabla u|^{2}\right) d x \\
& -\frac{1}{2} M\left(\int_{\Omega}|\nabla u|^{p} d x\right) \int_{\Omega}|\nabla u|^{p-2}\left(|\nabla v|^{2}-|\nabla u|^{2}\right) d x \\
= & \frac{1}{2} M\left(\int_{\Omega}|\nabla v|^{p} d x\right) \int_{\Omega}\left(|\nabla v|^{p-2}-|\nabla u|^{p-2}\right)\left(|\nabla v|^{2}-|\nabla u|^{2}\right) d x \\
\geq & \frac{m_{0}}{2} \int_{\Omega}\left(|\nabla v|^{p-2}-|\nabla u|^{p-2}\right)\left(|\nabla v|^{2}-|\nabla u|^{2}\right) d x .
\end{align*}
$$

From (2.6) and (2.7) we have

$$
\begin{equation*}
\left(J^{\prime}(u)-J^{\prime}(v)\right)(u-v)=I_{1}=I_{2} \geq 0, \quad \forall u, v \in W_{0}^{1, p}(\Omega) \tag{2.9}
\end{equation*}
$$

Moreover, if $u \neq v$ and $\left(J^{\prime}(u)-J^{\prime}(v)\right)(u-v)=0$, then we have

$$
\int_{\Omega}\left(|\nabla u|^{p-2}-|\nabla v|^{p-2}\right)\left(|\nabla u|^{2}-|\nabla v|^{2}\right) d x=0,
$$

so $|\nabla u|=|\nabla v|$ in Ω. Thus, we deduce that

$$
\begin{align*}
\left(J^{\prime}(u)-J^{\prime}(v)\right)(u-v) & =J^{\prime}(u)(u-v)-J^{\prime}(v)(u-v) \tag{2.10}\\
& =M\left(\int_{\Omega}|\nabla u|^{p} d x\right)_{\Omega}|\nabla u|^{p-2}|\nabla u-\nabla v|^{2} d x \\
& =0,
\end{align*}
$$

i.e., $u-v$ is a constant.

In view of $u=v=0$ on $\partial \Omega$ we have $u \equiv v$ which is contrary with $u \neq v$.
Therefore $\left(J^{\prime}(u)-J^{\prime}(v)\right)(u-v)>0$ and J is strictly monotone in $W_{0}^{1, p}(\Omega)$.
Let u, v be two functions such that (2.2) is verified. Taking $\varphi=(u-v)^{+}$, the positive part of $u-v$ as a test function of (2.2), we have

$$
\begin{equation*}
\left(J^{\prime}(u)-J^{\prime}(v)\right)(\varphi)=M\left(\int_{\Omega}|\nabla u|^{p} d x\right) \int_{\Omega}|\nabla u|^{p-2} \nabla u \cdot \nabla \varphi d x \tag{2.11}
\end{equation*}
$$

$$
\begin{aligned}
& -M\left(\int_{\Omega}|\nabla v|^{p} d x\right) \int_{\Omega}|\nabla v|^{p-2} \nabla v \cdot \nabla \varphi d x \\
\leq & 0
\end{aligned}
$$

Relations (2.10) and (2.11) mean that $u \leq v$.
Before stating and proving our main result, here are the conditions we need.
$(H 1) M_{i}: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}, i=1,2$, are two continuous and increasing functions that satisfy the monotonicity conditions of lemma 2.2 so that we can use the Comparison principle, and assume further that there exists $m_{1}, m_{2}>0$ such that

$$
M_{1}(s) \geq m_{1}, M_{2}(s) \geq m_{2}, \text { for all } s \in \mathbb{R}^{+} .
$$

(H2) $\alpha, \beta, \gamma, \eta \in C(\bar{\Omega})$ and

$$
\alpha(x) \geq \alpha_{0}>0, \beta(x) \geq \beta_{0}>0, \gamma(x) \geq \gamma_{0}>0, \eta(x) \geq \eta_{0}>0
$$

for all $x \in \Omega$.
(H3) f, g, h, and l are continuous on $\left[0,+\infty\left[, C^{1}\right.\right.$ on $(0,+\infty)$, and increasing functions such that

$$
\lim _{t \rightarrow+\infty} f(t)=+\infty, \lim _{t \rightarrow+\infty} l(t)=+\infty, \lim _{t \rightarrow+\infty} g(t)=+\infty, \lim _{t \rightarrow+\infty} h(t)=+\infty
$$

(H4) For all $K>0$

$$
\lim _{t \rightarrow+\infty} \frac{f\left(K\left((h(t))^{\frac{1}{p-1}}\right)\right)}{t^{p-1}}=0 .
$$

(H5)

$$
\lim _{t \rightarrow+\infty} \frac{g(t)}{t^{p-1}}=\lim _{t \rightarrow+\infty} \frac{l(t)}{t^{p-1}}=0 .
$$

Theorem 1. For large values of $\alpha_{0}+\beta_{0}$ and $\gamma_{0}+\eta_{0}$, system (1.1) admits a large positive weak solution if conditions (H1) - (H5) are satisfied.

Proof of Theorem 1. Consider σ_{p} the first eigenvalue of $-\Delta_{p}$ with Dirichlet boundary conditions and ϕ_{1} the corresponding positive eigenfunction with $\left\|\phi_{1}\right\|=1$ and $\phi_{1} \in C^{\infty}(\bar{\Omega})$ (see [10]).

Let $S=\sup _{x \in \Omega}\left\{\sigma_{p} \phi_{1}^{p}-\left|\nabla \phi_{1}\right|^{p}\right\}$, then from growth conditions (H3)

$$
f(t) \geq S, g(t) \geq S, h(t) \geq S, l(t) \geq S, \text { for } t \text { large enough. }
$$

For each $\alpha_{0}+\beta_{0}$ and $\gamma_{0}+\eta_{0}$ large, let us define

$$
\underline{u}=\left(\frac{\alpha_{0}+\beta_{0}}{m_{1}}\right)^{\frac{1}{p-1}} \frac{p-1}{p} \phi_{1}^{\frac{p}{p-1}},
$$

and

$$
\underline{v}=\left(\frac{\gamma_{0}+\eta_{0}}{m_{2}}\right)^{\frac{1}{p-1}} \frac{p-1}{p} \phi_{1}^{\frac{p}{p-1}},
$$

where m_{1}, m_{2} are given by condition (H1). Let us show that $(\underline{u}, \underline{v})$ is a subsolution of problem (1.1) for $\alpha_{0}+\beta_{0}$ and $\gamma_{0}+\eta_{0}$ large enough. Indeed, let $\phi \in W_{0}^{1, p}(\Omega)$ with $\phi \geq 0$ in Ω. By (H1)-(H3), we get

$$
\begin{aligned}
& M_{1}\left(\int_{\Omega}|\nabla \underline{u}|^{p} d x\right) \int_{\Omega}|\nabla \underline{u}|^{p-2} \nabla \underline{u} \nabla \phi d x=M_{1}\left(\int_{\Omega}|\nabla \underline{u}|^{p} d x\right) \frac{\alpha_{0}+\beta_{0}}{m_{1}} \int_{\Omega} \phi_{1}\left|\nabla \phi_{1}\right|^{p-2} \nabla \phi_{1} \cdot \nabla \phi d x \\
& =\frac{\alpha_{0}+\beta_{0}}{m_{1}} M_{1}\left(\int_{\Omega}|\nabla \underline{u}|^{p} d x\right) \times \\
& \left\{\int_{\Omega}\left|\nabla \phi_{1}\right|^{p-2} \nabla \phi_{1}\left[\nabla\left(\phi_{1} \phi\right)-\phi \nabla \phi_{1}\right] d x\right\} \\
& =\frac{\alpha_{0}+\beta_{0}}{m_{1}} M_{1}\left(\int_{\Omega}|\nabla \underline{u}|^{p} d x\right) \times \\
& \left\{\int_{\Omega}\left|\nabla \phi_{1}\right|^{p-2} \nabla \phi_{1} \nabla\left(\phi_{1} \phi\right) d x\right\} \\
& -\frac{\alpha_{0}+\beta_{0}}{m_{1}} M_{1}\left(\int_{\Omega}|\nabla \underline{u}|^{p} d x\right)\left\{\int_{\Omega}\left|\nabla \phi_{1}\right|^{p} \phi d x\right\} \\
& =\frac{\alpha_{0}+\beta_{0}}{m_{1}} M_{1}\left(\int_{\Omega}|\nabla \underline{u}|^{p} d x\right)\left\{\int_{\Omega} \sigma_{p}\left|\phi_{1}\right|^{p-2} \phi_{1} .\left(\phi_{1} \phi\right) d x\right\} \\
& -\frac{\alpha_{0}+\beta_{0}}{m_{1}} M_{1}\left(\int_{\Omega}|\nabla \underline{\nabla}|^{p} d x\right)\left\{\int_{\Omega}\left|\nabla \phi_{1}\right|^{p} \phi d x\right\} \\
& =\frac{\alpha_{0}+\beta_{0}}{m_{1}} M_{1}\left(\int_{\Omega}|\nabla \underline{u}|^{p} d x\right) \int_{\Omega}\left(\sigma_{p}\left|\phi_{1}\right|^{p}-\left|\nabla \phi_{1}\right|^{p}\right) \phi d x \\
& \leq\left(\alpha_{0}+\beta_{0}\right) \int_{\Omega} S \phi d x \\
& \leq \int_{\Omega} \alpha(x) f(\underline{v}) \phi d x+\int_{\Omega} \beta(x) g(\underline{u}) \phi d x
\end{aligned}
$$

for $\alpha_{0}+\beta_{0}>0$ large enough, and all $\phi \in W_{0}^{1, p}(\Omega)$ with $\phi \geq 0$ in Ω.
Similarly,

$$
M_{2}\left(\int_{\Omega}|\nabla \underline{v}|^{2} d x\right) \int_{\Omega}|\nabla \underline{v}|^{p-2} \nabla \underline{v} \cdot \nabla \psi d x \leq \int_{\Omega} \gamma(x) h(\underline{u}) \psi d x+\int_{\Omega} \eta(x) \ngtr(\underline{v}) \psi d x \text { in } \Omega
$$

for $\gamma_{0}+\eta_{0}>0$ large enough and all $\psi \in W_{0}^{1, p}(\Omega)$ with $\psi \geq 0$ in Ω.
Also notice that $\underline{u}>0$ and $\underline{v}>0$ in Ω, $\underline{u} \rightarrow+\infty$ and $\underline{v} \rightarrow+\infty$ as $\alpha_{0}+\beta_{0} \rightarrow+\infty$ and $\gamma_{0}+\eta_{0} \rightarrow+\infty$.

For the supersolution part, consider e_{p} the solution of the following problem

$$
\left\{\begin{array}{c}
-\Delta_{p} e_{p}=1 \text { in } \Omega, \tag{2.12}\\
e_{p}=0 \text { on } \partial \Omega
\end{array}\right.
$$

We give the supersolution of problem (2.12) by

$$
\bar{u}=C e_{p}, \quad \bar{v}=\left(\frac{\|\gamma\|_{\infty}+\|\eta\|_{\infty}}{m_{2}}\right)^{\frac{1}{p-1}}\left(h\left(C\left\|e_{p}\right\|_{\infty}\right)\right)^{\frac{1}{p-1}} e_{p}
$$

where $C>0$ is a large positive real number to be given later.
Indeed, for all $\phi \in W_{0}^{1, p}(\Omega)$ with $\phi \geq 0$ in Ω, we get from (2.12) and the condition (H1)

$$
\begin{aligned}
M_{1}\left(\int_{\Omega}|\nabla \bar{u}|^{p} d x\right)_{\Omega}|\nabla \bar{u}|^{p-2} \nabla \bar{u} \cdot \nabla \phi d x & =M_{1}\left(\int_{\Omega}|\nabla \bar{u}|^{p} d x\right) \int_{\Omega}\left|\nabla e_{p}\right|^{p-2} \nabla e_{p} \cdot \nabla \phi d x \\
& =C^{p-1} M_{1}\left(\int_{\Omega}|\nabla \bar{u}|^{p} d x\right) \int_{\Omega} \phi d x \\
& \geq m_{1} C^{p-1} \int_{\Omega} \phi d x .
\end{aligned}
$$

By (H4) and (H5), we can choose C large enough so that

$$
m_{1} C^{p-1} \geq\|\alpha\|_{\infty} f\left[\left(\frac{\|\gamma\|_{\infty}+\|\eta\|_{\infty}}{m_{2}}\right)^{\frac{1}{p-1}}\left(h\left(C\left\|e_{p}\right\|_{\infty}\right)\right)^{\frac{1}{p-1}} e_{p}\right]+\|\beta\|_{\infty} g\left(C\left\|e_{p}\right\|_{\infty}\right) .
$$

Therefore,

$$
\begin{align*}
& M_{1}\left(\int_{\Omega}|\nabla \bar{u}|^{p} d x\right)_{\Omega}|\nabla \bar{u}|^{p-2} \nabla \bar{u} . \nabla \phi d x \\
& \geq\left\{\|\alpha\|_{\infty} f\left[\left(\frac{\|\gamma\|_{\infty}+\|\eta\|_{\infty}}{m_{2}}\right)^{\frac{1}{p-1}}\left(h\left(C\left\|e_{p}\right\|_{\infty}\right)\right)^{\frac{1}{p-1}} e_{p}\right]+\|\beta\|_{\infty} g\left(C\left\|e_{p}\right\|_{\infty}\right)\right\} \int_{\Omega} \phi d x \tag{2.13}\\
& \geq\|\alpha\|_{\infty} \int_{\Omega} f\left[\left(\frac{\|v\|_{\infty}+\| \| \|_{\infty}}{m_{2}}\right)^{\frac{1}{p-1}}\left(h\left(C\left\|e_{p}\right\|_{\infty}\right)\right)^{\frac{1}{p-1}} e_{p}\right] \phi d x+\|\beta\|_{\infty} \int_{\Omega} g\left(C\left\|e_{p}\right\|_{\infty}\right) \phi d x \\
& \geq \int_{\Omega} \alpha(x) f(\bar{v}) \phi d x+\int_{\Omega} \beta(x) g(\bar{u}) \phi d x .
\end{align*}
$$

Also

$$
\begin{array}{r}
M_{2}\left(\int_{\Omega}|\nabla \bar{v}|^{p} d x\right)_{\Omega}|\nabla \bar{v}|^{p-2} \nabla \bar{v} \cdot \nabla \psi d x=\left(\|\gamma\|_{\infty}+\|\eta\|_{\infty}\right) \int_{\Omega} h\left(C\left\|e_{p}\right\|_{\infty}\right) \psi d x \tag{2.14}\\
\geq \int_{\Omega} \gamma(x) h(\bar{u}) \psi d x+\int_{\Omega} \eta(x) h\left(C\left\|e_{p}\right\|_{\infty}\right) \psi d x .
\end{array}
$$

Using (H4) and (H5) again for C large enough we get

$$
\begin{equation*}
h\left(C\left\|e_{p}\right\|_{\infty}\right) \geq l\left[\left(\frac{\|\gamma\|_{\infty}+\|\eta\|_{\infty}}{m_{2}}\right)^{\frac{1}{p-1}}\left(h\left(C\left\|e_{p}\right\|_{\infty}\right)\right)^{\frac{1}{p-1}}\left\|e_{p}\right\|_{\infty}\right] \geq l(\bar{v}) . \tag{2.15}
\end{equation*}
$$

Combining (2.13) and (2.14), we obtain

$$
\begin{equation*}
M_{2}\left(\int_{\Omega}|\nabla \bar{v}|^{p} d x\right) \int_{\Omega}|\nabla \bar{v}|^{p-2} \nabla \bar{v} \cdot \nabla \psi d x \geq \int_{\Omega} \gamma(x) h(\bar{u}) \psi d x+\int_{\Omega} \eta(x) l(\bar{v}) \psi d x \tag{2.16}
\end{equation*}
$$

By (2.12) and (2.15), we conclude that (\bar{u}, \bar{v}) is a supersolution of problem (1.1). Furthermore, $\underline{u} \leq \bar{u}$ and $\underline{v} \leq \bar{v}$ for C chosen large enough.

Now, we use a similar argument to [22] in order to obtain a weak solution of our problem. Consider the following sequence

$$
\left\{\left(u_{n}, v_{n}\right)\right\} \subset\left(W_{0}^{1, p}(\Omega) \times W_{0}^{1, p}(\Omega)\right),
$$

where: $u_{0}:=\bar{u}, v_{0}=\bar{v}$ and $\left(u_{n}, v_{n}\right)$ is the unique solution of the system

$$
\left\{\begin{array}{l}
-M_{1}\left(\int_{\Omega}\left|\nabla u_{n}\right|^{p} d x\right) \Delta_{p} u_{n}=\alpha(x) f\left(v_{n-1}\right)+\beta(x) g\left(u_{n-1}\right) \text { in } \Omega, \tag{2.17}\\
-M_{2}\left(\int_{\Omega}\left|\nabla v_{n}\right|^{p} d x\right) \Delta_{p} v_{n}=\gamma(x) h\left(u_{n-1}\right)+\eta(x) l\left(v_{n-1}\right) \text { in } \Omega, \\
u=v=0 \text { on } \partial \Omega .
\end{array}\right.
$$

Since M_{1} and M_{2} satisfy (H1) and $\alpha(x) f\left(v_{n-1}\right), \beta(x) g\left(u_{n-1}\right), \gamma(x) h\left(u_{n-1}\right)$, and $\eta(x) l\left(v_{n-1}\right) \in$ $L^{p}(\Omega)($ in $x)$,
we deduce from a result in [1] that system (2.16) has a unique solution $\left(u_{n}, v_{n}\right) \in\left(W_{0}^{1, p}(\Omega) \times W_{0}^{1, p}(\Omega)\right)$.

Using (2.16) and the fact that $\left(u_{0}, v_{0}\right)$ is a supersolution of (1.1), we get

$$
\left\{\begin{array}{l}
-M_{1}\left(\int_{\Omega}\left|\nabla u_{0}\right|^{p} d x\right) \Delta_{p} u_{0} \geq \alpha(x) f\left(v_{0}\right)+\beta(x) g\left(u_{0}\right)=-M_{1}\left(\int_{\Omega}\left|\nabla u_{1}\right|^{p} d x\right) \Delta_{p} u_{1}, \\
-M_{2}\left(\int_{\Omega}\left|\nabla v_{0}\right|^{p} d x\right) \Delta_{p} v_{0} \geq \gamma(x) h\left(u_{0}\right)+\eta(x) l\left(v_{0}\right)=-M_{2}\left(\int_{\Omega}\left|\nabla v_{1}\right|^{p} d x\right) \Delta_{p} v_{1}
\end{array}\right.
$$

Then by Lemma $1, u_{0} \geq u_{1}$ and $v_{0} \geq v_{1}$. Also, since $u_{0} \geq \underline{u}, v_{0} \geq \underline{v}$ and the monotonicity of f, g, h, and l one has

$$
\begin{aligned}
-M_{1}\left(\int_{\Omega}\left|\nabla u_{1}\right|^{p} d x\right) \Delta_{p} u_{1} & =\alpha(x) f\left(v_{0}\right)+\beta(x) g\left(u_{0}\right) \\
& \geq \alpha(x) f(\underline{v})+\beta(x) g(\underline{u}) \geq-M_{1}\left(\int_{\Omega}|\nabla \underline{u}|^{p} d x\right) \Delta_{p} \underline{u}, \\
-M_{2}\left(\int_{\Omega}\left|\nabla v_{1}\right|^{p} d x\right) \Delta_{p} v_{1} & =\gamma(x) h\left(u_{0}\right)+\eta(x) l\left(v_{0}\right) \\
& \geq \gamma(x) h(\underline{u})+\eta(x) l(\underline{v}) \geq-M_{2}\left(\int_{\Omega}\left|\nabla_{\underline{v}}\right|^{p} d x\right) \Delta_{p} \underline{v} .
\end{aligned}
$$

According to Lemma 1 again, we obtain $u_{1} \geq \underline{u}, v_{1} \geq \underline{v}$.
Repeating the same argument for u_{2}, v_{2}, observe that

$$
\begin{aligned}
-M_{1}\left(\int_{\Omega}\left|\nabla u_{1}\right|^{p} d x\right) \Delta_{p} u_{1} & =\alpha(x) f\left(v_{0}\right)+\beta(x) g\left(u_{0}\right) \\
& \geq \alpha(x) f\left(v_{1}\right)+\beta(x) g\left(u_{1}\right)=-M_{1}\left(\int_{\Omega}\left|\nabla u_{2}\right|^{p} d x\right) \Delta_{p} u_{2}, \\
-M_{2}\left(\int_{\Omega}\left|\nabla v_{1}\right|^{p} d x\right) \Delta_{p} v_{1} & =\gamma(x) h\left(u_{0}\right)+\eta(x) l\left(v_{0}\right) \\
& \geq \gamma(x) h\left(u_{1}\right)+\eta(x) l\left(v_{1}\right)=-M_{2}\left(\int_{\Omega}\left|\nabla v_{2}\right|^{p} d x\right) \Delta_{p} v_{2},
\end{aligned}
$$

then $u_{1} \geq u_{2}, v_{1} \geq v_{2}$.
Similarly, we get $u_{2} \geq \underline{u}$ and $v_{2} \geq \underline{v}$ from

$$
\begin{aligned}
-M_{1}\left(\int_{\Omega}\left|\nabla u_{2}\right|^{p} d x\right) \Delta_{p} u_{2} & =\alpha(x) f\left(v_{1}\right)+\beta(x) g\left(u_{1}\right) \\
& \geq \alpha(x) f(\underline{v})+\beta(x) g(\underline{u}) \geq-M_{1}\left(\int_{\Omega}|\nabla \underline{u}|^{p} d x\right) \Delta_{p} \underline{u} \\
-M_{2}\left(\int_{\Omega}\left|\nabla v_{2}\right|^{p} d x\right) \Delta_{p} v_{2} & =\gamma(x) h\left(u_{1}\right)+\eta(x) l\left(v_{1}\right) \\
& \geq \gamma(x) h(\underline{u})+\eta(x) l(\underline{v}) \geq-M_{2}\left(\int_{\Omega}|\nabla \underline{v}|^{p} d x\right) \Delta_{p} \underline{v} .
\end{aligned}
$$

By repeating these implementations we construct a bounded decreasing sequence $\left\{\left(u_{n}, v_{n}\right)\right\} \subset\left(W_{0}^{1, p}(\Omega) \times W_{0}^{1, p}(\Omega)\right)$ verifying

$$
\begin{gather*}
\bar{u}=u_{0} \geq u_{1} \geq u_{2} \geq \ldots \geq u_{n} \geq \ldots \geq \underline{u}>0, \tag{2.18}\\
\bar{v}=v_{0} \geq v_{1} \geq v_{2} \geq \ldots \geq v_{n} \geq \ldots \geq \underline{v}>0 . \tag{2.19}
\end{gather*}
$$

By continuity of functions f, g, h, and l and the definition of the sequences $\left(u_{n}\right)$ and $\left(v_{n}\right)$, there exist positive constants $C_{i}>0, i=1, \ldots, 4$ such that

$$
\begin{equation*}
\left|f\left(v_{n-1}\right)\right| \leq C_{1}, \quad\left|g\left(u_{n-1}\right)\right| \leq C_{2},\left|h\left(u_{n-1}\right)\right| \leq C_{3}, \tag{2.20}
\end{equation*}
$$

and

$$
\left|l\left(u_{n-1}\right)\right| \leq C_{4} \text { for all } n .
$$

From (2.19), multiplying the first equation of (2.16) by u_{n}, integrating, using Holder inequality and Sobolev embedding we check that

$$
\begin{align*}
m_{1} \int_{\Omega}\left|\nabla u_{n}\right|^{p} d x & \leq M_{1}\left(\int_{\Omega}\left|\nabla u_{n}\right|^{p} d x\right)_{\Omega}\left|\nabla u_{n}\right|^{p} d x \tag{2.21}\\
& =\int_{\Omega} \alpha(x) f\left(v_{n-1}\right) u_{n} d x+\int_{\Omega} \beta(x) g\left(u_{n-1}\right) u_{n} d x \\
& \leq\|\alpha\|_{\infty} \int_{\Omega}\left|f\left(v_{n-1}\right)\right|\left|u_{n}\right| d x+\|\beta\|_{\infty} \int_{\Omega}\left|g\left(u_{n-1}\right)\right|\left|u_{n}\right| d x \\
& \leq C_{1} \int_{\Omega}\left|u_{n}\right| d x+C_{2} \int_{\Omega}\left|u_{n}\right| d x
\end{align*}
$$

$$
\leq C_{5}\left\|u_{n}\right\|_{W_{0}^{1, p}(\Omega)},
$$

or

$$
\begin{equation*}
\left\|u_{n}\right\|_{W_{0}^{1, p}(\Omega)} \leq C_{5}, \forall n, \tag{2.22}
\end{equation*}
$$

where $C_{5}>0$ is a constant independent of n.
Similarly, there exist $C_{6}>0$ independent of n such that

$$
\begin{equation*}
\left\|v_{n}\right\|_{W_{0}^{1, p}(\Omega)} \leq C_{6}, \quad \forall n \tag{2.23}
\end{equation*}
$$

From (2.20) and (2.21), we deduce that $\left\{\left(u_{n}, v_{n}\right)\right\}$ admits a weakly converging subsequence in $W_{0}^{1, p}\left(\Omega, \mathbb{R}^{2}\right) \times W_{0}^{1, p}\left(\Omega, \mathbb{R}^{2}\right)$ to a limit (u, v) satisfying $u \geq \underline{u}>0$ and $v \geq \underline{v}>0$. Being monotone and also using a standard regularity argument, $\left\{\left(u_{n}, v_{n}\right)\right\}$ converges itself to (u, v). Now, letting $n \rightarrow+\infty$ in (2.16), we conclude that (u, v) is a positive weak solution of system (1.1).

3. Conclusions

In [22], we discussed only the simple case when the parameters are constant, in this current work, we have proved the existence result for problem (1.1) by considering the complicated case when the parameters α, β, γ and η in the right hand side are variable. We also give a better subsolution providing easier computations compared with the last work in [22]. In the next work, we will try to apply the same techniques in the Hall-MHD equations which is nonlinear partial differential equation that arises in hydrodynamics and some physical applications. It was subsequently applied to problems in the percolation of water in porous subsurface strata (see for example $[2,8,9]$).

Acknowledgments

The authors are grateful to the Editor in Chief and anonymous referee for the insightful and constructive comments that improved this paper

Conflict of interest

All authors declare no conflicts of interest in this paper.

References

1. C. O. Alves, F. J. S. A. Correa, On existence of solutions for a class of problem involving a nonlinear operator, Comm. Appl. Nonlinear Anal., 8 (2001), 43-56.
2. M. Alizadeh, M. Alimohammady, Regularity and entropy solutions of some elliptic equations, Miskolc Math. Notes, 19 (2018), 715-729.
3. N. Azouz, A. Bensedik, Existence result for an elliptic equation of Kirchhoff-type with changing sign data , Funkcialaj Ekvacioj, 55 (2012), 55-66.
4. Y. Bouizem, S. Boulaaras, B. Djebbar, Existence of positive solutions for a class of Kirchhof elliptic systems with right hand side defined as a multiplication of two separate functions, Kragujevac J. Math., 45 (2021), 587-596.
5. Y. Bouizem, S. Boulaaras, B. Djebbar, Some existence results for an elliptic equation of Kirchhofftype with changing sign data and a logarithmic nonlinearity, Math. Methods Appl. Sci., 42 (2019), 2465-2474.
6. S. Boulaaras, Existence of positive solutions for a new class of parabolic Kirchoff systems with right hand side defined as a multiplication of two separate functions, Rocky Mt. J. Math., 50 (2020), 445-454.
7. F. J. S. A. Correa, G. M. Figueiredo, On a p-Kirchhoff equation type via Krasnoselkii's genus, Appl. Math. Lett., 22 (2009), 819-822.
8. S. Gala, Q. Liu, M. A. Ragusa, A new regularity criterion for the nematic liquid crystal fows, Appl. Anal., 91 (2012), 1741-1747.
9. S. Gala, M. A. Ragusa, Logarithmically improved regularity criterion for the Boussinesq equations in Besov spaces with negative indices, Appl. Anal., 95 (2016), 1271-1279.
10. L. C. Evans, Partial Differential Equations, 2nd Edition, Berkeley, American Mathematical Society, 2010.
11. X. L. Fan, D. Zhao, On the spaces $L^{p(x)}(\Omega)$ and $W^{m, p(x)}(\Omega)$, J. Math. Anal. Appl., 263 (2001), 424-446.
12. S. Boulaaras, Existence of positive solutions of nonlocal p(x)-Kirchhoff hyperbolic systems via sub-super solutions concept, J. Intell. Fuzzy Syst., 38 (2020), 1-13.
13. G. M. Figueiredo, A. Suarez, Some remarks on the comparison principle in Kirchhof equations, Rev. Mat. Iberoam., 34 (2018), 609-620.
14. J. Garcia-Melian, L. Iturriaga, Some counter examples related to the stationary Kirchhof equation, Proc. Amer. Math. Soc., 144 (2016), 3405-3411.
15. G. R. Kirchhoff, Vorlesungen ber mathematische Physik-Mechanik, 3 Edition, Teubner, Leipzig, 1883.
16. D. Lu, S. Peng, Existence and asymptotic behavior of vector solutions for coupled nonlinear Kirchhoff-type systems, J. Differ. Equations, 263 (2017), 8947-8978.
17. D. Lu, J. Xiao, Ground state solutions for a coupled Kirchhoff-type system, Math. Methods Appl. Sci., 38 (2015), 4931-4948.
18. D. Lu, Existence and multiplicity results for perturbed Kirchhoff-type Schrödinger systems in R^{3}, Comput. Math. Appl., 68 (2014), 1180-1193.
19. T. F. Ma, Remarks on an elliptic equation of Kirchhoff type, Nonlinear Anal., 63 (2005), 19671977.
20. S. Polidoro, M. A. Ragusa, Harnack inequality for hypoelliptic ultraparabolic equations with a singular lower order term, Rev. Mat. Iberoam., 24 (2008), 1011-1046.
21. B. Ricceri, On an elliptic Kirchhoff-type problem depending on two parameters, J. Global Optim., 46 (2010), 543-549.
22. S. Boulaaras, R. Guefaifia, Existence of positive weak solutions for a class of Kirrchoff elliptic systems with multiple parameters, Math. Methods Appl. Sci., 41 (2018), 5203-5210.
23. J. J. Sun, C. L. Tang, Existence and multiplicity of solutions for Kirchhoff type equations, Nonlinear Anal. Theory Methods Appl., 74 (2011), 1212-1222.
24. G. A. Afrouzi, N. T. Chung, S. Shakeri, Existence of positive solutions for kirchhoff type equations, Electron. J. Differ. Equations, 2013 (2013), 1-8.
© 2021 Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
