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1. Introduction

The Hermite-Hadamard inequality, which is the first fundamental result for convex mappings with
a natural geometrical interpretation and many applications, has drawn attention with an interest in
elementary mathematics. A number of mathematicians have devoted their efforts to generalizing,
refining and extending it for different classes of functions, such as convex mappings.

The inequalities discovered by C. Hermite and J. Hadamard for convex functions are considerable
significant in the literature (see [26,49]). These inequalities state that if F : I → R is a convex function
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on the interval I of real numbers and a, b ∈ I with a < b, then

F
(
a + b

2

)
≤

1
b − a

∫ b

a
F(x)dx ≤

F (a) + F (b)
2

. (1.1)

Both inequalities hold in the reversed direction if F is concave. For more recent developments of
inequality (1.1), one can consult [2, 3, 24, 25, 27, 48, 50, 60, 61].

The stochastic processes may be described in a general sense, and it has piqued the interest of many
researchers due to its numerous applications in disciplines, such as physics, mathematics, economics,
and engineering, therefore in 1980, K. Nikodem [44] introduced the notion of convex stochastic
processes and discussed their regularity properties. In [54], A. Skowroński discussed some more
results for convex stochastic processes which generalize to some results about the classical convex
functions. After that, D. Kotrys established Hermite-Hadamard inequality for the convex stochastic
processes in [38]. The inequality states that if a stochastic processes X : I×Ω→ R is a Jensen-convex,
mean-square continuous in the interval I. Then for any u, v ∈ I we have

X
(u + v

2
, ·
)
≤

1
v − u

v∫
u

X (t, ·) dt ≤
X (u, ·) + X (v, ·)

2
(a.e.). (1.2)

For more results regarding the inequality (1.2), one can read [14,18,19,30,36,39,42,43,51–53,57,
58].

On the other side, in the domain of q-analysis, many works are being carried out initiating from
Euler in order to attain adeptness in mathematics that constructs quantum computing q-calculus
considered as a relationship between physics and mathematics. In different areas of mathematics,
it has numerous applications, such as combinatorics, number theory, basic hypergeometric functions,
orthogonal polynomials, and other sciences, mechanics, the theory of relativity, and quantum theory
[10, 29, 35]. Quantum calculus also has many applications in quantum information theory, which
is an interdisciplinary area that encompasses computer science, information theory, philosophy, and
cryptography, among other areas [15, 17]. Apparently, Euler invented this important mathematics
branch. He used the q parameter in Newton’s work on infinite series. Later, in a methodical manner,
the q-calculus that knew without limits calculus was firstly given by F. H. Jackson [28,33]. In 1966, W.
Al-Salam [13] introduced a q-analogue of the q-fractional integral and q-Riemann-Liouville fractional.
Since then, the related research has gradually increased. In particular, in 2013, J. Tariboon and S.
K. Ntouyas introduced aDq-difference operator and qa-integral in [56]. In 2020, S. Bermudo et al.
introduced the notion of bDq derivative and qb-integral in [16].

Many integral inequalities have been studied using quantum and post-quantum integrals for various
types of functions. For example, in [5, 8, 11, 12, 16, 21, 22, 34, 41, 45], the authors used aDq,

b Dq-
derivatives and qa, qb-integrals to prove Hermite-Hadamard integral inequalities and their left-right
estimates for convex and coordinated convex functions. In [46], M. A. Noor et al. presented a
generalized version of quantum integral inequalities. For generalized quasi-convex functions, E. R.
Nwaeze et al. proved certain parameterized quantum integral inequalities in [47]. M. A. Khan et al.
proved quantum Hermite-Hadamard inequality using the green function in [37]. H. Budak et al. [20],
M. A. Ali et al. [4,6] and M. Vivas-Cortez et al. [59] developed new quantum Simpson’s and quantum
Newton’s type inequalities for convex and coordinated convex functions. For quantum Ostrowski’s
inequalities for convex and co-ordinated convex functions on can consult [7, 9, 23].
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Recently, in [32], W. U. Haq introduced the notions about the qa-mean square integral and gave the
following quantum version of the inequality (1.2).

Theorem 1.1. If a stochastic process X : I ×Ω→ R is Jensen-convex and mean-square continuous in
the interval I, then for any u, v ∈ I we have

X
(
qu + v
[2]q

, ·

)
≤

1
v − u

v∫
u

X (t, ·) udqt ≤
qX (u, ·) + X (v, ·)

[2]q
(a.e.).

Despite the fact that stochastic processes theory and applications have advanced significantly in
recent years, there are still many new and challenging problems in the areas of theory, analysis,
and application, which include fields such as stochastic control, Markov chains, renewal processes,
actuarial science, and so on.

Inspired by these ongoing studies, we introduce the notions of q-mean square integrals with
respect to b and prove some new Hermite-Hadamard type inequality for convex stochastic processes.
Moreover, we introduce four different variants of q1q2-mean square integrals for co-ordinated
stochastic processes and prove some new Hermite-Hadamard type inequalities for co-ordinated
stochastic processes.

This paper’s organization is as follows: We summarize the convex stochastic processes in Section
2, and some related work is given in this setup. In Section 3, we review the notions of q-calculus
and some related research in this direction. In Sections 4 and 5, we prove Hermite-Hadamard type
inequalities for the convex stochastic and co-ordinated convex stochastic processes. The relationship
between the findings obtained and the comparable outcomes in the current literature is also discussed.
Some findings and further directions for future study are found in Section 6. We assume that the
analysis initiated in this paper could provide researchers working on integral inequalities and their
applications with a strong source of inspiration.

2. Convex stochastic processes

Let (Ω,A, P) be an arbitrary probability space. A function X : Ω → R is called a random variable
if it is A−measurable. A function X : I × Ω → R, where I ⊂ R is an interval, is called a stochastic
process if for every t ∈ I the function X (t, .) is a random variable.

Recall that the stochastic process X : I ×Ω→ R is called
(i) continuous in probability in interval I, if for all t0 ∈ I we have

P − lim
t→t0

X (t, .) = X (t0, .) ,

where P − lim denotes the limit in probability.
(ii) mean-square continuous in the interval I, if for all t0 ∈ I

lim
t→t0

E
[
(X (t) − X (t0))2

]
= 0,

where E [X (t)] denotes the expectation value of the random variable X (t, .).
Indeed, mean-square continuity implies continuity in probability, but the converse implication is not

true.
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Definition 2.1. Suppose we are given a sequence {∆m} of partitions, ∆m =
{
am,0, ..., am,nm

}
. We say that

the sequence {∆m} is a normal sequence of partitions if the length of the greatest interval in the n−th
partition tends to zero, i.e.,

lim
m→∞

sup
1≤i≤nm

∣∣∣am,i − am,i−1

∣∣∣ = 0.

Now we would like to recall the concept of the mean-square integral. For the definition and basic
properties (see [55]).

Let X : I × Ω → R be a stochastic process with E
[
X (t)2

]
< ∞ for all t ∈ I. Let [a, b] ⊂ I,

a = t0 < t1 < t2 < ... < tn = b be a partition of [a, b] and Θk ∈ [tk−1, tk] for all k = 1, ..., n. A random
variable Y : Ω→ R is called the mean-square integral of the process X on [a, b], if we have

lim
n→∞

E


 n∑

k=1

X (Θk) (tk − tk−1) − Y

2 = 0

for all normal sequence of partitions of the interval [a, b] and for all Θk ∈ [tk−1, tk], k = 1, ..., n. Then,
we write

Y (·) =

b∫
a

X (s, ·) ds (a.e.).

For the existence of the mean-square integral, it is enough to assume the mean-square continuity of the
stochastic process X.

Throughout the paper, we will frequently use the monotonicity of the mean-square integral. If
X (t, ·) ≤ Y (t, ·) (a.e.) in some interval [a, b], then

b∫
a

X (t, ·) dt ≤

b∫
a

Y (t, ·) dt (a.e.).

Of course, this inequality is an immediate consequence of the definition of the mean-square integral.

Definition 2.2. We say that a stochastic process X : I × Ω → R is convex, if for all λ ∈ [0, 1] and
u, v ∈ I the inequality

X (λu + (1 − λ) v, ·) ≤ λX (u, ·) + (1 − λ) X (v, ·) (a.e.) (2.1)

is satisfied. If the above inequality is assumed only for λ = 1
2 , then the process X is Jensen-convex or

1
2−convex. A stochastic process X is concave if (−X) is convex. Some interesting properties of convex
and Jensen-convex processes are presented in [44, 55].

Now, we present some results proved by D. Kotrys [38] about Hermite-Hadamard inequality for
convex stochastic processes.

Lemma 2.1. If X : I × Ω → R is a stochastic process of the form X (t, ·) = A (·) t + B (·), where
A, B : Ω→ R are random variables, such that E

[
A2

]
< ∞, E

[
B2

]
< ∞ and [a, b] ⊂ I, then

b∫
a

X (t, ·) dt = A (·)
b2 − a2

2
+ B (·) (b − a) (a.e.).
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Proposition 2.1. Let X : I × Ω → R be a convex stochastic process and t0 ∈ intI. Then there exists a
random variable A : Ω→ R such that X is supported at t0 by the process A (·) (t − t0) + X (t0, ·). That is

X (t, ·) ≥ A (·) (t − t0) + X (t0, ·) (a.e.).

for all t ∈ I.

Theorem 2.1. If a stochastic process X : I ×Ω→ R is Jensen-convex, mean-square continuous in the
interval I. Then for any u, v ∈ I we have

X
(u + v

2
, ·
)
≤

1
v − u

v∫
u

X (t, ·) dt ≤
X (u, ·) + X (v, ·)

2
(a.e.). (2.2)

In [39], D. Kotrys introduced the concept of strongly convex stochastic processes and investigated
their properties.

Definition 2.3. Let C : Ω→ R denote a positive random variable. A stochastic process X : I ×Ω→ R

is called strongly convex with modulus C(·) > 0, if for all λ ∈ [0, 1] and u, v ∈ I the inequality

X(λu + (1 − λ)v, ·) ≤ λX(u, ·) + (1 − λ)X(v, ·) −C(·)λ(1 − λ)(u − v)2 a.e.

is satisfied. If the above inequality is assumed only for λ = 1
2 , then the process X is strongly Jensen-

convex with modulus C(·).

In [31], F. M. Hafiz gave the following definition of stochastic mean-square fractional integrals:

Definition 2.4. For the stochastic process X : I × Ω → R, the concept of stochastic mean-square
fractional integrals Iαu+ and Iαv+ of X of order α > 0 is defined by

Iαu+ [X] (t) =
1

Γ(α)

t∫
u

(t − s)α−1X(x, s)ds (a.e.), t > u

and

Iαv− [X] (t) =
1

Γ(α)

v∫
t

(s − t)α−1X(x, s)ds (a.e.), t < v.

Using this concept of stochastic mean-square fractional integrals Iαa+ and Iαb+
, H. Agahi and A.

Babakhani proved the following Hermite-Hadamard type inequality for convex stochastic processes:

Theorem 2.2. [1] Let X : I × Ω → R be a Jensen-convex stochastic process that is mean-square
continuous in the interval I. Then for any u, v ∈ I, the following Hermite-Hadamard inequality

X
(u + v

2
, ·
)
≤

Γ(α + 1)
2 (v − u)α

[
Iαu+ [X] (v) + Iαv− [X] (u)

]
≤

X (u, ·) + X (v, ·)
2

(a.e.) (2.3)

holds, where α > 0.
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3. Quantum calculus and related inequalities

In this section, we present some required definitions. Additionally, here and further we use the
following notation (see [35]):

[n]q =
1 − qn

1 − q
=

n−1∑
n=0

qn, q ∈ (0, 1) .

In [33], F. H. Jackson gave the q-Jackson integral from 0 to b for 0 < q < 1 as follows:

b∫
0

F (x) dqx = (1 − q) b
∞∑

n=0

qnF (bqn) (3.1)

provided the sums converges absolutely. Furthermore, he gave the q-Jackson integral in a generic
interval [a, b] as:

b∫
a

F (x) dqx =

b∫
0

F (x) dqx −

a∫
0

F (x) dqx .

Definition 3.1. [56] For a continuous function F : [a, b] → R, the qa-derivative of F at x ∈ [a, b] is
characterized by the expression:

aDqF (x) =
F (x) − F (qx + (1 − q) a)

(1 − q) (x − a)
, x , a. (3.2)

If x = a, we define aDqF (a) = limx→a aDqF (x) if it exists and it is finite.

Definition 3.2. [56] Let F : [a, b] → R be a continuous function. Then, the qa-definite integral on
[a, b] is defined as:

b∫
a

F (x) adqx = (1 − q) (b − a)
∞∑

n=0

qnF (qnb + (1 − qn) a) = (b − a)

1∫
0

F ((1 − t) a + tb) dqt .

In [11], N. Alp et al. proved the following qa-Hermite-Hadamard inequalities for convex functions
in the setting of quantum calculus:

Theorem 3.1. If F : [a, b] → R is a convex differentiable function on [a, b] and 0 < q < 1. Then , the
q-Hermite-Hadamard inequalities are expressed as:

F
(
qa + b

[2]q

)
≤

1
b − a

b∫
a

F (x) adqx ≤
qF (a) + F (b)

[2]q
. (3.3)

On the other hand, S. Bermudo et al. gave the following new definition and related Hermite-
Hadamard type inequalities:
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Definition 3.3. [16] For a continuous function F : [a, b] → R, the qb-derivative of F at x ∈ [a, b] is
characterized by the expression:

bDqF (x) =
F (qx + (1 − q) b) − F (x)

(1 − q) (b − x)
, x , b.

If x = b, we define bDqF (b) = limx→b
bDqF (x) if it exists and it is finite.

Definition 3.4. [16] Let F : [a, b] → R be a continuous function. Then, the qb-definite integral on
[a, b] is defined as:

b∫
a

F (x) bdqx = (1 − q) (b − a)
∞∑

n=0

qnF (qna + (1 − qn) b) = (b − a)

1∫
0

F (ta + (1 − t) b) dqt .

Theorem 3.2. [16] If F : [a, b]→ R is a convex differentiable function on [a, b] and 0 < q < 1. Then,
the q-Hermite-Hadamard inequalities are expressed as:

F
(
a + qb

[2]q

)
≤

1
b − a

b∫
a

F (x) bdqx ≤
F (a) + qF (b)

[2]q
. (3.4)

From Theorem 3.1 and Theorem 3.2, one can obtain the following inequalities:

Corollary 3.1. [16] For any convex function F : [a, b]→ R and 0 < q < 1, we have

F
(
qa + b

[2]q

)
+ F

(
a + qb

[2]q

)
≤

1
b − a


b∫

a

F (x) adqx +

b∫
a

F (x) bdqx

 ≤ F (a) + F (b) (3.5)

and

F
(
a + b

2

)
≤

1
2 (b − a)


b∫

a

F (x) adqx +

b∫
a

F (x) bdqx

 ≤ F (a) + F (b)
2

. (3.6)

In [40], M. A. Latif defined qac-integral and partial q-derivatives for two variables functions as
follows:

Definition 3.5. Suppose that F : [a, b] × [c, d] ⊂ R2 → R is continuous function. The definite qac-
integral on [a, b] × [c, d] is defined by

x∫
a

y∫
c

F (t, s) cdq2 s adq1t = (1 − q1) (1 − q2) (x − a) (y − c)

×

∞∑
n=0

∞∑
m=0

qn
1qm

2 F
(
qn

1x +
(
1 − qn

1
)

a, qm
2 y +

(
1 − qm

2
)

c
)

for (x, y) ∈ [a, b] × [c, d] .
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On the other hand, H. Budak et al. gave the following definitions of qd
a, qc

b and qbd integrals:

Definition 3.6. [22] Suppose that F : [a, b] × [c, d] ⊂ R2 → R is a continuous function. Then the
following qd

a, qb
c and qbd integrals on [a, b] × [c, d] are defined by

x∫
a

d∫
y

F (t, s) ddq2 s adq1t = (1 − q1) (1 − q2) (x − a) (d − y) (3.7)

×

∞∑
n=0

∞∑
m=0

qn
1qm

2 F
(
qn

1x +
(
1 − qn

1
)

a, qm
2 y +

(
1 − qm

2
)

d
)

b∫
x

y∫
c

F (t, s) cdq2 s bdq1t = (1 − q1) (1 − q2) (b − x) (y − c) (3.8)

×

∞∑
n=0

∞∑
m=0

qn
1qm

2 F
(
qn

1x +
(
1 − qn

1
)

b, qm
2 y +

(
1 − qm

2
)

c
)

and
b∫

x

d∫
y

F (t, s) ddq2 s bdq1t = (1 − q1) (1 − q2) (b − x) (d − y) (3.9)

×

∞∑
n=0

∞∑
m=0

qn
1qm

2 F
(
qn

1x +
(
1 − qn

1
)

b, qm
2 y +

(
1 − qm

2
)

d
)

respectively, for (x, y) ∈ [a, b] × [c, d] .

Recently, W. U. Haq gave the following definition of qa-mean square integral and related results for
quantum stochastic process:

Definition 3.7. [32] For the stochastic process X : I × Ω → R, the qa-mean integral of X on [a, b]
⊂ I with E

[
(X (t))2

]
< ∞ for all t ∈ I, is a random variable Λ : Ω → R which satisfying the following

equality:

E


(1 − q) (b − a)

∞∑
n=0

qnX (qnb + (1 − qn) a) − Λ

2 = 0.

Hence, we can state

Λ (.) =

∫ b

a
X (t, .) adqt (a.e),

for the existence of the qa-mean integral, the stochastic process must be mean square continuous.

Lemma 3.1. [32] If X : I × Ω → R is a stochastic process of the form X (t, ·) = A (·) t + B (·), where
A, B : Ω→ R are random variables, such that E

[
A2

]
< ∞, E

[
B2

]
< ∞ and [a, b] ⊂ I, then

b∫
a

X (t, ·) bdqt = A (·)
(b − a) (b + qa)

[2]q
+ B (·) (b − a) (a.e.).
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Theorem 3.3. [32] If a stochastic process X : I × Ω → R is Jensen-convex and mean-square
continuous in the interval I, then for any u, v ∈ I we have

X
(
qu + v
[2]q

, ·

)
≤

1
v − u

v∫
u

X (t, ·) udqt ≤
qX (u, ·) + X (v, ·)

[2]q
(a.e.). (3.10)

4. Quantum Hermite-Hadamard inequality for convex stochastic processes

In this section, we introduce the notion of qb-mean square integral for stochastic process and
establish some new inequalities of Hermite-Hadamard type for convex stochastic process using the
qb-mean square integral.

Definition 4.1. For the stochastic process X : I × Ω→ R, the qb-mean integral of X on [a, b] ⊂ I with
E

[
(X (t))2

]
< ∞ for all t ∈ I, is a random variable Λ : Ω→ R which satisfying the following equality:

E


(1 − q) (b − a)

∞∑
n=0

qnX (qna + (1 − qn) b) − Λ

2 = 0.

Hence, we can state

Λ (.) =

∫ b

a
X (t, .) bdqt (a.e),

for the existence of the qb-mean integral, the stochastic process must be a mean square continuous.

Lemma 4.1. If X : I × Ω → R is a stochastic process of the form X (t, ·) = A (·) t + B (·), where
A, B : Ω→ R are random variables, such that E

[
A2

]
< ∞, E

[
B2

]
< ∞ and [a, b] ⊂ I, then

b∫
a

X (t, ·) bdqt = A (·)
(b − a) (qb + a)

[2]q
+ B (·) (b − a) (a.e.).

Theorem 4.1. If a stochastic process X : I ×Ω→ R is Jensen-convex and mean-square continuous in
the interval I, then for any u, v ∈ I we have

X
(
u + qv
[2]q

, ·

)
≤

1
v − u

v∫
u

X (t, ·) vdqt ≤
X (u, ·) + qX (v, ·)

[2]q
(a.e.). (4.1)

Proof. Since the process X is mean-square continuous, it is continuous in probability. Nikodem in [44]
proved that every Jensen-convex and continuous in probability stochastic process is convex. Since X is
convex, then by Proposition 2.1 it has a supporting process at any point t0 ∈ intI. Let’s take a support
at t0 =

u+qv
[2]q

, then we have

X (t, ·) ≥ A (·)
(
t −

u + qv
[2]q

)
+ X

(
u + qv
[2]q

, ·

)
(a.e.).
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By qv-integral, we have

v∫
u

X (t, ·) vdqt ≥ A (·)
(v − u) (qv + u)

[2]q
− A (·)

u + qv
[2]q

(v − u) + X
(
u + qv
[2]q

, ·

)
(v − u) .

That is

1
v − u

v∫
u

X (t, ·) vdqt ≥ X
(
u + qv
[2]q

, ·

)
which proves the first inequality in (4.1).

Since stochastic processes X is convex, we have

X (t, ·) = X
( t − u
v − u

v +
v − t
v − u

u, ·
)

≤
t − u
v − u

X (v, ·) +
v − t
v − u

X (u, ·)

=
X (v, ·) − X (u, ·)

v − u
t +

vX (u, ·) − uX (v, ·)
v − u

.

By using qv-integral, we have

v∫
u

X (t, ·) vdqt ≤
X (v, ·) − X (u, ·)

v − u
u + qv
[2]q

(v − u) +
vX (u, ·) − uX (v, ·)

v − u
(v − u)

=
X (u, ·) + qX (v, ·)

[2]q
(v − u) .

This completes the proof. �

Remark 4.1. If we set q→ 1− in Theorem 4.1, then Theorem 4.1 reduces to Theorem 2.1.

Adding the results in Theorems 3.1 and 4.1 yields the next corollary.

Corollary 4.1. If a stochastic process X : I × Ω → R is Jensen-convex and mean-square continuous
in the interval I, then for any u, v ∈ I we have

1
2

[
X

(
qu + v
[2]q

, ·

)
+ X

(
u + qv
[2]q

, ·

)]

≤
1

2 (v − u)


v∫

u

X (t, ·) udqt +

v∫
u

X (t, ·) vdqt


≤

X (u, ·) + X (v, ·)
2

(a.e.).
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Corollary 4.2. If a stochastic process X : I × Ω → R is Jensen-convex and mean-square continuous
in the interval I, then for any u, v ∈ I we have

X
(u + v

2
, ·
)

≤
1

2 (v − u)


v∫

u

X (t, ·) udqt +

v∫
u

X (t, ·) vdqt


≤

X (u, ·) + X (v, ·)
2

(a.e.).

Proof. Since X is convex stochastic process, we have

X
(u + v

2
, ·
)

= X
(
1
2

qu + v
[2]q

+
1
2

u + qv
[2]q

, ·

)

≤
1
2

[
X

(
qu + v
[2]q

, ·

)
+ X

(
u + qv
[2]q

, ·

)]
.

This completes the proof. �

Theorem 4.2. If a stochastic process X : I × Ω→ R is strongly Jensen-convex with modulus C(·) and
mean-square continuous in the interval I such that E

[
C2

]
, then for any u, v ∈ I we have

X
(
u + qv
[2]q

, ·

)
+ C(·)

q (u + qv)2 + u2 + qv2

[2]q [3]q
−

(
u + qv
[2]q

)2
≤

1
v − u

v∫
u

X (t, ·) vdqt

≤
X (u, ·) + qX (v, ·)

[2]q
+ C(·)

[
q (u + qv)2 + u2 + qv2

[2]q [3]q
−

u2 + qv2

[2]q

]
(a.e.).

Proof. If X is strongly convex with modulus C(·), then the process Y(t, ·) = X (t, ·) − C(·)t2 is convex.
Therefore, if we apply the inequality (4.1) to process Y(t, ·), then we have

Y
(
u + qv
[2]q

, ·

)
≤

1
v − u

v∫
u

Y (t, ·) vdqt ≤
Y (u, ·) + qY (v, ·)

[2]q
(a.e.).

That is,

X
(
u + qv
[2]q

, ·

)
−C(·)

(
u + qv
[2]q

)2

≤
1

v − u

v∫
u

[
X (t, ·) −C(·)t2

]
vdqt
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≤
X (u, ·) −C(·)u2 + q

[
X (v, ·) −C(·)v2

]
[2]q

(a.e.).

By calculating the integrals, we have

X
(
u + qv
[2]q

, ·

)
+ C(·)

q (u + qv)2 + u2 + qv2

[2]q [3]q
−

(
u + qv
[2]q

)2
≤

1
v − u

v∫
u

X (t, ·) vdqt

≤
X (u, ·) + qX (v, ·)

[2]q
+ C(·)

[
q (u + qv)2 + u2 + qv2

[2]q [3]q
−

u2 + qv2

[2]q

]
(a.e.)

which gives the required result. �

Remark 4.2. If we set q→ 1− in Theorem 4.2, then Theorem 4.2 reduces to [39, Theorem 11].

5. Quantum Hermite-Hadamard inequality for co-ordinated convex stochastic processes

In this section, we review the definition of co-ordinated convex stochastic process and introduce
the notion of q1q2-mean square integrals for co-ordinated stochastic processes. Moreover, we prove
Hermite-Hadamard inequalities for co-ordinated convex stochastic process using the q1q2-mean square
integrals which is the main motivation of this section.

Definition 5.1. [53] Let Λ := T1 × T2, T1,T2 ⊂ R. A stochastic process X : Λ × Ω → R is called
co-ordinated convex on Λ if the following inequality holds for all α, β ∈ [0, 1] and (t1, s1) , (t2, s2) ∈ Λ :

X ((αt1 + (1 − α) t2, βs1 + (1 − β) s2) , ·)

≤ αβX ((t1, s1) , ·) + α (1 − β) X ((t1, s2) , ·)

+ (1 − α) βX ((t2, s1) , ·) + (1 − α) (1 − β) X ((t2, s2) , ·) .

We can give the definitions of q1q2-mean square integrals as follows:

Definition 5.2. Let X : Λ ×Ω→ R be a stochastic process with E
[
X (t, s)2

]
< ∞ for all (t, s) ∈ Λ.

i) A random variable Π1 : Ω → R is called the qac-mean-square integral of the process X on
[a, b] × [c, d] ⊂ Λ, if we have

E


(1 − q1) (1 − q2) (b − a) (d − c)

∞∑
n=0

∞∑
m=0

qn
1qm

2 X
(
qn

1b +
(
1 − qn

1
)

a, qm
2 d +

(
1 − qm

2
)

c
)
− Π1

2 = 0.

Then, we can state

Π1 (.) =

b∫
a

d∫
c

X ((t, s) , ·) cdq2 s adq1t (a.e).
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ii) A random variable Π2 : Ω → R is called the qd
a-mean-square integral of the process X on

[a, b] × [c, d] ⊂ Λ, if we have

E


(1 − q1) (1 − q2) (b − a) (d − c)

∞∑
n=0

∞∑
m=0

qn
1qm

2 X
(
qn

1b +
(
1 − qn

1
)

a, qm
2 c +

(
1 − qm

2
)

d
)
− Π2

2 = 0.

Then, we can define

Π2 (.) =

b∫
a

d∫
c

X ((t, s) , ·) ddq2 s adq1t (a.e).

iii) A random variable Π3 : Ω → R is called the qb
c-mean-square integral of the process X on

[a, b] × [c, d] ⊂ Λ, if we have

E


(1 − q1) (1 − q2) (b − a) (d − c)

∞∑
n=0

∞∑
m=0

qn
1qm

2 X
(
qn

1a +
(
1 − qn

1
)

b, qm
2 d +

(
1 − qm

2
)

c
)
− Π3

2 = 0.

Then, we can define

Π3 (.) =

b∫
a

d∫
c

X ((t, s) , ·) cdq2 s bdq1t (a.e).

iv) A random variable Π4 : Ω → R is called the qbd-mean-square integral of the process X on
[a, b] × [c, d] ⊂ Λ, if we have

E


(1 − q1) (1 − q2) (b − a) (d − c)

∞∑
n=0

∞∑
m=0

qn
1qm

2 X
(
qn

1a +
(
1 − qn

1
)

b, qm
2 c +

(
1 − qm

2
)

d
)
− Π4

2 = 0.

Then, we can state

Π4 (.) =

b∫
a

d∫
c

X ((t, s) , ·) ddq2 s bdq1t (a.e).

For the existence of the q1q2-mean-square integrals, it is enough to assume that the stochastic process
X is the mean-square continuous.

Theorem 5.1. If X : Λ ×Ω→ R is a co-ordinated convex stochastic process on Λ, then we have

X
((

u1q1 + v1

[2]q1

,
u2q2 + v2

[2]q2

)
, ·

)
(5.1)

≤
1
2

 1
v1 − u1

v1∫
u1

X
((

t,
u2q2 + v2

[2]q2

)
, ·

)
u1dq1t

+
1

v2 − u2

v2∫
u2

X
((

u1q1 + v1

[2]q1

, s
)
, ·

)
u2dq2 s
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≤
1

(v1 − u1) (v2 − u2)

v1∫
u1

v2∫
u2

X ((t, s) , ·) u2dq2 s u1dq1t

≤
q1

2 [2]q1 (v2 − u2)

v2∫
u2

X ((u1, s) , ·) u2dq2 s +
1

2 [2]q1 (v2 − u2)

v2∫
u2

X ((v1, s) , ·) u2dq2 s

+
q2

2 [2]q2 (v1 − u1)

v1∫
u1

X ((t, u2) , ·) u1dq1t +
1

2 [2]q2 (v1 − u1)

v1∫
u1

X ((t, v2) , ·) u1dq1 t

≤
q1q2X ((u1, u2) , ·) + q1X ((u1, v2) , ·) + q2X ((v1, u2) , ·) + X ((v1, v2) , ·)

[2]q1 [2]q2

for 0 < q1, q2 < 1.

Proof. Since X : Λ × Ω → R is a co-ordinated convex stochastic process on Λ, then Y : T2 × Ω → R,
Y(s, ·) = X ((t, s) , ·) is convex stochastic process on T2 for all t ∈ T1. Then by applying Theorem 3.3
to Y(s, ·), we obtain

Y
(
q2u2 + v2

[2]q2

, ·

)
≤

1
v2 − u2

v2∫
u2

Y (t, ·) u2dq2 s ≤
q2Y (u2, ·) + Y (v2, ·)

[2]q2

(a.e.).

i.e.

X
((

t,
q2u2 + v2

[2]q2

)
, ·

)
≤

1
v2 − u2

v2∫
u2

X ((t, s) , ·) u2dq2 s (5.2)

≤
q2X ((t, u2) , ·) + X ((t, v2) , ·)

[2]q2

(a.e.).

By the qu-integral we have,

1
v1 − u1

v1∫
u1

X
((

t,
q2u2 + v2

[2]q2

)
, ·

)
u1dq1t (5.3)

≤
1

(v1 − u1) (v2 − u2)

v1∫
u1

v2∫
u2

X ((t, s) , ·) u2dq2 s u1dq1t

≤
1

v1 − u1

v1∫
u1

q2X ((t, u2) , ·) + X ((t, v2) , ·)
[2]q2

u1dq1t (a.e.).

By similar argument applied for mapping Z : T1 ×Ω→ R, Z(t, ·) = X ((t, s) , ·), we get

1
v2 − u2

v2∫
u2

X
((

q1u1 + v1

[2]q1

, s
)
, ·

)
u2dq2 s (5.4)
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≤
1

(v1 − u1) (v2 − u2)

v1∫
u1

v2∫
u2

X ((t, s) , ·) u2dq2 s u1dq1t

≤
1

v2 − u2

v2∫
u2

q2X ((u1, s) , ·) + X ((v1, s) , ·)
[2]q2

u2dq2 s (a.e.).

By adding the inequalities (5.3) and (5.4), we obtain the second and third inequalities in (5.1).
By the first inequality in (3.10), we get

X
((

u1q1 + v1

[2]q1

,
u2q2 + v2

[2]q2

)
, ·

)
≤

1
v1 − u1

v1∫
u1

X
((

t,
u2q2 + v2

[2]q2

)
, ·

)
u1dq1t (5.5)

and

X
((

u1q1 + v1

[2]q1

,
u2q2 + v2

[2]q2

)
, ·

)
≤

1
v2 − u2

v2∫
u2

X
((

u1q1 + v1

[2]q1

, s
)
, ·

)
u2dq2 s . (5.6)

This gives, by addition the inequalities (5.3) and (5.4), the first inequality in (5.1).
Finally, by second inequality in (3.10), we have

1
v2 − u2

v2∫
u2

X ((u1, s) , ·) u2dq2 s ≤
q2X ((u1, u2) , ·) + X ((u1, v2) , ·)

[2]q2

, (5.7)

1
v2 − u2

v2∫
u2

X ((v1, s) , ·) u2dq2 s ≤
q2X ((v1, u2) , ·) + X ((v1, v2) , ·)

[2]q2

, (5.8)

1
v1 − u1

v1∫
u1

X ((t, u2) , ·) u1dq1t ≤
q1X ((u1, u2) , ·) + X ((v1, u2) , ·)

[2]q1

(5.9)

and
1

v1 − u1

v1∫
u1

X ((t, v2) , ·) u1dq1t ≤
q1X ((u1, v2) , ·) + X ((v1, v2) , ·)

[2]q1

. (5.10)

This completes the proof. �

Theorem 5.2. If X : Λ ×Ω→ R is a co-ordinated convex stochastic process on Λ, then we have

X
((

u1 + v1q1

[2]q1

,
u2q2 + v2

[2]q2

)
, ·

)
(5.11)

≤
1
2

 1
v1 − u1

v1∫
u1

X
((

t,
q2u2 + v2

[2]q2

)
, ·

)
v1dq1t
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+
1

v2 − u2

v2∫
u2

X
((

u1 + q1v1

[2]q1

, s
)
, ·

)
u2dq2 s


≤

1
(v1 − u1) (v2 − u2)

v1∫
u1

v2∫
u2

X ((t, s) , ·) u2dq2 s v1dq1t

≤
1

2 [2]q1 (v2 − u2)

v2∫
u2

X ((u1, s) , ·) u2dq2 s +
q1

2 [2]q1 (v2 − u2)

v2∫
u2

X ((v1, s) , ·) u2dq2 s

+
q2

2 [2]q2 (v1 − u1)

v1∫
u1

X ((t, u2) , ·) v1dq1t +
1

2 [2]q2 (v1 − u1)

v1∫
u1

X ((t, v2) , ·) v1dq1t

≤
q2X ((u1, u2) , ·) + X ((u1, v2) , ·) + q1q2X ((v1, u2) , ·) + q1X ((v1, v2) , ·)

[2]q1 [2]q2

for 0 < q1, q2 < 1.

Proof. By using qv-integration in (5.2), we have

1
v1 − u1

v1∫
u1

X
((

t,
q2u2 + v2

[2]q2

)
, ·

)
v1dq1t (5.12)

≤
1

(v1 − u1) (v2 − u2)

v1∫
u1

v2∫
u2

X ((t, s) , ·) u2dq2 s v1dq1t

≤
1

v1 − u1

v1∫
u1

q2X ((t, u2) , ·) + X ((t, v2) , ·)
[2]q2

v1dq1t (a.e.).

By applying Theorem 4.1 to mapping Z : T1 ×Ω→ R, Z(t, ·) = X ((t, s) , ·) , we have

Z
(
u1 + q1v1

[2]q1

, ·

)
≤

1
v1 − u1

v1∫
u1

Z (t, ·) v1dq1t ≤
Z (u1, ·) + q1Z (v1, ·)

[2]q1

(a.e.).

That is,

X
((

u1 + q1v1

[2]q1

, s
)
, ·

)
≤

1
v1 − u1

v1∫
u1

X ((t, s) , ·) v1dq1t ≤
X ((u1, s) , ·) + q1X ((v1, s) , ·)

[2]q1

(a.e.).

Then it follows that

1
v2 − u2

v2∫
u2

X
((

u1 + q1v1

[2]q1

, s
)
, ·

)
u2dq2 s (5.13)
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≤
1

(v1 − u1) (v2 − u2)

v1∫
u1

v2∫
u2

X ((t, s) , ·) u2dq2 s v1dq1t

≤
1

v2 − u2

v2∫
u2

X ((u1, s) , ·) + q1X ((v1, s) , ·)
[2]q1

u2dq2 s (a.e.).

Adding the inequalities (5.12) and (5.13), then we obtain the second and third inequalities in (5.11).
By the first inequality in (3.10), we get

X
((

u1 + v1q1

[2]q1

,
u2q2 + v2

[2]q2

)
, ·

)
≤

1
v2 − u2

v2∫
u2

X
((

u1q1 + v1

[2]q1

, s
)
, ·

)
u2dq2 s (5.14)

and by the first inequality in (4.1), we have

X
((

u1 + v1q1

[2]q1

,
u2q2 + v2

[2]q2

)
, ·

)
≤

1
v1 − u1

v1∫
u1

X
((

t,
u2q2 + v2

[2]q2

)
, ·

)
v1dq1t . (5.15)

Then, by adding the inequalities (5.14) and (5.15), we have the first inequality in (5.11).
Finally, by using second inequality in (4.1), we get

1
v1 − u1

v1∫
u1

X ((t, u2) , ·) v1dq1 t ≤
X ((u1, u2) , ·) + q1X ((v1, u2) , ·)

[2]q1

(5.16)

and
1

v1 − u1

v1∫
u1

X ((t, v2) , ·) v1dq1t ≤
X ((u1, v2) , ·) + q1X ((v1, v2) , ·)

[2]q1

. (5.17)

By the inequalities (5.7), (5.8), (5.16) and (5.17), then one can obtain the last inequality in (5.11).
Thus, the proof is completed. �

Theorem 5.3. If X : Λ ×Ω→ R is a co-ordinated convex stochastic process on Λ, then we have

X
((

u1q1 + v1

[2]q1

,
u2 + v2q2

[2]q2

)
, ·

)

≤
1
2

 1
v1 − u1

v1∫
u1

X
((

t,
u2 + v2q2

[2]q2

)
, ·

)
u1dq1t

+
1

v2 − u2

v2∫
u2

X
((

u1q1 + v1

[2]q1

, s
)
, ·

)
u2dq2 s
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≤
1

(v1 − u1) (v2 − u2)

v1∫
u1

v2∫
u2

X ((t, s) , ·) v2dq2 s u1dq1t

≤
q1

2 [2]q1 (v2 − u2)

v2∫
u2

X ((u1, s) , ·) v2dq2 s +
1

2 [2]q1 (v2 − u2)

v2∫
u2

X ((v1, s) , ·) v2dq2 s

+
1

2 [2]q2 (v1 − u1)

v1∫
u1

X ((t, u2) , ·) u1dq1t +
q2

2 [2]q2 (v1 − u1)

v1∫
u1

X ((t, v2) , ·) u1dq1t

≤
q1X ((u1, u2) , ·) + q1q2X ((u1, v2) , ·) + X ((v1, u2) , ·) + q2X ((v1, v2) , ·)

[2]q1 [2]q2

and

X
((

u1 + v1q1

[2]q1

,
u2 + v2q2

[2]q2

)
, ·

)
(5.18)

≤
1
2

 1
v1 − u1

v1∫
u1

X
((

t,
u2 + v2q2

[2]q2

)
, ·

)
v1dq1t +

1
v2 − u2

v2∫
u2

X
((

u1 + v1q1

[2]q1

, s
)
, ·

)
u2dq2 s


≤

1
(v1 − u1) (v2 − u2)

v1∫
u1

v2∫
u2

X ((t, s) , ·) v2dq2 s v1dq1t

≤
1

2 [2]q1 (v2 − u2)

v2∫
u2

X ((u1, s) , ·) v2dq2 s +
q1

2 [2]q1 (v2 − u2)

v2∫
u2

X ((v1, s) , ·) v2dq2 s

+
1

2 [2]q2 (v1 − u1)

v1∫
u1

X ((t, u2) , ·) v1dq1t +
q2

2 [2]q2 (v1 − u1)

v1∫
u1

X ((t, v2) , ·) v1dq1t

≤
X ((u1, u2) , ·) + q2X ((u1, v2) , ·) + q1X ((v1, u2) , ·) + q1q2X ((v1, v2) , ·)

[2]q1 [2]q2

for 0 < q1, q2 < 1.

Proof. The proof is similar to the proof of Theorems 5.1 and 5.2 by using Theorems 4.1 and 5.1. �

Remark 5.1. By taking the limit q → 1− , then Theorem 5.1, Theorem 5.2 and Theorem 5.3 reduce
to [53, Theorem 2.5].

6. Conclusions

In this investigation, we have introduced the notions for q-mean square stochastic processes. We
have derived some new quantum inequalities of Hermite-Hadamard type for convex stochastic process
and co-ordinated stochastic processes using the newly defined integrals. Moreover, we have proved
that the results offered in this research are the strong generalization of several known results inside the
literature. It is an interesting and new problem that the upcoming mathematicians can offer the similar
inequalities for different kinds of stochastic convexities in their future research.
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