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1. Introduction

A complete and simply connected complex space form of complex dimension n, denoted by Mn(c),
is complex analytically isometric to

• a complex projective space CPn(c) if c > 0,
• a complex Euclidean space Cn if c = 0,
• a complex hyperbolic space CHn(c) if c < 0,

where the constant c is the holomorphic sectional curvature of a complex space form. Let M be a real
hypersurface immersed in a complex space form. On M there exists a natural almost contact metric
structure (see Section 2) induced from the complex structure on Mn(c) and the normal vector field,
respectively. Let ξ be the Reeb (or structure) vector field of the almost contact metric structure on M.
If ξ is an eigenvector of the shape operator of a real hypersurface at each point, then the hypersurface is
said to be Hopf. A real hypersurface is said to be non-Hopf if there exists at least one point on which ξ
is not an eigenvector of the shape operator. For a real hypersurface, an eigenfunction of an eigenvector
field of the shape operator is said to be a principal curvature.

The classification of real hypersurfaces in a nonflat complex space form Mn(c), c , 0, having
constant principal curvatures is one of the most challenging problems in geometry of real hypersurfaces
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and is still an open question till now (the case of n = 2 has been settled completely in [20, 22] for CP2

and in [3] for CH2), we refer the reader to [2, 5, 7] for some recent progress. Under certain additional
geometric conditions, the above problem was considered a long time ago.

Theorem 1.1. [11] Let M be a connected Hopf hypersurface ofCPn(c). Then M has constant principal
curvatures if and only if M is locally congruent to one of the following:

(A1) a geodesic sphere of radius r with 0 < r < π/
√

c;
(A2) a tube of radius r around a totally geodesic CPk(c) (1 ≤ k ≤ n − 2) with 0 < r < π/

√
c;

(B) a tube of radius r around a complex hyperquadric CQn−1 with 0 < r < π/(2
√

c);
(C) a tube of radius r around the Segre embedding of CP1(c) × CP

n−1
2 (c) and n ≥ 5 is odd with

0 < r < π/(2
√

c);
(D) a tube of radius r around a complex Grassmannian CG2.5 and n = 9 with 0 < r < π/(2

√
c);

(E) a tube of radius r around a Hermitian symmetric space S O(10)/U(5) and n = 15 with 0 < r <
π/(2

√
c).

When the ambient space is the complex hyperbolic space CHn(c), the corresponding version of the
above theorem is given as follows:

Theorem 1.2. [1] Let M be a connected Hopf hypersurface of CHn(c). Then M has constant principal
curvatures if and only if M is locally congruent to one of the following:

(A0) a self-tube, that is, a horosphere;
(A1,0) a geodesic hypersphere of radius r with 0 < r < ∞;
(A1,1) a tube of radius r around a totally geodesic complex hyperbolic hyperplane CHn−1(c) with 0 <

r < ∞;
(A2) a tube of radius r around a totally geodesic CHk(c) (1 ≤ k ≤ n − 2) with 0 < r < ∞;
(B) a tube of radius r around a totally real totally geodesic hyperbolic space RHn(c/4) with 0 < r <
∞.

Applying the above Theorems 1.1 and 1.2, many characterization theorems of Hopf hypersurfaces
having constant principal curvatures have been obtained (for examples see a great number of references
in [4, 17]). Among others, it has been proved in [21] that a real hypersurface in Mn(c), c , 0, can not
be totally umbilical. Applying this, the shape operator (denoted by A throughout this paper) can not be
a multiple of the metric tensor at each point of the hypersurface. Generalizing this, Ki, Kim and Lee
in [9] presented a characterization theorem of type (A) hypersurfaces, where by type (A) hypersurfaces
we mean those real hypersurfaces of type (A1) or (A2) in CPn, or of type (A0), (A1,0), (A1,1), (A2) in
CHn. Specifically, Ki, Kim and Lee in [9] obtained that a real hypersurface in Mn(c), c , 0, satisfies

LξA = 0 (1.1)

if and only if the hypersurface is of type (A), where L is the usual Lie differentiation. Furthermore,
weakening condition (1.1), Ki and Suh in [10, Theorem 1] proved

Theorem 1.3. [10] If a real hypersurface in a nonflat complex space form Mn(c), n > 2, satisfies

g((LξA)X,Y) = 0 (1.2)

for any vector fields X,Y orthogonal to ξ, then it is of type (A).
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Let M be a non-Hopf hypersurface in Mn(c), c , 0. Assume that Ω of M is an open subset consisting
those points on which the structure vector field ξ is not principal. One can set

Aξ = αξ + βU (1.3)

on Ω, where U is a unit vector field orthogonal to ξ and α = g(Aξ, ξ), and β is the length of Aξ − αξ.
Ki and Suh in [10, Theorem 2] presented a characterization theorem of ruled hypersurfaces. Where by
ruled hypersurfaces we mean those real hypersurfaces having a foliation by totally geodesic complex
hyperplanes (see [12]), or equivalently, the shape operator satisfies

g(AX,Y) = 0 (1.4)

for any vector fields X,Y orthogonal to ξ (see [4]). In other words, Ki and Suh’s result in [10,
Theorem 2] can be rewritten as the following.

Theorem 1.4. [10] Let M be a non-Hopf real hypersurface in Mn(c), n ≥ 3, c , 0. If on Ω, M satisfies

g((LξA)X,Y) = β2g(X, φU)g(Y,U) (1.5)

for any vector fields X,Y orthogonal to ξ and dα(ξ) , 0, then M is locally congruent to a ruled real
hypersurface.

In this paper, we aim to extend the above three theorems to real hypersurfaces of dimension three.

Theorem 1.5. Let M be a real hypersurface in CP2 or CH2 which is non-Hopf at every point. If M
satisfies (1.5) for any vector fields X,Y orthogonal to ξ and dα(ξ) , 0, then M is locally congruent to
a ruled real hypersurface.

On a real hypersurface in a nonflat complex space form Mn(c), c , 0, one can define a distribution
H = span{ξ, Aξ, A2ξ · · · } which is the smallest A-invariant distribution. A real hypersurface is said to
be 2-Hopf if rank(H) = 2 andH is integrable (see [4,6,8]). In particular, a 2-Hopf hypersurface is said
to be strongly 2-Hopf if in addition the spectrum of A|H is constant along the integral submanifolds
of H (see [6]). By applying such a concept and deleting condition dα(ξ) , 0 (it is not natural and
unnecessary), we obtain a more comprehensive classification result.

Theorem 1.6. Let M be a real hypersurface in CP2 or CH2 which is non-Hopf at every point. Then M
satisfies (1.5) for any vector fields X,Y orthogonal to ξ if and only if it is locally congruent to one of
the following:

• a ruled real hypersurface;
• a strongly 2-Hopf hypersurface satisfying g(AX,Y) = ag(X,Y) for any vector fields X,Y

orthogonal to ξ and a certain nowhere vanishing function a.

As an application of the proofs of the above results, we also extend Theorem 1.3 to real
hypersurfaces of dimension three.

Theorem 1.7. A real hypersurface in CP2 or CH2 satisfies (1.2) for any vector fields X,Y orthogonal
to ξ if and only if it is of type (A).
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2. Preliminaries

Let M be a real hypersurface immersed in a complex space form Mn(c) and N be a unit normal vector
field of M. We denote by ∇ the Levi-Civita connection of the metric g of Mn(c) and J the complex
structure, respectively. Let g and ∇ be the induced metric from the ambient space and the Levi-Civita
connection of g, respectively. Then the Gauss and Weingarten formulas are given respectively as the
following:

∇XY = ∇XY + g(AX,Y)N, ∇XN = −AX (2.1)

for any X,Y ∈ X(M), where A denotes the shape operator of M in Mn(c) and X(M) is the set of all
tangent vector fields. For any X ∈ X(M), we put

JX = φX + η(X)N, JN = −ξ, (2.2)

where φ and η are two tensor fields of type (1, 1) and (1, 0), respectively. Thus, on M there exits an
almost contact metric structure (φ, ξ, η, g) satisfying

φ2 = −id + η ⊗ ξ, η(ξ) = 1, φξ = 0, (2.3)

g(φX, φY) = g(X,Y) − η(X)η(Y), η(X) = g(X, ξ) (2.4)

for any X,Y ∈ X(M). If the structure vector field ξ is principal, that is, Aξ = αξ at each point, where
α = η(Aξ), then M is called a Hopf hypersurface and α is called a Hopf principal curvature.

Moreover, applying the parallelism of the complex structure (i.e., ∇J = 0) of Mn(c), and using (2.1)
and (2.2) we have

(∇Xφ)Y = η(Y)AX − g(AX,Y)ξ, (2.5)

∇Xξ = φAX (2.6)

for any X,Y ∈ X(M). Let R be the Riemannian curvature tensor of M. Because Mn(c) is of
constant holomorphic sectional curvature c, the Gauss and Codazzi equations of M in Mn(c) are given
respectively as the following:

R(X,Y)Z =
c
4
{g(Y,Z)X − g(X,Z)Y + g(φY,Z)φX − g(φX,Z)φY

− 2g(φX,Y)φZ} + g(AY,Z)AX − g(AX,Z)AY,
(2.7)

(∇XA)Y − (∇Y A)X =
c
4
{η(X)φY − η(Y)φX − 2g(φX,Y)ξ} (2.8)

for any X,Y ∈ X(M).

3. Proof of Theorem 1.5

Let M be a real hypersurface inCP2(c) orCH2(c) which is non-Hopf at every point. In what follows,
working on Ω (in this context it is M), let us put e1 = ξ, e2 = U and e3 = φU such that {e1, e2, e3} forms
a local orthonormal basis of the tangent space at each point of the hypersurface. We need the following
result that can be seen in [19, 24–26].
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Lemma 3.1. The following relations hold on Ω:

Ae1 = αe1 + βe2, Ae2 = βe1 + γe2 + δe3, Ae3 = δe2 + µe3,

∇e2e1 = −δe2 + γe3, ∇e3e1 = −µe2 + δe3, ∇e1e1 = βe3,

∇e2e2 = δe1 + κ1e3, ∇e3e2 = µe1 + κ2e3, ∇e1e2 = κ3e3,

∇e2e3 = −γe1 − κ1e2, ∇e3e3 = −δe1 − κ2e2, ∇e1e3 = −βe1 − κ3e2,

(3.1)

where γ, δ, µ, κi, i = {1, 2, 3}, are smooth functions on Ω.

By a direct calculation, we have

(LξA)X = (∇ξA)X − ∇AXξ + A∇Xξ.

for any vector field X orthogonal to ξ. Putting (2.6) into the above equation gives

(LξA)X = (∇ξA)X − φA2X + AφAX.

Now in terms of the skew-symmetry of φ, the above equation becomes

g((LξA)X,Y) = g((∇ξA)X,Y) + g(A2X, φY) + g(φAX, AY) (3.2)

for any vector fields X,Y orthogonal to ξ. Applying Lemma 3.1, working on Ω, according to (3.2),
we get

g((LξA)e2, e2) = e1(γ) − 2κ3δ + δγ + δµ. (3.3)

g((LξA)e2, e3) = e1(δ) − κ3µ + κ3γ − γ
2 − 2δ2 + γµ. (3.4)

g((LξA)e3, e2) = e1(δ) − κ3µ + κ3γ + β2 + 2δ2 + µ2 − γµ. (3.5)

g((LξA)e3, e3) = e1(µ) + 2κ3δ − δγ − δµ. (3.6)

Using our notations, Ki and Suh’s condition (1.5) can be rewritten by

g((LξA)X,Y) = β2g(X, e3)g(Y, e2) (3.7)

for any vector fields X,Y orthogonal to ξ. If the above equation is valid, from (3.4) and (3.5), we obtain

e1(δ) − κ3µ + κ3γ − γ
2 − 2δ2 + γµ = 0 (3.8)

and
e1(δ) − κ3µ + κ3γ + 2δ2 + µ2 − γµ = 0, (3.9)

respectively. The subtraction of (3.9) from (3.8) yields

4δ2 + (µ − γ)2 = 0. (3.10)
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From (3.10) we conclude that δ = 0 and µ = γ hold on each point of Ω. Next, we show that
dα(ξ) , 0 means that µ = γ = 0. Or equivalently, we assume that there exits a non-empty open subset
Q of Ω on which µ = γ , 0, and we aim to show that ξ(α) = 0 on Q.

With the aid of δ = 0, and µ = γ, from the Codazzi Eq (2.8) for X = e2 or X = e3 and Y = e1

we have
e2(β) = βκ2. (3.11)

αµ + βκ1 − µ
2 − β2 +

1
4

c = 0. (3.12)

e2(α) = e1(β). (3.13)

e1(µ) = βκ2. (3.14)

e3(α) = αβ + βκ3 − 3βµ. (3.15)

e3(β) = 2αµ − 2µ2 + βκ1 +
1
2

c. (3.16)

Similarly, from the Codazzi equation for X = e2 and Y = e3 we have

e3(µ) = −3βµ. (3.17)

e2(µ) = 0. (3.18)

Moreover, with the aid of δ = 0 and µ = γ, applying Lemma 3.1 we have

[e1, e2] = (κ3 − µ)e3, [e2, e3] = −2µe1 − κ1e2 − κ2e3. (3.19)

Taking the derivative of µ along [e2, e3], with the aid of (3.14), (3.17), (3.18) and the second equality
of (3.19), we obtain κ2 = 0 because of β , 0 and µ , 0 on Q. In addition, substituting κ2 = 0 into (3.14)
we obtain e1(µ) = 0. Applying β , 0 and µ , 0 on Q again, taking the derivative of µ along [e1, e2],
with the aid of e1(µ) = 0, (3.17), (3.18) and the first equality of (3.19), we obtain κ3 = µ. Eliminating
βκ1, from (3.12) and (3.16) we obtain

e3(β) = αµ − µ2 + β2 +
1
4

c. (3.20)

Note that from (3.11) and κ2 = 0 we have e2(β) = 0. Now taking the derivative of β along [e2, e3], with
the aid of (3.20), (3.18), (3.13), e1(µ) = 0, κ2 = 0 and the second equality of (3.19), we obtain

e2(α) = e1(β) = 0

because of µ , 0 on Q. Note that in this situation, the second equality of (3.19) becomes [e2, e3] =

−2µe1 − κ1e2. Applying this and the above equation, taking the derivative of α along [e2, e3], with the
aid of (3.15), we obtain e1(α) = 0 because of µ , 0 on Q. However, this contradicts our assumption
(dα(ξ) , 0 on the hypersurface) and means that when ξ(α) , 0 on Ω, then γ = µ = 0. Now, on Ω, the
shape operator is given by

A =


α β 0
β 0 0
0 0 0

 (3.21)
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with respect to the local orthonormal basis {e1, e2, e3}. In addition, it is easily seen that Eq (3.21) is
equivalent to g(AX,Y) = 0 for any vector fields X and Y orthogonal to the structure vector field ξ.
That is, the hypersurface M is locally congruent to a ruled hypersurface. This completes the proof of
Theorem 1.5.

Remark 3.1. The converse of Theorem 1.5 is not necessarily true. For example, let M be a minimal
homogeneous ruled real hypersurface in CH2(c) (see Lohnherr and Reckziegel [14]). According to
(1.4), (2.7) and (2.8), the shape operator of M is given by (see [14]):

A =


0

√
−c
2 0

√
−c
2 0 0
0 0 0

 .
On such a hypersurface, (1.5) holds necessarily and ξ(α) vanishes identically. We refer the reader
to [10] for (1.5) in ruled hypersurfaces.

4. Proof of Theorem 1.6

Let M be a real hypersurface in CP2(c) or CH2(c) which is non-Hopf at every point satisfying Ki and
Suh’s condition (1.5). Working on Ω (in this context it is M), according to the proof of Theorem 1.5,
δ = 0 and λ = µ , 0 are necessarily true. If µ = γ , 0, we have proved [e1, e2] = 0 and that α, β
and µ are all invariant along {e1, e2} = H . This implies that the hypersurface M is locally congruent to
a strongly 2-Hopf hypersurface (non-ruled). In addition, applying Lemma 3.1, δ = 0 and λ = µ , 0
are equivalent to g(AX,Y) = λg(X,Y) for any vector fields X,Y orthogonal to the structure vector field
ξ. If µ = λ = 0 and δ = 0, as discussed before it is easily seen that in this case the hypersurface is a
ruled one.

Conversely, suppose that M is a non-Hopf real hypersurface in CP2 or CH2. If M is a ruled
hypersurface, applying directly (3.21), we have from (3.3)–(3.6) that (1.5) holds. Now assume that
M satisfies g(AX,Y) = ag(X,Y) for any vector fields X,Y orthogonal to ξ and a is a non-vanishing
function. In order to prove (1.5), following (3.3)–(3.6) we need only to prove e1(a) = 0. On such a
hypersurface M, we construct a local orthonormal basis similar to that in Section three and adopt the
same symbols. In Section three, e1(a) = 0 has been confirmed due to a = µ = γ , 0. This completes
the proof of Theorem 1.6.

Remark 4.1. A three-dimensional real hypersurface satisfying that g(AX,Y) = ag(X,Y) for any vector
fields X,Y orthogonal to the structure vector field ξ and a function a has been considered in [13] which
adopted Ivey and Ryan’s formula in [8].

5. Proof of Theorem 1.7

First of all, we prove that a real hypersurface M in CP2(c) or CH2(c) satisfying (1.2) for any vector
fields X and Y orthogonal to ξ must be Hopf. Suppose that such a hypersurface M is non-Hopf, then
Ω defined in Section one is non-empty. Working on Ω, by Lemma 3.1, both (3.4) and (3.5) in Section
one are necessarily true in this context. If Eq (1.2) is valid for any vector fields X,Y orthogonal to ξ, it
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follows from (3.4) and (3.5) that

e1(δ) − κ3µ + κ3γ − γ
2 − 2δ2 + γµ = 0

and
e1(δ) − κ3µ + κ3γ + β2 + 2δ2 + µ2 − γµ = 0,

respectively. The subtraction of the above equation from the previous one gives

β2 + 4δ2 + (µ − γ)2 = 0.

This reduces to β = 0, and contradicts our assumption. Therefore, Ω is empty and M is Hopf. Recall
that the Hopf principal curvature (α = g(Aξ, ξ)) of any Hopf hypersurface in a nonflat complex space
form is a constant (see [4, 17]).

Considering Y = ξ in the Codazzi Eq (2.8) and using (2.6), for any vector field X, we have

(∇ξA)X = αφAX − AφAX +
1
4

cφX.

Putting this into (3.2) we have

g((LξA)X,Y) =
1
4

cg(φX,Y) + g(A2X, φY) + αg(φAX,Y)

for any vector fields X,Y orthogonal to ξ. If (1.2) is valid, it follows from the above equation that

A2X − αAX +
1
4

cφ2X = 0 (5.1)

for any vector field X orthogonal to ξ. Let X be an eigenvector field of the shape operator orthogonal
to ξ with eigenfunction λ. Since the dimension of the real hypersurface is three, then φX is also an
eigenvector field of the shape operator whose eigenfunction is denoted by µ. It follows from (5.1) that

λ2 − αλ −
1
4

c = 0, (5.2)

and µ is also a root of the quadratic Eq (5.2). From (5.2), we observe that all principal curvatures of
the hypersurface M are constant. On the other hand, from [17, Corollary 2.3], we have

λµ =
1
2

(λ + µ)α +
1
4

c. (5.3)

Eliminating c, from (5.2) and (5.3) we get

(λ −
1
2
α)(λ − µ) = 0.

It follows immediately that λ = µ. In fact, if λ , µ and hence λ = 1
2α, applying the Vieta theorem,

from (5.2) we obtain µ = 1
2α and we arrive at a contradiction. For any Hopf hypersurface in CP2 or

CH2, the two principal curvatures on the holomorphic distribution ker η being the same is equivalent
to Aφ = φA. Thus, the hypersurface is of type (A) (see [16, 18]).

Conversely, if the hypersurface is of type (A), applying the equivalent condition φA = Aφ, from (3.2)
we see that (1.2) is valid if and only if g((∇ξA)X,Y) = 0 for any vector fields X,Y orthogonal to ξ. Such
an equation holds on any real hypersurfaces of type (A) (see [4, Theorem 8.120]). This completes the
proof of Theorem 1.7.
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6. Conclusions

The geometry of real hypersurfaces in nonflat complex space forms is determined completely by
the shape operator. There exist a great number literature in the study of real hypersurfaces in nonflat
complex space forms in terms of the shape operator. The present paper give some new characterizations
for type (A) hypersurfaces, ruled hypersurfaces and strongly 2-Hopf hypersurfaces of dimension three
by means of the Lie derivative of the shape operator. This can be regarded as extensions for real
hypersurfaces of dimension greater than three which were obtained by Ki and Suh. In view of reuslts in
this paper, ones are helpful to understand better the geometry of real hypersurfaces of dimension three.
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