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1. Introduction

In 1922, Banach [1] introduced one of the most fundamental and significant result called Banach
contraction principle of non-linear analysis. It is a prominent result for solving existence problems
in several branches of mathematical analysis. Picard theorem, non- linear volterra integral equations,
Fredholm integral equations, etc. are the examples where Banach contraction principle is mostly used
besides supporting the convergence of schemes in computational mathematics. Due to application
potential, the notion of Banach contraction principle was investigated by several authors [2–5].
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In 1968, Kannan [6] introduced a significant variant of Banach contraction principle which remove
the continuity condition in [1]. i.e.,

Theorem 1 ( [6]). Let (M, d) be a complete metric spaces and a self map T : M → M be a Kannan
contraction mapping,

d(Tµ,Tϑ) ≤ ρ[d(µ,Tµ) + d(ϑ,Tϑ)]

for all µ, ϑ ∈ M, where ρ ∈ [0, 1
s ). Then T admits a unique fixed point in M.

In correspond to the evolution of spaces, in 1972, Chatterjea [7] defined following contraction
mapping on complete metric space.

Theorem 2 ( [7]). Let (M, d) be a complete metric space. A self-mapping T : M → M be a Chatterjea
type contraction

d(Tµ,Tϑ) ≤ ρ[d(µ,Tϑ) + d(ϑ,Tµ)]

for all µ, ϑ ∈ M, where ρ ∈ (0, 1
2 ). Then T has a unique fixed point.

The concept of cyclic contraction mapping was defined by Kirk et al. [8]. In 2011, Karapinar
et al. [9] introduced Kannan type cyclic contraction which is as follows:

Let (M, d) be a metric space. A cyclic mapping T : A ∪ B → A ∪ B is said to be a Kannan type
cyclic contraction if there exists λ ∈ [0, 1/2) such that d(Tµ,Tϑ) ≤ λ[d(µ,Tµ) + d(ϑ,Tϑ)] for any µ ∈
A and ϑ ∈ B.

Later on, in 2016, Fan [10] proved theorems on fixed point for some special cyclic mappings
satisfying Banach contraction condition, Kannan contraction condition, and β-quasi contraction
condition within the environment of a quasi-partial b-metric space.

Very recently in the year 2018, Karapinar [11] revisited the Kannan type contraction by adopting
interpolative approach and dropped uniqueness of fixed point.

Theorem 3 ( [11]). In the framework of a complete metric space (M, d), a mapping T : M → M forms
an interpolative Kannan type contraction i.e. if there are constants ρ ∈ [0, 1) and α ∈ (0, 1) such that

d(Tµ,Tϑ) ≤ ρ[d(µ,Tµ)]α · [d(ϑ,Tϑ)]1−α

for all µ, ϑ ∈ M \ Fix(T ), where Fix(T ) = {z ∈ M,Tz = z}. Then it possesses a fixed point in M.

In continuation, interesting work was done by many authors [12–28] which enriched this field.
Throughout this paper, R+ denote the set of all non-negative real numbers.
In this paper, our aim is to investigate the validity of existence and uniqueness of fixed point via

qpb-cyclic Chatterjea contraction and interpolative Chatterjea contractions for quasi-partial b-metric
space introduced by Gupta and Gautam [29].

Definition 1 ( [30]). Let M, φ. A partial metric is a function p : M × M → R+ satisfying

(PM1) p(µ, ϑ) = p(ϑ, µ),

(PM2) If 0 ≤ p(µ, µ) = p(µ, ϑ) = p(ϑ, ϑ), then µ = ϑ,

(PM3) p(µ, µ) ≤ p(µ, ϑ),

(PM4) p(µ, ϑ) − p(δ, δ) ≤ p(µ, δ) + p(δ, ϑ)
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for all µ, ϑ, δ ∈ M. The pair (M, p ) is called partial metric space.

Definition 2 ( [31]). A quasi-partial metric on a nonempty set M is a function q : M × M → R+ such
that

(QPM1) If 0 ≤ q(µ, µ) = q(µ, ϑ) = q(ϑ, ϑ), then µ = ϑ,

(QPM2) q(µ, µ) ≤ q(µ, ϑ),

(QPM3)q(µ, µ) ≤ q(µ, ϑ),

(QPM4)q(µ, ϑ) − q(δ, δ) ≤ q(µ, δ) + q(δ, ϑ)

for all µ, ϑ, δ ∈ M. A quasi-partial metric space is a pair (M, q ) such that M is an nonempty set and q
is a quasi-partial metric on M.

Example 1. M = [0,∞), q : M × M → [0,∞). Define q(µ, ϑ) = max{µ, ϑ} + |µ − ϑ| .
Here q(µ, µ) = q(µ, ϑ) = q(ϑ, ϑ)⇒ µ = ϑ as µ = max{µ, ϑ} + |µ − ϑ| = ϑ .
Again q(µ, µ) ≤ q(µ, ϑ) as max{µ, µ} + |µ − µ| ≤ max{µ, ϑ} + |µ − ϑ| and similarly q(µ, µ) ≤ q(ϑ, µ) .
Also q(µ, ϑ) + q(δ, δ) ≤ qpb(µ, δ) + qpb(δ, ϑ).
Let µ, ϑ, δ ∈ X . If µ ≤ ϑ ≤ δ , then

max{µ, ϑ} + |µ − ϑ| ≤ ϑ + |µ − δ| + |δ − ϑ|

≤ max{µ, δ} + |µ − δ| + max{δ, ϑ} + |δ − ϑ| − δ.

So (QPM4) holds. Thus (M,q) is a quasi-partial metric space.

Definition 3 ( [32]). A quasi-partial b-metric on a nonempty set M is a function qpb : M × M → R+

such that for some real number s ≥ 1 and for all µ, ϑ, δ ∈ M

(QPb1)qpb(µ, µ) = qpb(µ, ϑ) = qpb(ϑ, ϑ)⇒ µ = ϑ,

(QPb2)qpb(µ, µ) ≤ qpb(µ, ϑ),

(QPb3)qpb(µ, µ) ≤ qpb(ϑ, µ),

(QPb4)qpb(µ, ϑ) ≤ s[qpb(µ, δ) + qpb(δ, ϑ)] − qpb(δ, δ).

A quasi-partial b-metric space is a pair (M, qpb) such that M is an nonempty set and qpb is a quasi-
partial b-metric on M. The number s is called the coefficient of (M, qpb).

Let qpb be a quasi-partial b-metric on the set M. Then

dqpb(µ, ϑ) = qpb(µ, ϑ) + qpb(ϑ, µ) − qpb(µ, µ) − qpb(ϑ, ϑ)

is a b-metric on M.

Example 2. Let M = IR. Define the metric qpb(µ, ϑ) = |µ − ϑ| + |µ| + |µ − ϑ|2

for any (µ, ϑ) ∈ M × M with s ≥ 2.
It can be shown that (M, qpb) is a quasi-partial b-metric space.
In fact, if qpb(µ, µ) = qpb(ϑ, ϑ) = qpb(µ, ϑ)
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⇒ µ = ϑ which shows (QPb1) is true.
Also qpb (µ, µ) ≤ qpb(µ, ϑ) which proves (QPb2).
Now, qpb (µ, µ) = |µ| ≤ |µ − ϑ| + |ϑ| + |µ − ϑ|2

Since,

|µ| − |ϑ| ≤ |(|µ| − |ϑ|)|
≤ |µ − ϑ|

≤ |µ − ϑ| + |µ − ϑ|2

which proves (QPb3). Now we will prove (QPb4) with s = 2, that is
qpb (µ, ϑ) ≤ 2[qpb(µ, δ) + qpb(δ, ϑ)] − qpb(δ, δ)
In addition, since
|µ − y|2 ≤ (|µ − δ| + |δ − ϑ|)2 ≤ 2(|µ − δ|2 + |δ − ϑ|2)
We have qpb (µ, ϑ) + qpb (δ, δ)

= |µ − ϑ| + |µ| + |µ − ϑ|2 + |δ|

≤ 2[|µ − δ| + |δ − ϑ| + |µ| + |δ| + |µ − δ|2 + |δ − ϑ|2

Rearranging proves (QPb4).
Hence (X, qpb) is a Quasi-Partial b-metric space with s = 2.

Definition 4 ( [33]). Let (M, qpb) be a quasi-partial b-metric. Then

(i) A sequence {µn} ⊂ M converges to µ ∈ M if and only if

qpb(µ, µ) = lim
n→∞

qpb(µ, µn) = lim
n→∞

qpb(µn, µ).

(ii) A sequence {µn} ⊂ M is called a Cauchy sequence if and only if

lim
n,m→∞

qpb(µn, µm) and lim
m,n→∞

qpb(µm, µn) exist(and are finite).

(iii) The quasi partial b-metric space (M, qpb) is said to be complete if every Cauchy sequence {µn} ⊂

M converges with respect to τqpb to a point µ ∈ M such that

qpb(µ, µ) = lim
n,m→∞

qpb(µn, µm) = lim
m,n→∞

qpb(µm, µn).

(iv) A mapping f : M → M is said to be continuous at µ0 ∈ M if, for every ε > 0, there exists δ > 0
such that f (B(µ0, δ)) ⊂ B( f (µ0), ε).

Definition 5 ( [33]). Let (M, qpb) be a quasi-partial b-metric space and T : M → M be a given
mapping. Then T is said to be sequentially continuous at z ∈ M if for each sequence {µn} in M
converging to z, we have Tµn → Tz, that is, lim

n→∞
qpb(Tµn,Tz) = qpb(Tz,Tz).

Lemma 1 ( [34]). Let (M, qpb) be a quasi-partial b-metric space and (M, dqpb) be the corresponding
b-metric space. Then (M, dqpb) is complete if (M, qpb) is complete..

Lemma 2 ( [10]). Let (M, qpb) be a quasi-partial b-metric space and {µn}
∞
n=0 be a sequence in M. If

µn
qpb
−−→ µ, µn

qpb
−−→ ϑ and qpb(µ, µ) = qpb(ϑ, ϑ) = 0 then µ = ϑ.
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2. qpb-cyclic-Chatterjea mapping in quasi-partial b-metric spaces

In this section, we will introduce the notion of qpb-cyclic-Chatterjea mapping in a quasi-partial b-
metric space and state a condition on the contraction constant under which a self-map on a complete
quasi-partial b-metric space obtains a fixed point.

Definition 6. Let A and B be nonempty subsets of a quasi-partial b-metric space (M, qpb) with
coefficient s ≥ 1. A cyclic mapping T : A ∪ B→ A ∪ B is said to be a qpb-cyclic-Chatterjea mapping
if there exists α ∈ R, 0 ≤ ρ < 1

s2(s+1) such that

qpb(Tµ,Tϑ) ≤ ρ[qpb(µ,Tϑ) + qpb(ϑ,Tµ)] (2.1)

holds both for µ ∈ A, ϑ ∈ B and for µ ∈ B, ϑ ∈ A.

Remark 1. The inequalities stated below follow from the condition

0 ≤ ρ <
1

s2(s + 1)

(i) ρ < 1
s(s+1)

(ii) ρ < 1
s

(iii) s2ρ

1−sρ < 1
(iv) sρ

1−sρ < 1

(v) ρ < 1
2

Theorem 4. Let A and B be two nonempty closed subsets of a complete quasi-partial b-metric space
(M, qpb) and T : A∪ B→ A∪ B be a cyclic mapping which is a qpb-cyclic-Chatterjea mapping. Then
A ∩ B is nonempty and T has a unique fixed point in A ∩ B.

Proof. Let µ ∈ A, considering condition (2.1) and then using QPb2 we have,

qpb(Tµ,T 2µ) ≤ ρ[qpb(µ,T 2µ) + qpb(Tµ,Tµ)]
≤ ρ[qpb(µ,T 2µ) + qpb(Tµ,T 2µ)] (2.2)

Thus,

qpb(Tµ,T 2µ) ≤
ρ

1 − ρ
qpb(µ,T 2µ) (2.3)

Again using (2.1), we get

qpb(T 2µ,Tµ) ≤ ρ[qpb(Tµ,Tµ) + qpb(µ,T 2µ)]
≤ ρ[qpb(T 2µ,Tµ) + qpb(µ,T 2µ)] (by QPb3)

or

qpb(T 2µ,Tµ) ≤
ρ

1 − ρ
qpb(µ,T 2µ) (2.4)
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Let β = qpb(µ,T 2µ), we have from (2.3) and (2.4)

qpb(Tµ,T 2µ) ≤
ρβ

1 − ρ
≤

ρβ

1 − sρ
and qpb(T 2µ,Tµ) ≤

αβ

1 − ρ
≤

ρβ

1 − sρ
(2.5)

Again using (2.1) and QPb4 we get,

qpb(T 2µ,T 3µ) ≤ ρ[qpb(Tµ,T 3µ) + qpb(T 2µ,T 2µ)]

≤ ρ[s
[
qpb(Tµ,T 2µ) + qpb(T 2µ,T 3µ)

]
− qpb(T 2µ,T 2µ) + qpb(T 2µ,T 2µ)]

= sρ[qpb(Tµ,T 2µ) + qpb(T 2µ,T 3µ)]

On rearranging,
qpb(T 2µ,T 3µ) ≤

sρ
1 − sρ

qpb(Tµ,T 2µ).

Using (2.5) in above inequality, we get

qpb(T 2µ,T 3µ) ≤
sρ2β

(1 − sρ)2 (2.6)

Applying (2.1) again, using QPb4 and (2.5)–(2.6), we have

qpb(T 3µ,T 2µ) ≤ ρ[qpb(T 2µ,T 2µ)] + qpb(Tµ,T 3µ)]

≤ ρ[qpb(T 2µ,T 2µ) + s
[
qpb(Tµ,T 2µ) + qpb(T 2µ,T 3µ)

]
− qpb(T 2µ,T 2µ)]

= sρ[qpb(Tµ,T 2µ) + qpb(T 2µ,T 3µ)]

≤ sρ
[
ρβ

1 − sρ
+

sρ2β

(1 − sρ)2

]
=

sρ2β

(1 − sρ)2 (2.7)

Hence, on generalizing (2.7), we get

qpb(T nµ,T n+1µ) ≤
sn−1ρnβ

(1 − sρ)n and qpb(T n+1µ,T nµ) ≤
sn−1ρnβ

(1 − sρ)n (2.8)

We claim that {T nµ}∞n=1 is a Cauchy sequence in (M, qpb). For this, let m, n ∈ N such that m < n.
Using QPb4 repeatedly and (2.8), we get

qpb(T mµ,T nµ) ≤ s
[
qpb(T mµ,T m+1µ) + qpb(T m+1µ,T nµ)

]
− qpb(T m+1µ,T m+1µ)

≤ s
[
qpb(T mµ,T m+1µ) + qpb(T m+1µ,T nµ)

]
≤ sqpb(T mµ,T m+1µ) + s2qpb(T m+1µ,T m+2µ) + s2qpb(T m+2µ,T nµ)
≤ sqpb(T mµ,T m+1µ) + s2qpb(T m+1µ,T m+2µ) + s3qpb(T m+2µ,T m+3µ) + · · · + sn−mqpb(T n−1µ,T nµ)

≤
s.sm−1.ρm.β

(1 − sρ)m +
s2.sm.ρm+1.β

(1 − sρ)m+1 +
s3.sm+1.ρm+2.β

(1 − sρ)m+2 + · · · +
sn−m.sn−2.ρn−1.β

(1 − sρ)n−1
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=
smρmβ

(1 − sρ)m +
sm+2ρm+1β

(1 − sρ)m+1 +
sm+4ρm+2β

(1 − sρ)m+2 + · · · +
s2n−m−2ρn−1β

(1 − sρ)n−1

=
smρmβ

(1 − sρ)m

[
1 +

s2ρ

(1 − sρ)
+

s4ρ2

(1 − sρ)2 + · · · +
s2n−2m−2ρn−m−1

(1 − sρ)n−m−1

]
.

By Remark 1, s2ρ

1−sρ < 1, therefore,

qpb(T mµ,T nµ) ≤
( sρ

1−sρ )m
.β

{
1 − ( s2ρ

1−sρ )
n−m}

{
1 − ( s2ρ

1−sρ )
}

≤

(
sρ

1 − sρ

)m

.β

 1

1 − s2ρ

1−sρ


=

(
sρ

1 − sρ

)m

.
β(1 − sρ)

(1 − sρ − s2ρ)

Letting m, n→ ∞ and since by Remark 1, sρ
1−sρ < 1, we must have

lim
m,n→∞

qpb(T mµ,T nµ) ≤ 0

which implies

lim
m,n→∞

qpb(T mµ,T nµ) = 0 (2.9)

Similarly,

lim
m,n→∞

qpb(T nµ,T mµ) = 0 (2.10)

From the above two limits we have established that the sequence {T nµ}∞n=1 is a cauchy sequence in
(M, qpb).

By the completeness property, there exists w ∈ X, such that {T nµ}∞n=1 converges to w and

qpb(w,w) = lim
n→∞

qpb(T nµ,w)

= lim
n→∞

qpb(w,T nµ)

= lim
n,m→∞

qpb(T nµ,T mµ)

= lim
n,m→∞

qpb(T mµ,T nµ) = 0 (2.11)

Observe that
{
T 2nµ

}∞
n=0

is a sequence in A and
{
T 2n−1µ

}∞
n=1

is a sequence in B in a way that both
sequences converge to w. Also note that A and B are closed, so we have w ∈ A ∩ B. It is also
interesting to note that Tw ∈ A ∩ B since T is cyclic.

On the other hand, we prove that sequence {T nµ}∞n=1 also converges to Tw.
For,

qpb(T nµ,Tw) ≤ ρ
[
qpb(T n−1µ,Tw) + qpb(w,T nµ)

]
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Since ρ < 1
2 ,

qpb(T nµ,Tw) <
1
2

[
qpb(T n−1µ,Tw) + qpb(w,T nµ)

]
Letting n→ ∞ in the above inequality and using (2.11) we get

lim
n→∞

qpb(T nµ,Tw) ≤
1
2

lim
n→∞

qpb(T n−1µ,Tw)

which holds if and only if

lim
n→∞

qpb(T nµ,Tw) = 0. (2.12)

Similarly

lim
n→∞

qpb(Tw,T nµ) = 0. (2.13)

In addition, by contractive condition (2.1) and applying (QPb4) we obtain

qpb(Tw,Tw) ≤ ρ[qpb(w,Tw) + qpb(w,Tw)]
= 2ρqpb(w,Tw)
≤ 2ρ[sqpb(w,T nµ) + qpb(T nµ,Tw) − qpb(T nµ,T nµ)]
≤ 2ρs[qpb(w,T nµ) + qpb(T nµ,Tw)].

Letting n→ ∞ in the above inequality and using (2.11)–(2.12) we get

qpb(Tw,Tw) = 0 (2.14)

Eqs (2.12)–(2.14) together imply {T nµ}∞n=1 also converges to Tw.
Since all the conditions of Lemma 2 hold, we must have Tw = w which implies w ∈ A∩B is a fixed

point of T .
To prove that w is unique fixed point, let us assume that there exists another fixed point w∗ of T in

A ∩ B, that is Tw∗ = w∗, then from the contractive condition (2.1), we have

qpb(w∗,w) = qpb(Tw∗,Tw)
≤ ρ[qpb(w∗,Tw) + qpb(w,Tw∗)]
= ρ[qpb(w∗,w) + qpb(w,w∗)]

or,

qpb(w∗,w) ≤
ρ

1 − ρ
qpb(w,w∗) (2.15)

Similarly,

qpb(w,w∗) ≤
ρ

1 − ρ
qpb(w∗,w) (2.16)
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Using (2.15) and (2.16) we can say

qpb(w∗,w) ≤
(

ρ

1 − ρ

)2

.qpb(w∗,w)

or

qpb(w∗,w)
1 − (

ρ

1 − ρ

)2 ≤ 0.

But
[
1 −

(
ρ

1−ρ

)2
]
> 0 since ρ < 1

2 , so we must have

qpb(w∗,w) = 0. (2.17)

Note that by (2.1),

qpb(w,w) = qpb(Tw,Tw)
≤ 2ρqpb(w,Tw)
= 2ρqpb(w,w)

or,
qpb(w,w)

[
1 − 2ρ

]
≤ 0.

Again since ρ < 1
2 , so we have

qpb(w,w) = 0. (2.18)

Similarly we obtain

qpb(w∗,w∗) = 0. (2.19)

The conditions (2.17)–(2.19) together with QPb1 imply w = w∗.
Analogously, when µ ∈ B, similar arguments may be given to prove the result. �

We now justify our result by illustrating it with an example below.

Example 3. Let M = [0, 1] and A = [0, 1] and B = [0, 1/2).
Let us define T : A ∪ B→ A ∪ B as Tµ = µ/4. Define the quasi partial b-metric as

qpb(µ, ϑ) = |µ − ϑ| + µ for and (µ, ϑ) ∈ M × M.

We will verify that the mapping T is qpb-cyclic Chatterjea contraction mapping.
If, µ ∈ A, then Tµ ∈ (0, 1/4] = T (A) ⊆ B and if, µ ∈ B, then Tµ ∈ [0, 1/8) = T (B) ⊆ A.
Hence the mapping T is a cyclic map on M. Here (M, qpb) is a quasi-partial b-metric space with

s = 1.
The qpb-cyclic Chatterjea contraction condition with ρ = 1

3 and 1
3 <

1
s2(s+1) becomes

qpb(µ/4, ϑ/4) ≤
1
3

[
qpb

(
µ,
ϑ

4

)
+ qpb

(
ϑ,
µ

4

)]
AIMS Mathematics Volume 6, Issue 2, 1727–1742.
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1/4 |µ − ϑ| + µ/4 ≤ 1/3[1/4[|4µ − ϑ| + 4µ + |4ϑ − µ| + 4ϑ]]

i.e.
|µ − ϑ| + µ ≤ 1/3[|4µ − ϑ| + |4ϑ − µ| + 4µ + 4ϑ]

Let Z = 1/3[|4µ − ϑ| + |4ϑ − µ| + 4µ + 4ϑ].
Then,

|µ − ϑ| + µ ≤ Z. (2.20)

To prove this fact let us consider these cases:

Case 1: When µ = ϑ; then |µ − ϑ| + µ = µ and z = 14µ/3 which shows, |µ − ϑ| + µ ≤ Z.

Case 2: When µ < ϑ then, |µ − ϑ| + µ = ϑ − µ + µ = ϑ and

Z = 1/3[|4µ − ϑ| + 4ϑ − µ + 4µ + 4ϑ]
= 1/3[|4µ − ϑ| + 8ϑ + 3µ]. (2.21)

Now two cases arise:

(a) If 4µ < ϑ then (2.20) reduces to Z = 1/3[ϑ − 4µ + 8ϑ + 3µ] = 1/3[9ϑ − µ] and which further
shows, |µ − ϑ| + µ ≤ Z since, ϑ ≤ 1/3(9ϑ − µ)

(b) If 4µ > ϑ then (2.21) reduces to Z = 1/3[4µ − ϑ + 8ϑ + 3µ] = 1/3[7ϑ + 7µ] which shows
|µ − ϑ| + µ ≤ Z since, ϑ ≤ 1/3(7µ + 7ϑ).

Case 3: When µ > ϑ, then, |µ − ϑ| + µ = µ − ϑ + µ = 2µ − ϑ and

Z = 1/3[|4y − µ| + 4µ − ϑ + 4µ + 4ϑ] = 1/3[[|4ϑ − µ| + 8µ + 3ϑ] (2.22)

Now two cases arise:

(a) If 4ϑ < µ then (2.22) reduces to Z = 1/3[µ − 4ϑ + 3ϑ + 8µ] = 1/3[9µ − ϑ] which shows,
|µ − ϑ| + µ ≤ Z since 2µ − ϑ ≤ 1/3[9µ − ϑ].

(b) If 4ϑ > µ then (2.22) reduces to Z = 1/3[4ϑ − µ + 3ϑ + 8µ] = 1/3[7ϑ + 7µ] which shows
|µ − ϑ| + µ ≤ Z since, 2µ − ϑ ≤ 1/3(7ϑ + 7µ).

Hence contradictive condition is true in all the three cases with α = 1
s2(s+1) .

Here,

dqpb
(µ, ϑ) = qpb(µ, ϑ) + qpb(ϑ, µ) − qpb(µ, µ) − qpb(ϑ, ϑ)

= |µ − ϑ| + µ + |ϑ − µ| + µ − µ − ϑ

= 2 |µ − ϑ|

which is a complete metric. Hence (M, qpb) is a complete quasi-partial b-metric space. Therefore, all
conditions of Theorem 4 are satisfied and so T has a fixed point(which is w = 0 ∈ A ∩ B).
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Example 4. Following Example 1, Let M = [0, 1] and A = [0, 1/2] and B = [1/2, 1].
Define T : A ∪ B→ A ∪ B as Tµ = µ/4. Here, A ∩ B = { 12 } , φ and Tµ = [0, 1

4 ] * B.
Hence mapping T is not cyclic on M. Consider the quasi partial b-metric

qpb(µ, ϑ) = |µ − ϑ| + µ for and (µ, ϑ) ∈ M × M

is complete and T is qpb- Chatterjea contraction mapping. Clearly T has a fixed point 0 < A ∩ B.
Therefore, Theorem 4 is not applicable in non-cyclic case.

3. qpb-interpolative-Chatterjea mapping in quasi-partial b-metric spaces

Our next result ensures the existence of fixed point for interpolative Chatterjea type contraction but
dropped uniqueness property of fixed point in the setting of a quasi-partial b-metric space. We start our
results by the generalization of the definition of Chatterjea type contraction via interpolation notion, as
follows.

Definition 7. Let (M, qpb) be a complete quasi-partial b-metric space. We say that the self-mapping
T : M → M is an interpolative Chatterjea type contraction if there exists ρ ∈

[
0, 1

s

)
, α ∈ (0, 1) such that

qpb(Tµ,Tϑ) ≤ ρ[qpb(µ,Tϑ)]α
[

1
s2 qpb(ϑ,Tµ)

]1−α

(3.1)

for all µ, ϑ ∈ M \ Fix(T ).

Theorem 5. Let (M, qpb) be a complete quasi-partial b-metric space and T be an interpolative
Chatterjea type contraction. Then, T has a fixed point in M.

Proof. Let µ0 ∈ (M, qpb). We shall set a constructive sequence {µn} by εn+1 = T n(µ0) for all positive
integer n. Without loss of generality, we assume that µn = µn+1 for each nonnegative integer n. Indeed,
if there exist a nonnegative integer n0 such that µn0 = µn0+1 = Tµn0 , then, µn0 forms a fixed point.

Thus, we have qpb(µn,Tµn) = qpb(µn, µn+1) > 0, for each nonnegative integer n.
Let µ = µn and ϑ = µn−1 in (3.1), we derive that

qpb(µn+1, µn) = qpb(Tµn,Tµn−1)

≤ ρ[qpb(µn,Tµn−1)]α ·
[

1
s2 qpb(µn−1,Tµn)

]1−α

≤ ρ[qpb(µn, µn)]α ·
[

1
s2 qpb(µn−1, µn+1)

]1−α

≤ ρ[qpb(µn+1, µn)]α ·
[

1
s2 [s{qpb(µn−1, µn) + qpb(µn, µn+1)} − qpb(µn, µn)]

]1−α

≤ ρ[qpb(µn+1, µn)]α ·
[

1
s2 s{qpb(µn−1, µn) + qpb(µn, µn+1)}]

]1−α

≤ ρ[qpb(µn+1, µn)]α ·
[
1
s
{qpb(µn−1, µn) + qpb(µn, µn+1)}

]1−α

(3.2)
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Suppose that qpb(µn−1, µn) < qpb(µn, µn+1) for some n ≥ 1. Thus,
1
s
{qpb(µn−1, µn) + qpb(µn, µn+1)} ≤ qpb(µn, µn+1)

Consequently, the inequality(3.2) yields that qpb(µn+1, µn) ≤ qpb(µn−1, µn) which is a contradiction.
Thus, we have qpb(µn, µn+1) < qpb(µn−1, µn) for all n ≥ 1. Hence, {d(µn−1, µn)} is a non-increasing
sequence with positive terms. Set L = lim

n→∞
qpb(µn−1, µn). We have

1
s
{qpb(µn−1, µn) + qpb(µn, µn+1)} ≤ qpb(µn−1, µn)

By (3.2),

qpb(µn+1, µn) ≤ ρ[qpb(µn+1, µn)]α · [{qpb(µn−1, µn)]1−α

[qpb(µn+1, µn)]1−α ≤ ρ[qpb(µn−1, εn)]1−α

qpb(µn+1, µn) ≤ ρ
1

1−α qpb(µn−1, µn)
qpb(µn+1, µn) ≤ ρqpb(µn−1, µn) ≤ λnqpb(µ0, µ1) (3.3)

By taking n→ ∞ in the inequality (3.3), we get L = 0.
Now we will show that sequence {µn} is Cauchy.
Let n, k ∈ N

qpb(µn, µn+k) ≤ sqpb(µn, µn+1) + s2qpb(µn+1, µn+2) + · · · + skqpb(µn+k−1, µn+k)
≤ [sρn + s2ρn+1 + · · · + skρn+k−1]qpb(µ0, µ1)

≤ sk
n+k−1∑

i=n

ρiqpb(µ0, µ1)

≤ sk
∞∑

i=n

ρiqpb(µ0, µ1) . . . (3.4)

From (3.4),

qpb(µn+m, µn+m+k) ≤ sk
∞∑

i=m

ρiqpb(µn, µn+1)

lim
m→∞,n→∞

qpb(µn+m, µn+m+k) ≤ sk lim
m→∞

∞∑
i=m

lim
n→∞

ρiqpb(µn, µn+1) = 0

Therefore,

lim
n→∞

qpb(µn, µn+k) = lim
m→∞,n→∞

qpb(µn+m, µn+m+k) = 0 (3.5)

Since M is complete, so there exists z ∈ M such that limn→∞ µn = z.
Suppose that µn , Tµn for each n ≥ 0,

qpb(µn+1,Tz) = qpb(Tµn,Tz) ≤ ρ[qpb(µn,Tz)]α ·
[

1
s2 qpb(z,Tµn)

]1−α

≤ ρ[qpb(µn,Tz)]α · [qpb(z, µn+1)]1−α

Letting n→ ∞ in the inequality, we find that qpb(z,Tz) = 0, which is a contradiction. Thus, Tz = z. �
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Example 5. Let M = {1, 2, 3, 4}. Define complete quasi-partial b-metric as qpb(µ, ϑ) = max{µ, ϑ} +

|µ − ϑ|. The evaluation of values of qpb, µ and ϑ are given in Table 1.

Table 1. Values of qpb, µ and ϑ.

qpb(µ, ϑ) 1 2 3 4
1 1 3 5 7
2 3 2 4 6
3 5 4 3 5
4 7 6 5 4

We define self mappings T on M as T :
(
1 2 3 4
1 2 1 2

)
as shown in Figure 1.

Figure 1. 1 and 3 are the fixed point of T.

Choose α = 1
2 , ρ = 9

10

Case 1: Let (µ, ϑ) = (3, 1). Without loss of generality, we have

qpb(Tµ,Tϑ) ≤ ρ[qpb(µ,Tϑ)]α
[

1
s2 qpb(ϑ,Tµ)

]1−α

qpb(T3,T1) = 1 ≤ ρ[qpb(3,T1)]1/2
[

1
s2 qpb(1,T3)

]1/2

Case 2: Let (µ, ϑ) = (3, 3)

qpb(T3,T3) = 1 ≤ ρ[qpb(3,T3)]1/2
[

1
s2 qpb(3,T3)

]1/2

Case 3: Let (µ, ϑ) = (3, 4)

qpb(T3,T4) = 3 ≤ ρ[qpb(3,T4)]1/2
[

1
s2 qpb(4,T3)

]1/2

Hence we conclude that 1 and 3 are the fixed point of T in the setting of interpolative Chatterjea type
contraction. Thus T can have more than one fixed point.
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4. Open problem

Let (M, qpb) be a complete quasi-partial b-metric space. Consider a family of self-maps
Tn : X −→ X, n ≥ 1 and s ≥ 1 such that

qpb(Tiµ,T jϑ) ≤ ρi, j[qpb(µ,Ti6ϑ)]αi[
1
s

qpb(ϑ,T jµ)]1−αi

What are the conditions on Pi, j and αi for Tn to have a fixed point?

5. Conclusions

The main contribution of this paper is to introduce two new approaches to obtain fixed point in
contractive maps, one is qpb–cyclic mapping and other is an interpolative approach on predefined
Chatterjea contraction to ensure the existence of fixed points. In Several real world problems,
sensitivity analysis of experimental signals and synthesis of scientific data is needed for the
approximation of natural curves and surfaces. To model such problems, interpolation is required as an
iterated function system. Common fixed points and coupled fixed points on similar type of
interpolative contraction can be obtained in future. Also unique fixed point for these maps can be
worked in further studies in development of nonlinear analysis.
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