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1. Introduction

Variational inequalities earlier introduced and studied by Stampacchia [1] are now interestingly
applied in the fields of management, finance, economics, optimization and almost in all branches of
pure and applied sciences, see [2–15]. Since variational inequalities provide a natural framework to
solve different mathematical and scientific problems, various techniques including projection method,
auxiliary principle technique, Wiener-Hopf equations and dynamical systems have been developed for
finding the solution of variational inequalities and associated optimization problems, see [2–25] the
references therein.

Absolute value variational inequalities are the significant and useful generalizations of variational
inequalities which were introduced and studied by Mangasarian, see [26]. It was shown by Rohn
[27] that absolute value variational inequalities are equivalent to complementarity problem and further
considered by Mangasarian and Meyer [28] using different methodology. Absolute value variational
inequalities are more general as they contain classical variational inequalities as a special case. It has
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been proved through projection lemma that the absolute value variational inequality and fixed point
problem are equivalent, see [2,3]. Using this equivalence between absolute value variational inequality
and fixed point problem, various iterative schemes are developed for solving absolute value variational
inequalities and to examine the associated optimization problems, see [3, 14].

An innovative aspect in the study of variational inequalities concerns merit functions through which
the variational inequality problem can be reformulated into an optimization problem. It was Auslender
[29], who introduced the first merit function in optimization theory. Merit functions play important
roles in developing globally convergent iterative schemes and investigating the rate of convergence
for some iterative schemes, see [20–26]. Several merit functions are being suggested and analyzed for
variational inequalities and hence for the complementarity problems as a variational inequality problem
can be rephrased into a complementarity problem, see [30–41] and the references therein. Error bounds
also contribute significantly in the study of variational inequalities as error bounds are the functions
which estimate the closeness of an arbitrary point to the solution set in an approximate computation of
the iterates for solving variational inequalities, see [31–35].

In spite of the huge lift in the field of variational inequalities and optimization theory, we present and
investigate some new merit functions for absolute variational inequalities in this work. We also suggest
the error bounds for the solution of absolute variational inequalities under some suitable constraints.
The proofs of our proposed results are easy and direct in comparison with other methods and these
results also remain true for the associated problems of absolute value variational inequalities. Hence,
the findings of this paper provide a substantial addition in this field.

2. Preliminaries

Let H be a real Hilbert space, whose norm and inner product are denoted by ‖.‖ and < ., . >

respectively. Let K be a closed and convex set in H . For given operators T ,B : H → H , consider
the problem of finding u ∈ K such that

〈T u + B|u|, v − u〉 ≥ 0, ∀v ∈H , (2.1)

where |u| contains the absolute values of components of u ∈ H . The inequality (2.1) is called
absolute value variational inequality. The absolute value variational inequality (2.1) can be viewed as
a difference of two operators and includes previously known classes of variational inequalities as
special cases. For the recent applications of absolute value variational inequalities, see [2,3,32,34,38]
and the references therein.

In order to derive the main results of this paper, we recall some standard definitions and results.

Definition 2.1. An operator T : H → H is said to be strongly monotone, if there exists a constant
α > 0 such that

〈T u − T v, u − v〉 ≥ α‖u − v‖2, ∀u, v ∈H .

Definition 2.2. An operator T : H →H is said to be Lipschitz continuous, if there exists a constant
β > 0 such that

‖T u − T v‖ ≤ β‖u − v‖, ∀u, v ∈H .
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If T is strongly monotone and Lipschitz continuous operator, then from definitions (2.1) and (2.2),
we have α ≤ β.

Definition 2.3. An operator T : H →H is said to be monotone, if

〈T u − T v, u − v〉 ≥ 0, ∀u, v ∈H .

Definition 2.4. An operator T : H →H is said to be pseudomonotone, if

〈T u, v − u〉 ≥ 0,

implies
〈T v, v − u〉 ≥ 0 ∀u, v ∈H .

Definition 2.5. [36] A function M : H → RU{+∞} is called a merit (gap) function for the
inequality 2.1, if and only if

(i) M (u) ≥ 0,∀u ∈H .

(ii) M (ū) = 0, if and only if, ū ∈H solves inequality (2.1).

We now consider the well-known projection lemma which is due to [6]. This lemma is useful to
reformulate the variational inequalities into a fixed point problem.

Lemma 2.6. [6] Let K be a closed and convex set in H . Then for a given z ∈H , u ∈ K satisfies

〈u − z, v − u〉 ≥ 0, ∀v ∈ K,

if and only if
u = PKz,

where PK is the projection of H onto a closed and convex set K in H .

It is remarkable that the projection operator PK is non-expansive operator, that is

‖PK[u] − PK[v]‖ ≤ ‖u − v‖,∀u, v ∈H .

3. Main results

In this section, we suggest some merit functions associated with absolute value variational
inequalities. Using these merit functions, we attain some error bounds for absolute value variational
inequalities. To obtain this, we show that the variational inequalities are equivalent to the fixed point
problem.

Lemma 3.1. [2, 14] Let K be a closed convex set in H . The function u ∈ K is a solution of absolute
value variational inequality (2.1), if and only if, u ∈ K satisfies the relation

u = PK[u − ρT u − ρB|u|], (3.1)

where ρ > 0 is a constant.
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It follows from the above lemma that the absolute value variational inequality (2.1) and the fixed
point problem (3.1) are equivalent. This alternative equivalent formulation is very advantageous from
the theoretical as well as from the numerical point of view and is obtained by using projection
technique. The projection methods are due to Lions and Stampacchia [4] which provide several
effective schemes to approximate the solution of variational inequalities. The equivalence between
variational inequalities and the fixed point problem plays a significant role in establishing the various
results for problem (2.1) and its related formulations.

Lemma 3.2. For all u, v ∈H , we have

‖u‖2 + 〈u, v〉 ≥ −
1
4
‖v‖2.

Now, we define the residue vector R(u) by the following relation

Rρ(u) ≡ R(u) = u − PK[u − ρT u − ρB|u|]. (3.2)

From lemma 2.6, it can also be concluded that u ∈ K is a solution of the absolute value variational
inequality (2.1), if and only if, u ∈ K is a zero of the equation

Rρ(u) ≡ R(u) = 0.

We now show that the residue vector Rρ(u) is strongly monotone and Lipschitz continuous.

Lemma 3.3. Let the operators T and B be Lipschitz continuous with constants βT > 0 and βB > 0
and T be strongly monotone with constant αT > 0, respectively then the residue vector Rρ(u), defined
by (3.2) is strongly monotone on H .

Proof. For all u, v ∈H , consider

〈Rρ(u) − Rρ(v), u − v〉 = 〈u − PK[u − ρT u − ρB|u|] − v + PK[v − ρT v

− ρB|v|], u − v〉

= 〈u − v − PK[u − ρT u − ρB|u|] + PK[v − ρT v

− ρB|v|], u − v〉

= 〈u − v, u − v〉 − 〈PK[u − ρT u − ρB|u|] − PK[v
− ρT v − ρB|v|], u − v〉

≥ ‖u − v‖2 − ‖PK[u − ρT u − ρB|u| − PK[v
− ρT v − ρB|v|]‖‖u − v‖

≥ ‖u − v‖2 − ‖(u − v) − ρ(T u − T v)‖‖u − v‖

‖(B|u| − B|v|)‖ − ρ‖u − v‖

≥ ‖u − v‖2 − {
√

1 − 2ρβT + ρ2β2
T

+ ρβB}‖u − v‖2

= (1 −
√

1 − 2ρβT + ρ2β2
T
− ρβB)‖u − v‖2,

which implies that
〈Rρ(u) − Rρ(v), u − v〉 ≥ ϑ‖u − v‖2,
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where
ϑ = (1 −

√
1 − 2ρβT + ρ2β2

T
− ρβB) > 0,

which proves that the residue vector Rρ(u) is strongly monotone with constant ϑ > 0. �

Lemma 3.4. Let the operators T and B be Lipschitz continuous with constants βT > 0 and βB > 0
and T be strongly monotone with constant αT > 0, respectively then the residue vector Rρ(u), defined
by ((3.2)), is Lipschitz continuous on H .

Proof. For all u, v ∈H , consider

‖Rρ(u) − Rρ(v)‖ = ‖u − PK[u − ρT u − ρB|u|] − v + PK[v − ρT v − ρB|v|]‖
≤ ‖u − v‖ + ‖PK[u − ρT u − ρB|u|] − PK[v − ρT v − ρB|v|‖

≤ ‖u − v‖ + ‖(u − v) − ρ(T u − T v) − ρ(B|u| − B|v|)‖

≤ 2‖u − v‖ +

√
1 − 2ραT + ρ2β2

T
‖(u − v)‖

+

√
1 − 2ραB + ρ2β2

B
‖(u − v)‖

= (2 +

√
1 − 2ραT + ρ2β2

T
+

√
1 − 2ραB + ρ2β2

B
)‖(u − v)‖

= ϕ‖(u − v)‖,

where
ϕ = 2 +

√
1 − 2ραT + ρ2β2

T
+

√
1 − 2ραB + ρ2β2

B
> 0.

For the proof of above result, we have used the Lipschitz continuity and strongly monotonicity of
the operators T and B with constants βT > 0, βB > 0 and αT > 0, αB > 0, respectively. Thus the
residue vector Rρ(u) is Lipschitz continuous with constant ϕ > 0. This completes the proof. �

We now use the residue vector Rρ(u), defined by (3.2), to derive the error bound for the solution of
the problem (2.1).

Theorem 3.5. Let û ∈ H be a solution of the absolute value variational inequality (2.1). If the
operators T and B are Lipschitz continuous with constants βT > 0 and βB > 0 and strongly monotone
with constants αT > 0 and αB > 0, respectively then

1
l1
‖Rρ(u)‖ ≤ ‖û − u‖ ≤ l2‖Rρ(u)‖ , ∀u ∈H .

Proof. Let û ∈H solves the absolute value variational inequality (2.1). Then we have

〈ρT û + ρB|û|, v − û〉 ≥ 0, ∀v ∈H . (3.3)

Take v = PK[u − ρT u − ρB|u|] in (3.3), to have

〈ρT û + ρB|û|, PK[u − ρT u − ρB|u|] − û〉 ≥ 0. (3.4)

Take u = PK[u − ρT u − ρB|u|], z = u − ρT u − ρB|u| and v = û in projection lemma 2.6 to have

〈PK[u − ρT u − ρB|u|] − u + ρT u + ρB|u|, û − PK[u − ρT u − ρB|u|]〉 ≥ 0,

AIMS Mathematics Volume 6, Issue 11, 12133–12147.



12138

which shows that

〈−ρT u − ρB|u| + u − PK[u − ρT u − ρB|u|], PK[u − ρT u − ρB|u|] − û〉 ≥ 0. (3.5)

Addition of the inequalities (3.4) and (3.5) implies

〈ρ(T û − T u) + ρ(B|û| − B|u|) + (u − PK[u − ρT u − ρB|u|]), PK[u − ρT u

−ρB|u|] − û〉 ≥ 0,

Using (3.2), we obtain

〈T û − T u, PK[u − ρT u − ρB|u|]〉 + 〈B|û| − B|u|, û − PK[u − ρT u (3.6)

−ρB|u|]〉 ≤
1
ρ
〈R(u), PK[u − ρT u − ρB|u|] − û〉. (3.7)

By the strong monotonicity of the operators T and B with constants αT > 0 and αB > 0, respectively,
we obtain

αT ‖û − u‖2 ≤ 〈T û − T u, û − u〉

≤ 〈T û − T u, û − PK[u − ρT u − ρB|u|]〉 + 〈T û − T u, PK[u − ρT u

− ρB|u|] − u〉,

and
αB‖û − u‖2 ≤ 〈Bû − Bu, û − u〉

≤ 〈Bû − Bu, û − PK [u − ρT u − ρB|u|]〉 + 〈Bû − Bu, PK [u − ρT u

− ρB|u|] − u〉,

using (3.2) and (3.6), we obtain

(αT + αB)‖û − u‖2 ≤
1
ρ
〈R(u), PK[u − ρT u − ρB|u|] − û〉 + 〈T û

− T u,−R(u)〉 + 〈Bû − Bu,−R(u)〉,

Using the Lipschitz continuity of the operators T and B with constants βT > 0, βB > 0, respectively,
we obtain

ρ(αT + αB)‖û − u‖2 ≤
1
ρ
〈R(u), PK[u − ρT u − ρB|u|] − û〉 + ρ〈T û − T u,−R(u)〉

+ ρ〈Bû − Bu,−R(u)〉
≤ 〈R(u),−R(u)〉 − 〈R(u), û − u〉 + ρ〈T û − T u,−R(u)〉+
ρ〈Bû − Bu,−R(u)〉
≤ −‖R(u)‖2 + ‖û − u‖‖R(u)‖ + ρβT ‖û − u‖‖R(u)‖+
ρβB‖û − u‖‖R(u)‖
= −‖R(u)‖2 + (1 + ρ(βT + βB))‖û − u‖‖R(u)‖
≤ (1 + ρ(βT + βB))‖û − u‖‖R(u)‖,
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which implies that

‖û − u‖ ≤
(1 + ρ(βT + βB))
ρ(αT + αB)

‖R(u)‖ = l2‖R(u)‖, (3.8)

where
l2 =

(1 + ρ(βT + βB))
ρ(αT + αB)

.

Now, using the relation (3.2), we have

‖R(u)‖ = ‖u − PK[u − ρT u − ρB|u|‖

≤ ‖û − u‖ + ‖û − PK[u − ρT u − ρB|u|]‖
≤ ‖û − u‖ + ‖PK[û − ρT û − ρB|û|] − PK[u − ρT u − ρB|u|]‖
≤ ‖û − u‖ + ‖û − ρT û − ρB|û| − u + ρT u + ρB|u|‖

≤ ‖û − u‖ + ‖û − u‖ + ρ‖T û − T u‖ + ρ‖B|û| − B|u|‖

≤ 2‖û − u‖ + ρβT ‖û − u‖ + ρβB‖û − u‖

= (2 + ρ(βT + βB))‖û − u‖

= l1‖û − u‖,

which shows that
1
l1
‖R(u)‖ ≤ ‖û − u‖, (3.9)

where
l1 = (2 + ρ(βT + βB)).

Combining (3.8) and (3.9), we obtain

1
l1
‖R(u)‖ ≤ ‖û − u‖ ≤ l2‖R(u)‖ , ∀u ∈H . (3.10)

which is the required result. �

Now, substituting u = 0 in (3.10), we obtain

1
l1
‖R(0)‖ ≤ ‖û − u‖ ≤ l2‖R(0)‖ , ∀u ∈H . (3.11)

Combining (3.10) and (3.11), we get a relative error bound for any u ∈H .

Theorem 3.6. Suppose that all the conditions of Theorem 3.5 hold. If 0 , u ∈ H is a solution of the
absolute value variational inequality (2.1), then

s1
‖R(u)‖
‖R(0)‖

‖ ≤
‖u − û‖

û
≤ s2
‖R(u)‖
‖R(0)‖

.

It is noted that the normal residue vector R(u), defined in (3.2), is nondifferentiable. To resolve the
nondifferentiability which is a significant limitation of the regularized merit function, we examine
another merit function associated with the absolute value variational inequality (2.1). This merit
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function can be regarded as a regularized merit function. For all u ∈ H , consider the function, such
that

Mρ(u) = 〈T u + B|u|, u − PK[u − ρT u − ρB|u|]〉 −
1

2ρ
‖u − PK[u − ρT u − ρB|u|‖2. (3.12)

It is clear from the above equation that Mρ(u) ≥ 0, for all u ∈H .

Now, we prove that the function established in (3.12), is a merit function and this is the leading
objective of our next results.

Theorem 3.7. For all u ∈H , we have

Mρ(u) ≥
1

2ρ
‖Rρ(u)‖2.

In particular, we have Mρ(u) = 0, if and only if u ∈ H is a solution of the absolute value variational
inequality (2.1).

Proof. By substituting u = PK[u − ρT u − ρB|u|], z = u − ρT u − ρB|u| and v = u in lemma 2.6, we
obtain

〈ρT u + ρB|u| + PK[u − ρT u − ρB|u|] − u, u − PK[u − ρT u − ρB|u|]〉 ≥ 0.

Using (3.12) and lemma 3.2, we obtain

0 ≤ 〈ρT u + ρB|u| − (u − PK[u − ρT u − ρB|u|]), u − PK[u − ρT u

− ρB|u|]〉
= 〈ρT u + ρB|u| − Rρ(u),Rρ(u)〉

= 〈T u + B|u|,Rρ(u)〉 −
1
ρ
〈Rρ(u),Rρ(u)〉

= Mρ(u) +
1

2ρ
‖Rρ(u)‖2 −

1
ρ
‖Rρ(u)‖2

= Mρ(u) −
1

2ρ
‖Rρ(u)‖2,

which shows that
Mρ(u) ≥

1
2ρ
‖Rρ(u)‖2,

which is the required result. �

It is clear from the above inequality that Mρ(u) ≥ 0,∀u ∈ H . Also, if Mρ(u) = 0, then from the
above inequality, we obtain Rρ(u) = 0. Hence, according to lemma 3.1, it is clear that u ∈ H solves
the absolute value variational inequality (2.1). On the other hand, if u ∈ H is a solution of absolute
value variational inequality (2.1), then by lemma 3.1, we have u = PK[u − ρT u − ρB|u|]. Therefore,
from (3.12), we obtain, Mρ(u) = 0, which was the required result.

It is observed from Theorem 3.7 that Mρ(u) defined by (3.12), is a merit function for the absolute
value variational inequality (2.1). We also notice that the regularized merit function is differentiable,
if the operators T and B are differentiable. Now, we obtain the error bounds for the absolute value
variational inequality if both the operators T and B are not Lipschitz continuous.
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Theorem 3.8. Let û ∈ H be a solution of the absolute value variational inequality (2.1). Let the
operators T and B be strongly monotone with the constants αT > 0, αB > 0, respectively. Then

‖u − û‖2 ≤
4ρ

ρ(αT + αB)
[Mρ(u) +

1
ρ
‖ρT û + ρB|û|‖2], ∀u ∈H .

Proof. Let û ∈ H be a solution of the absolute value variational inequality (2.1) and by taking v = u,
we have

〈ρT û + ρB|û|, u − û〉 ≥ 0,

using lemma 3.1, we have

〈T û + B|û|, u − û〉 ≥
1

4ρ
‖u − û‖2 −

1
ρ
‖T û + B|û|‖2.

Using (3.12) and strong monotonicity of the operators T and B, we have

Mρ(u) = 〈T u + B|u|, u − û]〉 −
1

2ρ
‖u − û‖2

= 〈T u − T û + T û + B|u| − B|û| + B|û|, u − û]〉 −
1

2ρ
‖u − û‖2

= 〈T u − T û, u − û]〉 + 〈B|u| − B|û|, u − û]〉 + 〈T û + B|û|, u − û〉

−
1

2ρ
‖u − û‖2

≥ αT ‖u − û‖2 + αB‖u − û‖2 + 〈T û + B|û|, u − û〉 −
1

2ρ
‖u − û‖2

≥ (αT + αB −
1

2ρ
)‖u − û‖2 +

1
4ρ
‖u − û‖2 −

1
ρ
‖T û + B|û|‖2

= (αT + αB −
1

2ρ
+

1
4ρ

)‖u − û‖2 −
1
ρ
‖T û + B|û|‖2,

which shows that

‖u − û‖2 ≤
4ρ

4ρ(αT + αB) − 1
[Mρ(u) +

1
ρ
‖ρT û + ρB|û|‖2],

which is the required result. �

Now, we study one more merit function associated to the absolute value variational inequality.
This merit function is the difference between two regularized merit functions associated with (2.1).
Many authors used to study such type of merit functions to find the solution of variational inequalities
and complementarity problems, see [2, 3, 38–41]. We define the D-merit function for absolute value
variational inequality, which is the difference of regularized merit function defined by (3.12). We
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consider the following function

Dρ,ζ(u) = Mρ(u) −Mζ(u)

= 〈T u + B|u|, u − PK[u − ρT u − ρB|u|]〉 −
1

2ρ
‖u − PK[u − ρT u

− ρB|u|]‖2 − 〈T u + B|u|, u − PK[u − ζT u − ζB|u|]〉 +
1
2ζ
‖u

− PK[u − ζT u − ζB|u|]‖2〉

= 〈T u + B|u|,Rρ(u)〉 −
1

2ρ
‖Rρ(u)‖2 − 〈T u + B|u|,Rζ(u)〉+

1
2ζ
‖Rζ(u)‖2〉

= 〈T u + B|u|,Rρ(u) − Rζ(u)〉 −
1

2ρ
‖Rρ(u)‖2 +

1
2ζ
‖Rζ(u)‖2, ∀u ∈H .

(3.13)

It is clear from (3.13) thatDρ,ζ(u) is finite everywhere. We will now prove thatDρ,ζ(u) is in fact a merit
function for the absolute value variational inequality which is the prime inspiration for the following
result.

Theorem 3.9. For all u ∈H and ρ ≥ ζ, we have

(ρ − ζ)‖Rρ(u)‖2 ≥ 2ρζDρ,ζ(u) ≥ (ρ − ζ)‖Rρ(u)‖2‖Rζ(u)‖2.

Particularly, Dρ,ζ(u) = 0, if and only if u ∈ H is the solution of the absolute value variational
inequality (2.1).

Proof. Take u = PK[u− ρT u− ρB|u|], v = PK[u− ζT u− ζB|u| and z = u− ρT u− ρB|u| in lemma 2.6,
to have

〈PK[u − ρT u − ρB|u|] − u + ρT u + ρB|u|, PK[u − ζT u − ζB|u|] − PK[u − ρT u − ρB|u|]〉 ≥ 0,

which shows that

〈T u + B|u|,Rρ(u) − Rζ(u)〉 ≥
1
ρ
〈Rρ(u),Rρ(u) − Rζ(u)〉. (3.14)

From (3.13) and (3.14), we obtain

Dρ,ζ(u) ≥
1
2ζ
‖Rζ(u)‖2 −

1
2ρ
‖Rρ(u)‖2 +

1
ρ
‖Rρ(u)‖2 −

1
ρ
〈Rρ(u),Rζ(u)〉

=
1
2

(
1
ζ
−

1
ρ

)‖Rζ(u)‖2 +
1
ρ
‖Rρ(u)‖2 −

1
2ρ
‖Rρ(u)‖2 +

1
2ρ
‖Rζ(u)‖2

−
1
ρ
〈Rρ(u),Rζ(u)〉

=
1
2

(
1
ζ
−

1
ρ

)‖Rζ(u)‖2 +
1

2ρ
‖Rρ(u)‖2 +

1
2ρ
‖Rζ(u)‖2 −

1
ρ
〈Rρ(u),Rζ(u)〉

=
1
2

(
1
ζ
−

1
ρ

)‖Rζ(u)‖2 +
1

2ρ
‖Rζ(u) − Rρ(u)‖2

≥
1
2

(
1
ζ
−

1
ρ

)‖Rζ(u)‖2,

AIMS Mathematics Volume 6, Issue 11, 12133–12147.



12143

which clearly shows that
2ρζDρ,ζ(u) ≥ (ρ − ζ)‖Rζ(u)‖2. (3.15)

Similarly, by substituting u = PK[u−ζT u−ζB|u|], v = PK[u−ρT u−ρB|u|] and z = u−ζT u−ζB|u|
in lemma 2.6 , we obtain

〈PK[u − ζT u − ζB|u|] − u + ζT u + ζB|u|, PK[u − ρT u − ρB|u|] − Pv[u − ζT u − ζB|u|]〉 ≥ 0,

which shows that
〈T u + B|u|,Rρ(u) − Rζ(u)〉 ≤

1
ζ
〈Rζ(u),Rρ(u) − Rζ(u)〉. (3.16)

From (3.13) and (3.16), we obtain

Dρ,ζ(u) ≤ −
1

2ρ
‖Rρ(u)‖2 +

1
2ζ
‖Rζ(u)‖2 +

1
ζ
〈Rζ(u),Rρ(u) − Rζ(u)〉

=
1
2ζ
‖Rζ(u)‖2 −

1
2ρ
‖Rρ(u)‖2 −

1
ζ
‖Rζ(u)‖2 +

1
ζ
〈Rζ(u),Rρ(u)〉

=
1
2

(
1
ζ
−

1
ρ

)‖Rρ(u)‖2 −
1
2ζ
‖Rρ(u)‖2 −

1
2ζ
‖Rζ(u)‖2 +

1
ζ
〈Rζ(u),Rρ(u)〉

=
1
2

(
1
ζ
−

1
ρ

)‖Rρ(u)‖2 −
1
2ζ
‖Rρ(u) − Rζ(u)‖2

≤
1
2

(
1
ζ
−

1
ρ

)‖Rρ(u)‖2,

which proves the left most inequality of the required result, that is,

(ρ − ζ)‖Rρ(u)‖2 ≥ 2ρζDρ,ζ(u). (3.17)

Combining (3.15) and (3.17), we obtain

(ρ − ζ)‖Rρ(u)‖2 ≥ 2ρζDρ,ζ(u) ≥ (ρ − ζ)‖Rζ(u)‖2,

which is the required result. �

Theorem 3.10. Let û ∈ H be a solution of the absolute value variational inequality (2.1). If the
operators T and B are strongly monotone with constants αT > 0 and αB > 0, respectively then

‖u − û‖2 ≤
4ρζ

4(αT + αB) − 3ζ + 2ρ
[Dρ,ζ(u) +

1
ρ
‖T û + B|û|‖2], ∀u ∈H .

Proof. Since û ∈ H is a solution of the absolute value variational inequality (2.1) and by substituting
v = u in (2.1), we obtain

〈ρT û + ρB|û|, u − û〉 ≥ 0,

using lemma 3.2, we obtain

〈T û + B|û|, u − û〉 ≥
−1
ρ
‖T û + B|û|‖2 −

1
4ρ
‖u − û‖2. (3.18)
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From (3.13), using the strong monotonicity of the operators T andBwith constants αT > 0 and αB > 0
respectively and (3.18), we obtain

Dρ,ζ(u) = 〈T u + B|u|,Rρ(u) − Rζ(u)〉 −
1

2ρ
‖Rρ(u)‖2 +

1
2ζ
‖Rζ(u)‖2

= 〈T u + B|u|, u − û〉 −
1

2ρ
‖u − û‖2 +

1
2ζ
‖u − û‖2

= 〈T u − T û, u − û〉 + 〈B|u| − B|û|, u − û〉 + 〈T û + B|û|, u − û〉

−
1

2ρ
‖u − û‖2 +

1
2ζ
‖u − û‖2〉

≥ αT ‖u − û‖2 + αB‖u − û‖2 −
1
ρ
‖T û + B|û|‖2 −

1
4ρ
‖u − û‖2

−
1

2ρ
‖u − û‖2 +

1
2ζ
‖u − û‖2〉

= (αT + αB −
3

4ρ
+

1
2ζ

)‖u − û‖2 −
1
ρ
‖T û + B|û|‖2

=
4(αT + αB) − 3ζ + 2ρ

4ρζ
‖u − û‖2 −

1
ρ
‖T û + B|û|‖2,

which shows that

‖u − û‖2 ≤
4ρζ

4(αT + αB) − 3ζ + 2ρ
[Dρ,ζ(u) +

1
ρ
‖T û + B|û|‖2],

the required result. �

4. Conclusions

In this paper, we have proposed and investigated various merit functions for a new type of variational
inequalities, namely absolute value variational inequalities. These merit functions are utilized to obtain
error bounds for the estimated solution of absolute value variational inequalities and the associated
optimization problems. The results proved in this paper may be considered as primary contribution in
this alluring domain. Interested researchers are urged to discover the uses of absolute value variational
inequalities in a variety of pure and applied disciplines. The suggestions made in this paper may be
used in further research work.
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