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1. Introduction

Consider the following system



−M1

∫
Ω

|∇u|p dx
4pu = α (x) f (v) + β (x) g (u) in Ω,

−M2

∫
Ω

|∇v|p dx
4pv = γ (x) h (u) + η (x) l (v) in Ω,

u = v = 0 on ∂Ω,

(1.1)

where 4pz =div
(
|∇z|p−2

∇z
)
, 1 < p < N, the p-Laplacian operator, Ω ⊂ RN (N ≥ 3) is a bounded

smooth domain with C2 boundary ∂Ω, and Mi : R+ → R+, i = 1, 2, are continuous functions with
further conditions to be given later, α, β, γ, η ∈ C

(
Ω
)
.

This nonlocal problem originates from the stationary version of Kirchhoff’s work [15] in 1883.

ρ
∂2u
∂t2 −

P0

h
+

E
2L

L∫
0

∣∣∣∣∣∂u
∂x

∣∣∣∣∣2 dx

 ∂2u
∂x2 = 0, (1.2)

where Kirchhoff extended the classical d’Alembert’s wave equation by considering the effect of
the changes in the length of the string during vibrations. The parameters in (1.2) have the following
meanings: L is the length of the string, h is the area of the cross-section, E is the Young modulus of
the material, ρ is the mass density, and P0 is the initial tension.

Recently, Kirchhoff elliptic equations have been heavily studied, we refer to [1–21, 23, 24].
In [1], Alves and Correa proved the validity of Sub-super solutions method for problems of

Kirchhoff class involving a single equation and a boundary condition


−M

(
‖u‖2

)
∆u = f (x, u) in Ω,

u = 0 on ∂Ω,

with f ∈ C
(
Ω × R

)
.

By using a comparison principle that requires M to be non-negative and non-increasing in [0,+∞), with
H (t) := M

(
t2
)

t increasing and H (R) = R, they managed to prove the existence of positive solutions
assuming f increasing in the variable u for each x ∈ Ω fixed.

For systems involving similar class of equations, this result can not be used directly, i.e. the
existence of a subsolution and a supersolution does not guarantee the existence of the solution.
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Therefore, a further construction is needed. As in [22], where we studied the system

−A
∫
Ω

|∇u|2 dx
4u = λ1 f (v) + µ1g (u) in Ω,

−B
∫
Ω

|∇v|2 dx
4v = λ2h (u) + µ2 (x) l (v) in Ω,

u = v = 0 on ∂Ω.

(1.3)

Using a weak positive supersolution as first term of a constructed iterative sequence (un, vn) in
W1,p

0 (Ω) × W1,p
0 (Ω), and a comparison principle introduced in [1], the authors established the

convergence of this sequence to a positive weak solution of the considered problem.
To complement our above works in [22], where we discussed only the simple case when the

parameters are constant, we are working in this paper for proving the existence result for
problem (1.1) by considering the complicated case when the parameters α, β, γ and η in the right hand
side are variable. We also give a better subsolution providing easier computations compared with the
last work in [22].

2. Existence result

Definition 1. (u, v) ∈
(
W1,p

0 (Ω) ×W1,p
0 (Ω)

)
, is called a weak solution of (1.1) if it satisfies

M1

∫
Ω

|∇u|p dx
 ∫

Ω

|∇u|p−2
∇u∇φdx =

∫
Ω

α (x) f (v) φdx +
∫
Ω

β (x) g (u) φ dx in Ω,

M2

∫
Ω

|∇v|p dx
 ∫

Ω

|∇v|p−2
∇v∇ψdx =

∫
Ω

γ (x) h (u)ψdx +
∫
Ω

η (x) l (v)ψ dx in Ω

for all (φ, ψ) ∈
(
W1,p

0 (Ω) ×W1,p
0 (Ω)

)
.

Definition 2. Let
(
u, v

)
, (u, v) be a pair of nonnegative functions in

(
W1,p

0 (Ω) ×W1,p
0 (Ω)

)
, they are

called positive weak subsolution and positive weak supersolution (respectively) of (1.1) if they satisfy
the following

M1

∫
Ω

∣∣∣∇u
∣∣∣p dx

 ∫
Ω

∣∣∣∇u
∣∣∣p−2
∇u∇φdx ≤

∫
Ω

α (x) f
(
v
)
φ dx +

∫
Ω

β (x) g
(
u
)
φ dx,

M2

∫
Ω

∣∣∣∇v
∣∣∣2 dx

 ∫
Ω

∣∣∣∇v
∣∣∣p−2
∇v∇ψdx ≤

∫
Ω

γ (x) h
(
u
)
ψ dx +

∫
Ω

η (x) l
(
v
)
ψ dx

and
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M1

∫
Ω

|∇u|p dx
 ∫

Ω

|∇u|p−2
∇u∇φdx ≥

∫
Ω

α (x) f (v) φ dx +
∫
Ω

β (x) g (u) φ dx,

M2

∫
Ω

|∇v|p dx
 ∫

Ω

|∇v|p−2
∇v∇ψdx ≥

∫
Ω

γ (x) h (u)ψ dx +
∫
Ω

η (x) l (v)ψ dx

for all (φ, ψ) ∈
(
W1,p

0 (Ω) ×W1,p
0 (Ω)

)
, with φ ≥ 0 and ψ ≥ 0, and

(
u, v

)
, (u, v) = (0, 0) on ∂Ω.

Lemma 1. (Comparison principle [24]) Let M : R+ → R+ be a continuous increasing function such
that

M (s) > m0 > 0, for all s ∈ R+. (2.1)

If u, v are two non-negative functions verifying
−M

∫
Ω

|∇u|p dx
4pu ≥ −M

∫
Ω

|∇v|p dx
4pv in Ω,

u = v = 0 on ∂Ω,

(2.2)

then u ≥ v a.e. in Ω.

Proof. Thanks to [24]. Define the functional J : W1,p
0 (Ω)→ R by the formula

J (u) =
1
p

M̂


∫
Ω

|∇u|p dx

 , u ∈ W1,p
0 (Ω) ,

where

M̂ (s) =

s∫
0

M (ξ) dξ.

It is obvious that the functional J is a continuously Gâteaux differentiable whose Gâteaux derivative
at the point u ∈ W1,p

0 (Ω) is the functional J′ ∈ W−1,p
0 (Ω) , given by

J′ (u) (ϕ) = M


∫
Ω

|∇u|p dx


∫
Ω

|∇u|p−2
∇u∇ϕdx, ϕ ∈ W1,p

0 (Ω) .

It is obvious that J′ is continuous and bounded since the function M is continuous.
We will show that J′ is strictly monotone in W1,p

0 (Ω).
Indeed, for any u, v ∈ W1,p

0 (Ω) , u , v, without loss of generality, we may assume that∫
Ω

|∇u|p dx ≥
∫
Ω

|∇v|p dx.
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Otherwise, changing the role of u and v in the following proof.
Therefore, we have

M


∫
Ω

|∇u|p dx

 ≥ M


∫
Ω

|∇v|p dx

 . (2.3)

Since M (s) is a monotone function.
Using Cauchy’s inequality, we have

∇u.∇v ≤ |∇u| |∇v| ≤
1
2

(
|∇u|2 + |∇v|2

)
. (2.4)

Using (2.4) we get∫
Ω

|∇u|p dx −
∫
Ω

|∇u|p−2
∇u.∇vdx ≥

1
2

∫
Ω

|∇u|p−2
(
|∇u|2 − |∇v|2

)
dx, (2.5)

and ∫
Ω

|∇v|p dx −
∫
Ω

|∇v|p−2
∇v.∇udx ≥

1
2

∫
Ω

|∇v|p−2
(
|∇v|2 − |∇u|2

)
dx. (2.6)

If |∇u (x)| ≥ |∇v (x)| for all x ∈ Ω, using (2.3)–(2.6) we have

I1 : = J′ (u) (u) − J′ (u) (v) − J′ (v) (u) + J′ (v) (v) (2.7)

= M


∫
Ω

|∇u|p dx



∫
Ω

|∇u|p dx −
∫
Ω

|∇u|p−2
∇u.∇vdx


−M


∫
Ω

|∇v|p dx



∫
Ω

|∇v|p−2
∇v.∇udx −

∫
Ω

|∇v|p dx


≥

1
2

M


∫
Ω

|∇u|p dx


∫
Ω

|∇u|p−2
(
|∇u|2 − |∇v|2

)
dx

−
1
2

M


∫
Ω

|∇v|p dx


∫
Ω

|∇u|p−2
(
|∇u|2 − |∇v|2

)
dx

=
1
2

M


∫
Ω

|∇v|p dx


∫
Ω

(
|∇u|p−2

− |∇v|p−2
) (
|∇u|2 − |∇v|2

)
dx

≥
m0

2

∫
Ω

(
|∇u|p−2

− |∇v|p−2
) (
|∇u|2 − |∇v|2

)
dx.

If |∇v (x)| ≥ |∇u (x)| for all x ∈ Ω, changing the role of u and v in (2.3)–(2.7), we have
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I2 : = J′ (v) (v) − J′ (v) (u) − J′ (u) (v) + J′ (u) (u) (2.8)

= M


∫
Ω

|∇v|p dx



∫
Ω

|∇v|p dx −
∫
Ω

|∇v|p−2
∇v.∇udx


−M


∫
Ω

|∇u|p dx



∫
Ω

|∇u|p−2
∇u.∇vdx −

∫
Ω

|∇u|p dx


≥

1
2

M


∫
Ω

|∇v|p dx


∫
Ω

|∇v|p−2
(
|∇v|2 − |∇u|2

)
dx

−
1
2

M


∫
Ω

|∇u|p dx


∫
Ω

|∇u|p−2
(
|∇v|2 − |∇u|2

)
dx

=
1
2

M


∫
Ω

|∇v|p dx


∫
Ω

(
|∇v|p−2

− |∇u|p−2
) (
|∇v|2 − |∇u|2

)
dx

≥
m0

2

∫
Ω

(
|∇v|p−2

− |∇u|p−2
) (
|∇v|2 − |∇u|2

)
dx.

From (2.6) and (2.7) we have(
J′ (u) − J′ (v)

)
(u − v) = I1 = I2 ≥ 0, ∀u, v ∈ W1,p

0 (Ω) . (2.9)

Moreover, if u , v and (J′ (u) − J′ (v)) (u − v) = 0, then we have∫
Ω

(
|∇u|p−2

− |∇v|p−2
) (
|∇u|2 − |∇v|2

)
dx = 0,

so |∇u| = |∇v| in Ω. Thus, we deduce that(
J′ (u) − J′ (v)

)
(u − v) = J′ (u) (u − v) − J′ (v) (u − v) (2.10)

= M


∫
Ω

|∇u|p dx


∫
Ω

|∇u|p−2
|∇u − ∇v|2 dx

= 0,

i.e., u − v is a constant.
In view of u = v = 0 on ∂Ω we have u ≡ v which is contrary with u , v.
Therefore (J′ (u) − J′ (v)) (u − v) > 0 and J is strictly monotone in W1,p

0 (Ω) .
Let u, v be two functions such that (2.2) is verified. Taking ϕ = (u − v)+, the positive part of u− v as

a test function of (2.2), we have

(
J′ (u) − J′ (v)

)
(ϕ) = M


∫
Ω

|∇u|p dx


∫
Ω

|∇u|p−2
∇u.∇ϕdx (2.11)
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−M


∫
Ω

|∇v|p dx


∫
Ω

|∇v|p−2
∇v.∇ϕdx

≤ 0.

Relations (2.10) and (2.11) mean that u ≤ v. �

Before stating and proving our main result, here are the conditions we need.

(H1) Mi : R+ → R+, i = 1, 2, are two continuous and increasing functions that satisfy the
monotonicity conditions of lemma 2.2 so that we can use the Comparison principle, and assume
further that there exists m1,m2 > 0 such that

M1 (s) ≥ m1, M2 (s) ≥ m2, for all s ∈ R+.

(H2) α, β, γ, η ∈ C
(
Ω
)

and

α (x) ≥ α0 > 0, β (x) ≥ β0 > 0, γ (x) ≥ γ0 > 0, η (x) ≥ η0 > 0

for all x ∈ Ω.

(H3) f , g, h, and l are continuous on [0,+∞[ , C1 on (0,+∞) , and increasing functions such that

lim
t→+∞

f (t) = +∞, lim
t→+∞

l (t) = +∞, lim
t→+∞

g (t) = +∞, lim
t→+∞

h (t) = +∞.

(H4) For all K > 0

lim
t→+∞

f
(
K

(
(h (t))

1
p−1

))
tp−1 = 0.

(H5)

lim
t→+∞

g (t)
tp−1 = lim

t→+∞

l (t)
tp−1 = 0.

Theorem 1. For large values of α0 + β0 and γ0 + η0, system (1.1) admits a large positive weak solution
if conditions (H1) − (H5) are satisfied.

Proof of Theorem 1. Consider σp the first eigenvalue of −4p with Dirichlet boundary conditions and
φ1 the corresponding positive eigenfunction with ‖φ1‖ = 1 and φ1 ∈ C∞

(
Ω
)

(see [10]).

Let S = sup
x∈Ω
{σpφ

p
1 − |∇φ1|

p}, then from growth conditions (H3)

f (t) ≥ S , g (t) ≥ S , h (t) ≥ S , l (t) ≥ S , for t large enough.

For each α0 + β0 and γ0 + η0 large, let us define

u =

(
α0 + β0

m1

) 1
p−1 p − 1

p
φ

p
p−1

1 ,
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and

v =

(
γ0 + η0

m2

) 1
p−1 p − 1

p
φ

p
p−1

1 ,

where m1,m2 are given by condition (H1) . Let us show that
(
u, v

)
is a subsolution of problem (1.1)

for α0 +β0 and γ0 + η0 large enough. Indeed, let φ ∈ W1,p
0 (Ω) with φ ≥ 0 in Ω. By (H1)− (H3) , we get

M1


∫
Ω

∣∣∣∇u
∣∣∣p dx


∫
Ω

∣∣∣∇u
∣∣∣p−2
∇u∇φdx = M1


∫
Ω

∣∣∣∇u
∣∣∣p dx

 α0 + β0

m1

∫
Ω

φ1 |∇φ1|
p−2
∇φ1.∇φdx

=
α0 + β0

m1
M1


∫
Ω

∣∣∣∇u
∣∣∣p dx

 ×
∫
Ω

|∇φ1|
p−2
∇φ1

[
∇ (φ1φ) − φ∇φ1

]
dx


=

α0 + β0

m1
M1


∫
Ω

∣∣∣∇u
∣∣∣p dx

 ×
∫
Ω

|∇φ1|
p−2
∇φ1∇ (φ1φ) dx


−
α0 + β0

m1
M1


∫
Ω

∣∣∣∇u
∣∣∣p dx



∫
Ω

|∇φ1|
p φdx


=

α0 + β0

m1
M1


∫
Ω

∣∣∣∇u
∣∣∣p dx



∫
Ω

σp |φ1|
p−2 φ1. (φ1φ) dx


−
α0 + β0

m1
M1


∫
Ω

∣∣∣∇u
∣∣∣p dx



∫
Ω

|∇φ1|
p φdx


=

α0 + β0

m1
M1


∫
Ω

∣∣∣∇u
∣∣∣p dx


∫
Ω

(
σp |φ1|

p
− |∇φ1|

p
)
φdx

≤ (α0 + β0)
∫
Ω

Sφdx

≤

∫
Ω

α (x) f
(
v
)
φdx +

∫
Ω

β (x) g
(
u
)
φdx

for α0 + β0 > 0 large enough, and all φ ∈ W1,p
0 (Ω) with φ ≥ 0 in Ω.

Similarly,
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M2


∫
Ω

∣∣∣∇v
∣∣∣2 dx


∫
Ω

∣∣∣∇v
∣∣∣p−2
∇v.∇ψdx ≤

∫
Ω

γ (x) h
(
u
)
ψdx +

∫
Ω

η (x) ł
(
v
)
ψdx in Ω

for γ0 + η0 > 0 large enough and all ψ ∈ W1,p
0 (Ω) with ψ ≥ 0 in Ω.

Also notice that u > 0 and v > 0 in Ω,
u→ +∞ and v→ +∞ as α0 + β0 → +∞ and γ0 + η0 → +∞ .

For the supersolution part, consider ep the solution of the following problem


−4pep = 1 in Ω,

ep = 0 on ∂Ω.

(2.12)

We give the supersolution of problem (2.12) by

u = Cep, v =

(
‖γ‖∞ + ‖η‖∞

m2

) 1
p−1 (

h
(
C

∥∥∥ep

∥∥∥
∞

)) 1
p−1 ep,

where C > 0 is a large positive real number to be given later.
Indeed, for all φ ∈ W1,p

0 (Ω) with φ ≥ 0 in Ω, we get from (2.12) and the condition (H1)

M1


∫
Ω

|∇u|p dx


∫
Ω

|∇u|p−2
∇u.∇φdx = M1


∫
Ω

|∇u|p dx


∫
Ω

∣∣∣∇ep

∣∣∣p−2
∇ep.∇φdx

= Cp−1M1


∫
Ω

|∇u|p dx


∫
Ω

φdx

≥ m1Cp−1
∫
Ω

φdx.

By (H4) and (H5), we can choose C large enough so that

m1Cp−1 ≥ ‖α‖∞ f

(‖γ‖∞ + ‖η‖∞
m2

) 1
p−1 (

h
(
C

∥∥∥ep

∥∥∥
∞

)) 1
p−1 ep

 + ‖β‖∞ g
(
C

∥∥∥ep

∥∥∥
∞

)
.

Therefore,
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M1

∫
Ω

|∇u|p dx
 ∫

Ω

|∇u|p−2
∇u.∇φdx

≥

{
‖α‖∞ f

[(
‖γ‖∞+‖η‖∞

m2

) 1
p−1

(
h
(
C

∥∥∥ep

∥∥∥
∞

)) 1
p−1 ep

]
+ ‖β‖∞ g

(
C

∥∥∥ep

∥∥∥
∞

)} ∫
Ω

φdx

≥ ‖α‖∞
∫
Ω

f
[(
‖γ‖∞+‖η‖∞

m2

) 1
p−1

(
h
(
C

∥∥∥ep

∥∥∥
∞

)) 1
p−1 ep

]
φdx + ‖β‖∞

∫
Ω

g
(
C

∥∥∥ep

∥∥∥
∞

)
φdx

≥
∫
Ω

α (x) f (v) φdx +
∫
Ω

β (x) g (u) φdx.

(2.13)

Also

M2

∫
Ω

|∇v|p dx
 ∫

Ω

|∇v|p−2
∇v.∇ψdx =

(
‖γ‖∞ + ‖η‖∞

) ∫
Ω

h
(
C

∥∥∥ep

∥∥∥
∞

)
ψdx

≥
∫
Ω

γ (x) h (u)ψdx +
∫
Ω

η (x) h
(
C

∥∥∥ep

∥∥∥
∞

)
ψdx.

(2.14)

Using (H4) and (H5) again for C large enough we get

h
(
C

∥∥∥ep

∥∥∥
∞

)
≥ l

(‖γ‖∞ + ‖η‖∞
m2

) 1
p−1 (

h
(
C

∥∥∥ep

∥∥∥
∞

)) 1
p−1

∥∥∥ep

∥∥∥
∞

 ≥ l (v) . (2.15)

Combining (2.13) and (2.14), we obtain

M2


∫
Ω

|∇v|p dx


∫
Ω

|∇v|p−2
∇v.∇ψdx ≥

∫
Ω

γ (x) h (u)ψdx +

∫
Ω

η (x) l (v)ψdx. (2.16)

By (2.12) and (2.15), we conclude that (u, v) is a supersolution of problem (1.1).
Furthermore, u ≤ u and v ≤ v for C chosen large enough.

Now, we use a similar argument to [22] in order to obtain a weak solution of our problem. Consider
the following sequence

{(un, vn)} ⊂
(
W1,p

0 (Ω) ×W1,p
0 (Ω)

)
,

where: u0 := u, v0 = v and (un, vn) is the unique solution of the system

−M1

∫
Ω

|∇un|
p dx

4pun = α (x) f (vn−1) + β (x) g (un−1) in Ω,

−M2

∫
Ω

|∇vn|
p dx

4pvn = γ (x) h (un−1) + η (x) l (vn−1) in Ω,

u = v = 0 on ∂Ω.

(2.17)
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Since M1 and M2 satisfy (H1) and α (x) f (vn−1) , β (x) g (un−1) , γ (x) h (un−1) , and η (x) l (vn−1) ∈
Lp (Ω) (in x) ,

we deduce from a result in [1] that system (2.16) has a unique solution
(un, vn) ∈

(
W1,p

0 (Ω) ×W1,p
0 (Ω)

)
.

Using (2.16) and the fact that (u0, v0) is a supersolution of (1.1), we get
−M1

∫
Ω

|∇u0|
p dx

4pu0 ≥ α (x) f (v0) + β (x) g (u0) = −M1

∫
Ω

|∇u1|
p dx

4pu1,

−M2

∫
Ω

|∇v0|
p dx

4pv0 ≥ γ (x) h (u0) + η (x) l (v0) = −M2

∫
Ω

|∇v1|
p dx

4pv1.

Then by Lemma 1, u0 ≥ u1 and v0 ≥ v1. Also, since u0 ≥ u, v0 ≥ v and the monotonicity of f , g, h,
and l one has

−M1


∫
Ω

|∇u1|
p dx

4pu1 = α (x) f (v0) + β (x) g (u0)

≥ α (x) f
(
v
)

+ β (x) g
(
u
)
≥ −M1


∫
Ω

∣∣∣∇u
∣∣∣p dx

4pu,

−M2


∫
Ω

|∇v1|
p dx

4pv1 = γ (x) h (u0) + η (x) l (v0)

≥ γ (x) h
(
u
)

+ η (x) l
(
v
)
≥ −M2


∫
Ω

∣∣∣∇v
∣∣∣p dx

4pv.

According to Lemma 1 again, we obtain u1 ≥ u, v1 ≥ v.

Repeating the same argument for u2, v2, observe that

−M1


∫
Ω

|∇u1|
p dx

4pu1 = α (x) f (v0) + β (x) g (u0)

≥ α (x) f (v1) + β (x) g (u1) = −M1


∫
Ω

|∇u2|
p dx

4pu2,

−M2


∫
Ω

|∇v1|
p dx

4pv1 = γ (x) h (u0) + η (x) l (v0)

≥ γ (x) h (u1) + η (x) l (v1) = −M2


∫
Ω

|∇v2|
p dx

4pv2,
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then u1 ≥ u2, v1 ≥ v2.

Similarly, we get u2 ≥ u and v2 ≥ v from

−M1


∫
Ω

|∇u2|
p dx

4pu2 = α (x) f (v1) + β (x) g (u1)

≥ α (x) f
(
v
)

+ β (x) g
(
u
)
≥ −M1


∫
Ω

∣∣∣∇u
∣∣∣p dx

4pu,

−M2


∫
Ω

|∇v2|
p dx

4pv2 = γ (x) h (u1) + η (x) l (v1)

≥ γ (x) h
(
u
)

+ η (x) l
(
v
)
≥ −M2


∫
Ω

∣∣∣∇v
∣∣∣p dx

4pv.

By repeating these implementations we construct a bounded decreasing sequence
{(un, vn)} ⊂

(
W1,p

0 (Ω) ×W1,p
0 (Ω)

)
verifying

u = u0 ≥ u1 ≥ u2 ≥ ... ≥ un ≥ ... ≥ u > 0, (2.18)

v = v0 ≥ v1 ≥ v2 ≥ ... ≥ vn ≥ ... ≥ v > 0. (2.19)

By continuity of functions f , g, h, and l and the definition of the sequences (un) and (vn) , there exist
positive constants Ci > 0, i = 1, ..., 4 such that

| f (vn−1)| ≤ C1, |g (un−1)| ≤ C2, |h (un−1)| ≤ C3, (2.20)

and
|l (un−1)| ≤ C4 for all n.

From (2.19), multiplying the first equation of (2.16) by un, integrating, using Holder inequality and
Sobolev embedding we check that

m1

∫
Ω

|∇un|
p dx ≤ M1


∫
Ω

|∇un|
p dx


∫
Ω

|∇un|
p dx (2.21)

=

∫
Ω

α (x) f (vn−1) undx +

∫
Ω

β (x) g (un−1) undx

≤ ‖α‖∞

∫
Ω

| f (vn−1)| |un| dx + ‖β‖∞

∫
Ω

|g (un−1)| |un| dx

≤ C1

∫
Ω

|un| dx + C2

∫
Ω

|un| dx
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≤ C5 ‖un‖W1,p
0 (Ω) ,

or
‖un‖W1,p

0 (Ω) ≤ C5, ∀n, (2.22)

where C5 > 0 is a constant independent of n.
Similarly, there exist C6 > 0 independent of n such that

‖vn‖W1,p
0 (Ω) ≤ C6, ∀n. (2.23)

From (2.20) and (2.21), we deduce that {(un, vn)} admits a weakly converging subsequence in
W1,p

0

(
Ω,R2

)
× W1,p

0

(
Ω,R2

)
to a limit (u, v) satisfying u ≥ u > 0 and v ≥ v > 0. Being monotone and

also using a standard regularity argument, {(un, vn)} converges itself to (u, v) . Now, letting n → +∞ in
(2.16), we conclude that (u, v) is a positive weak solution of system (1.1). �

3. Conclusions

In [22], we discussed only the simple case when the parameters are constant, in this current work,
we have proved the existence result for problem (1.1) by considering the complicated case when the
parameters α, β, γ and η in the right hand side are variable. We also give a better subsolution providing
easier computations compared with the last work in [22]. In the next work, we will try to apply the
same techniques in the Hall-MHD equations which is nonlinear partial differential equation that arises
in hydrodynamics and some physical applications. It was subsequently applied to problems in the
percolation of water in porous subsurface strata (see for example [2, 8, 9]).
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