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Abstract: In this paper, we consider numerical methods for the linear complementarity problem
(LCP). By introducing a positive diagonal parameter matrix, the LCP is transformed into an equivalent
fixed-point equation and the equivalence is proved. Based on such equation, the general fixed-point
(GFP) method with two cases are proposed and analyzed when the system matrix is a P-matrix. In
addition, we provide several concrete sufficient conditions for the proposed method when the system
matrix is a symmetric positive definite matrix or an H+-matrix. Meanwhile, we discuss the optimal
case for the proposed method. The numerical experiments show that the GFP method is effective and
practical.
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1. Introduction

In this paper, we consider the linear complementarity problem, which is to find a vector x ∈ Rn such
that

xT(Ax + q) = 0, x ≥ 0 and Ax + q ≥ 0, (1.1)

where A = (ai j) ∈ Rn×n and q ∈ Rn are given. For convenience, such problem is usually abbreviated
as LCP(A, q), which is related to many practical problems, such as American option pricing problems,
the market equilibrium problems and the free boundary problems for journal bearings, see [1–5] and
the references therein.

To obtain the numerical solution of the LCP(A, q) with a large and sparse system matrix, many
kinds of iteration methods have been proposed and analyzed in recent decades. The projected method
is a well known iteration method, which includes the smoothing projected gradient method [6], the
projected gradient method [7], the partial projected Newton method [8], the improved projected
successive over relaxation (IPSOR) [9], and so on. For more detailed materials about projected type
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iteration methods, we refer readers to [10–13] and the references therein. There are other efficient
iteration methods for solving the LCP, e.g., the modulus-based matrix splitting iteration methods [2]
and the nonstationary extrapolated modulus algorithms [14], the two-sweep modulus-based matrix
splitting iteration methods [15], the general modulus-based matrix splitting method [5], the two-step
modulus-based matrix splitting iteration method [16], the accelerated modulus-based matrix splitting
iteration methods [17]. The main difference between the projected type iteration methods and the
modulus-based type matrix splitting iteration methods is that the projected type iteration methods
directly construct the iterative forms on an equivalent fixed-point equation based on the projection
approaches and matrix splittings, however, the modulus-based type matrix splitting iteration methods
reformulate the LCP(A, q) as an implicit fixed-point equation by introducing positive diagonal
parameter matrices, then construct the iterative forms based on all kinds of matrix splittings and avoid
the projections. The most prominent difference is that one requires the projection and the other does
not. For other iteration methods for solving the complementarity problems, we refer readers
to [18–24] and the references therein.

In [4], Shi, Yang, and Huang presented a fixed-point (FP) method for solving a concrete LCP(A, q)
arising in American option pricing problems. The FP method is based on a fixed-point equation and
belongs to the projected type iteration methods. However, the numerical examples in [4] shows that the
number of iteration steps is very large when a suitable approximate solution is obtained. In this paper,
we further discuss the projected type iteration methods and consider a general fixed-point equation
by introducing a positive diagonal parameter matrix Ω. We note that [4] considered the case where
Ω = αI with α > 0 and I is the identity matrix. We prove the equivalence between the general fixed-
point equation and the linear complementarity problem. Based on the new fixed-point equation, we
propose the general fixed-point (GFP) method with two iteration forms. We discuss the convergence
conditions and provide the concrete convergence domains for the proposed method. Moreover, we
discuss the optimal parameter problem and obtain an optimal parameter value.

The rest of this paper is organized as follows. In Section 2, we introduce some notations and
concepts briefly, and then provide two lemmas which are required to derive the new fixed-point method.
In Section 3, we propose the general fixed-point method with convergence analysis. In Section 4, we
present numerical examples to illustrate the efficiency of the proposed method. Finally, we give the
concluding remark in Section 5.

2. Preliminaries

In this section, we first briefly review some notations and concepts, then provide two lemmas that
will be used in Section 3.

A matrix A = (ai j) ∈ Rn×n is denoted by A ≥ 0 (or A > 0) if ai j ≥ 0 (or ai j > 0), and the absolute
value matrix of A = (ai j) ∈ Rn×n is denoted by |A| = (|ai j|). The spectral radius of a square matrix A is
denoted by ρ(A). A matrix A = (ai j) ∈ Rn×n is called a Z-matrix if ai j ≤ 0 for i , j and i, j = 1, 2, ..., n,
an M-matrix if A is a Z-matrix with A−1 ≥ 0, and a P-matrix if all of its principal minors are positive
( [25]). A matrix A = (ai j) ∈ Rn×n is called an H-matrix if its comparison matrix 〈A〉 is an M-matrix,
and an H+-matrix if it is an H-matrix with all positive diagonal elements, where the comparison matrix
〈A〉 = (〈ai j〉) is defined by 〈aii〉 = |aii| and 〈ai j〉 = −|ai j| with i , j for i, j = 1, 2, ..., n ( [2]). For
a given matrix A ∈ Rn×n, the splitting A = F − G is called an M-splitting if F is an M−matrix and
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G ≥ 0 ( [26]). For a given vector x ∈ Rn, the symbols x+ and x− denote the vectors x+ = max{0, x} and
x− = max{0,−x}, respectively. For x, x+ and x−, we have

x+ ≥ 0, x− ≥ 0, x = x+ − x−, xT
+x− = 0.

Lemma 2.1 [27, 28] Let A ∈ Rn×n be an M-matrix and A = F −G be an M-splitting. Then

ρ(F−1G) < 1.

For the equation
x = x+ −Ω(Ax+ + q), (2.1)

where Ω is a given positive diagonal matrix, we have the following conclusion.

Lemma 2.2 The solution of the linear complementarity problem (1.1) and the solution of equation
(2.1) have the following relation:

(i) If x∗ is a solution of (1.1) and x∗∗ = Ax∗ + q, then x∗∗∗ = x∗ −Ωx∗∗ is a solution of (2.1).
(ii) If x∗ is a solution of (2.1), then x∗+ is a solution of (1.1).

Proof. (i) Suppose x∗ is a solution of (1.1), then we have

x∗ ≥ 0, Ax∗ + q ≥ 0, (x∗)T(Ax∗ + q) = 0.

Therefore, denoting Ax∗ + q by x∗∗, for positive diagonal matrix Ω, we have

x∗ ≥ 0, Ωx∗∗ ≥ 0, (x∗)T(Ωx∗∗) = 0.

It follows that
x∗∗∗+ = (x∗ −Ωx∗∗)+ = x∗, x∗∗∗− = (x∗ −Ωx∗∗)− = Ωx∗∗.

Thus
x∗∗∗ = x∗∗∗+ − x∗∗∗− = x∗∗∗+ −Ωx∗∗ = x∗∗∗+ −Ω(Ax∗ + q) = x∗∗∗+ −Ω(Ax∗∗∗+ + q).

That is, x∗∗∗ is a solution of (2.1).
(ii) Suppose x∗ is a solution of (2.1), i.e.,

x∗ = x∗+ −Ω(Ax∗+ + q).

Notice that x∗ = x∗+− x∗−, we have x∗− = Ω(Ax∗+ +q), and it follows that Ax∗+ +q = Ω−1x∗− ≥ 0. Moreover,

(x∗+)T(Ax∗+ + q) = (x∗+)T(Ω−1x∗−) = (x∗+)Tx∗− = 0.

Therefore, x∗+ is a solution of (1.1). �

From Lemma 2.2 (ii), we know that the solution of (1.1) can be obtained by solving Eq (2.1).
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3. General fixed-point method

In this section, we first prove that the solution of equation (2.1) is unique when the system matrix
is a P-matrix, then propose the general fixed-point (GFP) method for solving (1.1) based on (2.1), and
discuss the convergence conditions.

Theorem 3.1 If A is a P-matrix, then for any positive diagonal matrix Ω, (2.1) has a unique solution.

Proof. Since A is a P-matrix, the linear complementarity problem (1.1) has a unique solution for any
q ∈ Rn ( [29]). Therefore, from Lemma 2.2, we know that Eq (2.1) has solution(s). Suppose y∗, z∗ are
solutions of (2.1), then

y∗ = y∗+ −Ω(Ay∗+ + q), z∗ = z∗+ −Ω(Az∗+ + q).

By Lemma 2.2, y∗+ and z∗+ are are solutions of (1.1). Since (1.1) has a unique solution, y∗+ = z∗+. It
follows that y∗ = z∗. �

Based on (2.1) and Lemma 2.2 (ii), we get an iterative method for solving (1.1):

x(k+1) = x(k)
+ −Ω(Ax(k)

+ + q) = (I −ΩA)x(k)
+ −Ωq, k = 0, 1, 2, . . . . (3.1)

We state the algorithm for (3.1) as follows.

Algorithm 1 Iterative method based on (3.1)

1: Given x(0) ∈ Rn, ε > 0.
2: for k = 0, 1, 2, . . . , do
3: x(k)

+ = max{0, x(k)}

4: compute RES=norm(min(x(k)
+ , Ax(k)

+ + q))
5: if then RES< ε
6: x = x(k)

+

7: break
8: else
9: x(k+1) = (I −ΩA)x(k)

+ −Ωq
10: end if
11: end for

Theorem 3.2 Assume A is a P-matrix. Let
{
x(k)

}+∞

k=1
be the sequence generated by (3.1) and x∗ be

the solution of (2.1). If
ρ(|I −ΩA|) < 1, (3.2)

then
{
x(k)

}+∞

k=1
converges to x∗ for any initial vector x(0) ∈ Rn.

Proof. Since x∗ is the unique solution of (2.1), we have

x∗ = (I −ΩA)x∗+ −Ωq.

Combining with Eq (3.1), we get

x(k+1) − x∗ = (I −ΩA)(x(k)
+ − x∗+).
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It follows that
|x(k+1) − x∗| ≤ |I −ΩA| · |x(k)

+ − x∗+| ≤ |I −ΩA| · |x(k) − x∗|.

Therefore, if ρ(|I −ΩA|) < 1, then
{
x(k)

}+∞

k=1
converges to x∗ for any initial vector x(0) ∈ Rn. �

Since ρ(A) ≤ ‖A‖ for any matrix norm ‖ · ‖, we can get the following corollary easily from Theorem
3.2.

Corollary 3.1 Suppose A is a P-matrix. Let
{
x(k)

}+∞

k=1
be the sequence generated by (3.1) and x∗ be

the solution of (2.1). If
‖ |I −ΩA| ‖ < 1, (3.3)

then
{
x(k)

}+∞

k=1
converges to x∗ for any initial vector x(0) ∈ Rn, where ‖ · ‖ is any matrix norm.

In the following, we consider two special cases: A is an H+ matrix with Ω = ωD−1, where D =

diag(A), and A is a symmetric positive definite matrix with Ω = ωI, where I is the identity matrix.

Theorem 3.3 Suppose A is an H+-matrix, D = diag(A) and B = D − A. Let Ω = ωD−1 with ω > 0
and

{
x(k)

}+∞

k=1
be the sequence generated by (3.1) and x∗ be the solution of (2.1). If

0 < ω <
2

1 + ρ(D−1|B|)
,

then
{
x(k)

}+∞

k=1
converges to x∗ for any initial vector x(0) ∈ Rn. Moreover, ω = 1 is the optimal choice.

Proof. Since A is an H+-matrix, D = diag(A), and A = D − B, we have that ρ(D−1|B|) < 1; see [21].
For Ω = ωD−1 with ω > 0, we have

|I −ΩA| = |I − ωD−1(D − B)|
= |1 − ω|I + ωD−1|B|

=

(1 − ω)I + ωD−1|B|, if 0 < ω ≤ 1,
(ω − 1)I + ωD−1|B|, if ω > 1.

It follows that

ρ(|I −ΩA|) =

1 − (1 − ρ(D−1|B|))ω, if 0 < ω ≤ 1,
(1 + ρ(D−1|B|)ω − 1, if ω > 1.

(3.4)

It can be easily seen from (3.4) that ρ(|I −ΩA|) < 1 for ω ∈ (0, 1] and for ω > 1, ρ(|I −ΩA|) < 1 if and
only if ω < 2

1+ρ(D−1 |B|) . Therefore, if 0 < ω < 2
1+ρ(D−1 |B|) ,

{
x(k)

}+∞

k=1
converges to x∗ for any initial vector

x(0) ∈ Rn. Moreover, it can be seen from (3.4) that when ω = 1, ρ(|I − ΩA|) = ρ(D−1|B|) is minimal.
That is, ω = 1 is the optimal choice. �

Theorem 3.4 Suppose A is a symmetric positive definite matrix. Set Ω = ωI with ω > 0 and denote
the smallest and the largest eigenvalues of A by λmin and λmax, respectively. Let

{
x(k)

}+∞

k=1
be the sequence

generated by (3.1) and x∗ be the solution of (2.1). If

0 < ω <
2
λmax

,

then
{
x(k)

}+∞

k=1
converges to x∗ for any initial vector x(0) ∈ Rn.
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Proof. From the proof of Theorem 3.2, similarly, we can have

x(k+1) − x∗ = (I −ΩA)(x(k)
+ − x∗+).

Then
‖ x(k+1) − x∗ ‖2≤‖ I −ΩA ‖2 · ‖ x(k)

+ − x∗+ ‖2≤‖ I −ΩA ‖2 · ‖ x(k) − x∗ ‖2,

where ‖ · ‖2 is the spectral norm of matrix. So, we have a convergence condition of (3.1), that is

‖ I −ΩA ‖2< 1.

Since

‖I −ΩA‖2 = ‖I − ωI · A‖2 = max{|1 − ωλmin|, |1 − ωλmax|}

=

|1 − ωλmin|, if |1 − ωλmin| ≥ |1 − ωλmax|,

|1 − ωλmax|, if |1 − ωλmax| ≥ |1 − ωλmin|,

we can solve

(I)

|1 − ωλmin| < 1,
|1 − ωλmin| ≥ |1 − ωλmax|,

and

(II)

|1 − ωλmax| < 1,
|1 − ωλmax| ≥ |1 − ωλmin|,

to obtain the convergence conditions of (3.1), that is 0 < ω ≤ 2
λmin+λmax

and 2
λmin+λmax

≤ ω < 2
λmax

, which
can be combined into

0 < ω <
2
λmax

.

Thus, the conclusion is proved. �

Let A be split as A = D − L − U, where D, −L and −U are the diagonal, strictly lower and strictly
upper triangular parts of A, respectively. We can derive another iterative method for solving (1.1) based
on (2.1) by using the idea of Gauss-Seidel:

x(k+1) = (I −Ω(D − U))x(k)
+ + ΩLx(k+1)

+ −Ωq, k = 0, 1, 2, . . . . (3.5)

We state the algorithm for (3.5) as follows.
We call iterative methods (3.1) and (3.5) the general fixed-point method. We note that in [4], Shi,

Yang, and Huang introduced a fixed-point method, which is a special case of (3.1) with Ω = αI (α > 0).
In the following, we analyze the convergence of iterative method (3.5). In particular, we consider the
convergence domain of Ω when A is an H+-matrix.

Theorem 3.5 Suppose A is a P-matrix, then the sequence
{
x(k)

}+∞

k=1
generated by (3.5) converges to

the unique solution x∗ of (2.1) for any initial vector x(0) ∈ Rn if

ρ((I − |ΩL|)−1 · |I −Ω(D − U)|) < 1. (3.6)
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Algorithm 2 Iterative method based on (3.5)

1: Given x(0) ∈ Rn, ε > 0
2: for k = 0, 1, 2, . . . , do
3: x(k)

+ = max{0, x(k)}

4: compute RES=norm(min(x(k)
+ , Ax(k)

+ + q))
5: if RES< ε then
6: x = x(k)

+

7: break
8: else
9: x(k+1)

1 = ((I −Ω(D − U))x(k)
+ −Ωq)1

10: for i = 2, 3, ..., n do
11: x(k+1)

i = ((I −Ω(D − U))x(k)
+ −Ωq)i + (ΩLx(k+1)

+ )i

12: end for
13: end if
14: end for

Proof. Since A is a P-matrix, equation (2.1) has a unique solution for any positive diagonal matrix Ω.
Based on (2.1) and A = D − L − U, we get

x∗ = (I −Ω(D − U))x∗+ + ΩLx∗+ −Ωq.

From the above formula and equation (3.5), we have

x(k+1) − x∗ = (I −Ω(D − U))(x(k)
+ − x∗+) + ΩL(x(k+1)

+ − x∗+). (3.7)

Thus

|x(k+1) − x∗| ≤ |I −Ω(D − U)| · |x(k)
+ − x∗+| + |ΩL| · |x(k+1)

+ − x∗+|

≤ |I −Ω(D − U)| · |x(k) − x∗| + |ΩL| · |x(k+1) − x∗|.

It follows that

(I − |ΩL|)|x(k+1) − x∗| ≤ |I −Ω(D − U)| · |x(k) − x∗|.

Since I − |ΩL| is an M-matrix, i.e., (I − |ΩL|)−1 ≥ 0, we have

|x(k+1) − x∗| ≤ (I − |ΩL|)−1 · |I −Ω(D − U)| · |x(k) − x∗|.

Therefore, if ρ((I − |ΩL|)−1|I − Ω(D − U)|) < 1, then
{
x(k)

}+∞

k=1
converges to x∗ for any initial vector

x(0) ∈ Rn. �

We now consider the convergence domain of Ω for iterative method (3.5) when A is an H+-matrix.

Theorem 3.6 Suppose A is an H+-matrix and either of the following conditions holds:
(1) 0 < Ω ≤ D−1;
(2) Ω > D−1 and 2Ω−1 − D − |B| is an M-matrix, where B = L + U.

Then the sequence
{
x(k)

}+∞

k=1
generated by (3.5) converges to the unique solution of (2.1) for any initial

vector x(0) ∈ Rn.
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Proof. Since any H+-matrix is a P-matrix ( [2]), Eq (2.1) has a unique solution. Consider the splitting

(I − |ΩL|) − |I −Ω(D − U)| = (I − |I −ΩD|) −Ω|B|

=

Ω(D − |B|), if 0 < Ω ≤ D−1

2I −ΩD −Ω|B|, if Ω > D−1

=

Ω〈A〉, if 0 < Ω ≤ D−1,

Ω(2Ω−1 − D − |B|), if Ω > D−1.

(1) When 0 < Ω ≤ D−1, (I−|ΩL|)−|I−Ω(D−U)| is an M-splitting of the M-matrix Ω〈A〉, therefore,
it follows from Lemma 2.1 that ρ((I − |ΩL|)−1 · |I −Ω(D − U)|) < 1.

(2) When Ω > D−1, if 2Ω−1−D−(|L|+|U |) is an M-matrix, then the splitting (I−|ΩL|)−|I−Ω(D−U)|
is an M-splitting of the M-matrix Ω(2Ω−1 − D − |B|), therefore ρ((I − |ΩL|)−1 · |I −Ω(D − U)|) < 1.

Collecting (1) and (2), this theorem is established based on Theorem 3.5. �

Corollary 3.2 Suppose A is an H+-matrix and Ω = ωD−1 with ω > 0, then the sequence
{
x(k)

}+∞

k=1
generated by (3.5) converges to the unique solution x∗ of (2.1) for any initial vector x(0) ∈ Rn if

0 < ω <
2

1 + ρ(D−1|B|)
. (3.8)

Proof. For 0 < ω ≤ 1, we have Ω ≤ D−1, that is, Ω satisfies the first condition of Theorem 3.6. When
Ω = ωD−1, the second condition of Theorem 3.6 can be represented as

ω > 1 and
(

2
ω
− 1

)
D − |B| is an M-matrix.

That is,

ω > 1 and
2
ω
− 1 > ρ(D−1|B|).

Therefore, if 0 < ω < 2
1+ρ(D−1 |B|) holds,

{
x(k)

}+∞

k=1
converges to x∗. �

To end this section, we consider the LCP(A, q) arising in American option pricing problem, where
A is a symmetric tridiagonal M-matrix:

A =



1 + 2λθ −λθ

−λθ 1 + 2λθ −λθ
. . .

. . .
. . .

−λθ 1 + 2λθ −λθ

−λθ 1 + 2λθ


∈ Rn×n (3.9)

with λ, θ > 0; see for instance [4]. In the following, we derive the optimal value of the parameter ω for
the case Ω = ωD−1 under the sense of 1-norm.

For iterative method (3.1), based on (3.4), we consider

f1(ω) = ‖I −ΩA‖1.

AIMS Mathematics Volume 6, Issue 11, 11904–11920.
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Let µ = λθ. By some computation, we get

f1(ω) = |1 − ω| +
2µ

1 + 2µ
ω =


1 −

ω

1 + 2µ
, if 0 < ω ≤ 1,

(1 + 4µ)ω
1 + 2µ

− 1, if ω > 1.

It can be easily seen that

min
ω>0

f1(ω) = f1(1) =
2µ

1 + 2µ
=

2λθ
1 + 2λθ

< 1. (3.10)

That is, ω = 1 is an optimal parameter.
We now consider the value of ω for iterative method (3.5). Let α = ω

1+2µ , i.e., ω = α(1 + 2µ), then

(I − ωD−1|L|)−1 =


1
−αµ 1

. . .
. . .

−αµ 1


−1

=



1
αµ 1

(αµ)2 αµ 1
...

. . .
. . .

. . .

(αµ)n−1 · · · (αµ)2 αµ 1


.

Let ν = |1 − ω|, and ai = (αµ)i, i = 0, 1, 2 . . . , n. Then aia j = ai+ j and it is easy to get

(I − ωD−1|L|)−1 · |I − ωD−1(D − U)|

=



1
a1 1
a2 a1 1
...

. . .
. . .

. . .

an−1 · · · a2 a1 1





ν a1

ν a1
. . .

. . .

ν a1

ν



=



ν a1

a1ν a2 + ν a1
...

...
. . .

. . .

an−2ν an−1 + an−3ν · · · a2 + ν a1

an−1ν an + an−2ν · · · a3 + a1ν a2 + ν


.

Based on (3.6) and (3.8), we define

f2(ω) = ‖(I − ωD−1|L|)−1 · |I − ωD−1(D − U)|‖1.

Since ai > 0 and 0 < ν < 1, it can be seen that

f2(ω) =

n∑
i=1

(αµ)i + |1 − ω|
n−2∑
i=0

(αµ)i.

We consider a particular ω, that is ω = 1, then

f2(1) =
µ

1 + µ

[
1 −

(
µ

1 + 2µ

)n]
.
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Remark. Based on the above discussions and notice that

f2(1) =
µ

1 + µ

[
1 −

(
µ

1 + 2µ

)n]
=

λθ

1 + λθ

[
1 −

(
λθ

1 + 2λθ

)n]
<

λθ

1 + λθ

<
2λθ

1 + 2λθ
= f1(1),

we expect that iterative method (3.5) converges faster than iterative method (3.1) when ω = 1.

4. Numerical experiments

In this section, we illustrate some examples. Since most of the projected methods involve
parameters, and it is not easy to select a proper in practice. Meanwhile, the implicit equations related
to the projected methods are different, it is difficult to compare the GFP method with other projected
methods fairly. So we do not compare the GFP method with other projected methods except for the
FP method. The modulus-based approaches for solving the LCP(A, q) include many cases, we select
the modulus-based SOR (MSOR) iteration method with the best cases as comparison. Besides, we
use the GFP method to solve the LCP(A, q) arising in American option pricing problem( [4]). The
number of iteration steps, the elapsed time and the norm of the residual vector are denoted by IT, CPU
and RES, respectively. RES is defined as:

RES(x(k)
+ ) = ||min(x(k)

+ , Ax(k)
+ + q)||2,

where x(k)
+ is the kth approximate solution of (1.1). The iteration process stops if RES(x(k)

+ ) < 10−5 or
the number of iteration steps reaches 1000.

The system matrix A in the first two examples is generated by

A(µ, η, ζ) = Â + µI + ηB + ζC,

here, µ, η and ζ are given constants, Â = Tridiag(−I, S ,−I) ∈ Rn×n is a block-tridiagonal matrix,

B = Tridiag(0, 0, 1) ∈ Rn×n and S = tridiag(−1, 4,−1) ∈ Rm×m

are two tridiagonal matrices, and C = diag([1 2 1 2 · · · ]) is a diagonal matrix of order n, m and n
satisfy n = m2. For convenience, we set

q = (1,−1, 1,−1, . . . , 1,−1, . . .)T ∈ Rn,

then the LCP(A(µ, η, ζ), q) have a unique solution when A(µ, η, ζ) is a P-matrix. All computations are
run by using Matlab version 2016 on a Dell Laptop (Intel(R) Core(TM) i5-7200U CPU @ 2.50GHz,
4.00GB RAM).

Example 4.1 In this example, we compare the GFP method with the MSOR iteration method ( [2]),
which is a very effective method in solving the LCP(A, q). Both the GFP method and the MSOR
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iteration method involve a parameter matrix Ω, which has many choices and it is not appropriate if
we take the same Ω. We set Ω = ωD−1 in the GFP method and Ω = ωD in the MSOR iteration
method, respectively. For fairness, we compare the two methods with the best cases by performing
many experiments. Set x(0) = zeros(n, 1) and n = 10000, then we obtain the following Table 1.

Table 1. The comparison between the GFP method and the MSOR iteration method.

A(1,−1, 0) A(1, 1, 0) A(1, 1,−1)
Alg 1 Alg 2 MSOR Alg 1 Alg 2 MSOR Alg 1 Alg 2 MSOR

ω 1.1 1.1 1 1.1 1.1 1.2 1 1.2 1
α - - 0.8 - - 1.1 - - 1.1
IT 17 10 20 17 10 11 39 16 24

CPU 0.0056 7.8000 0.0129 0.0053 7.6147 0.0078 0.0092 11.788 0.0124
RES 0.5e-5 0.3e-5 0.4e-5 0.5e-5 0.5e-5 0.7e-5 0.8e-5 0.4e-5 0.5e-5

A(1, 0, 1) A(0, 1, 0) A(1, 1, 1)
Alg 1 Alg 2 MSOR Alg 1 Alg 2 MSOR Alg 1 Alg 2 MSOR

ω 1.1 1 1 1 1.1 1.1 1 1.1 1.2
α - - 1 - - 1.1 - - 1.2
IT 12 9 9 23 12 15 12 9 9

CPU 0.0026 7.7473 0.0045 0.0049 8.7403 0.0158 0.0025 7.3931 0.0075
RES 0.6e-5 0.6e-5 0.8e-5 0.8e-5 0.3e-5 0.4e-5 0.6e-5 0.6e-5 0.7e-5

In Table 1, Alg 1 and Alg 2 denote Algorithm 1 and Algorithm 2, respectively. From Table 1, we
can find that iterative method (3.1) is better than the MSOR iteration method in the running time, and
iterative method (3.5) is better than the MSOR iteration method in the iteration steps. Since Algorithm
2 calculates the numerical solution entry by entry, the matrix-vector fast calculation technique can not
be used, which makes the method more time-consuming. For Algorithm 1, single-step running time is
short, but the number of iteration steps is relatively large. Besides, the best parameters for the MSOR
iteration method are selected by many experiments, however, the best parameter for iterative method
(3.1) is near or equals to 1, which is a conclusion of Theorem 3.3.

Example 4.2 In this example, we illustrate the convergence domains of ω and the convergence rates
of iterative methods (3.1) and (3.5). We consider A(0, 0, 1) and A(0, 1, 1). The former is a symmetric
H+-matrix and the latter is a nonsymmetric H+-matrix, both of which are P-matrices. We set Ω =

ωD−1 = ωdiag(A(µ, η, ζ))−1. From Theorem 3.3 and Corollary 3.2, we know that ω ∈
(
0, 2

1+ρ(D−1 |B|)

)
is

a sufficient convergence domain for both iterative methods (3.1) and (3.5). Here, we consider a larger
domain and set ω to be

1 − floor
(
1
δ

)
∗ δ : δ :

2
1 + ρ(D−1|B|)

+ δ,

where δ = 1
2

(
2

1+ρ(D−1 |B|) − 1
)
. The symbols ‘floor’ and ‘:’ are an integer function and a command in

Matlab software, respectively. Then the right boundary of interval
(
0, 2

1+ρ(D−1 |B|)

)
is the penultimate one

in these points. We denote ρ(|I −ΩA|) in (3.2) and ρ((I −Ω|L|)−1|I −Ω(D − U)|) in (3.6) by ρ1 and ρ2,
respectively. Set n = 900 and x(0) = zeros(n, 1), then we obtain Table 2 and the corresponding Figure
1 as follows.
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Table 2. ρ and IT of Algorithms 1 and 2 with Ω = ωD−1.

A(0, 0, 1)
ω ω1 ω2 ω3 ω4 ω5 ω6 ω7 ω8

ρ1 0.9833 0.9621 0.9410 0.9198 0.8987 0.8776 0.8564 0.8353
ρ2 0.9829 0.9601 0.9358 0.9099 0.8821 0.8522 0.8198 0.7845
IT1 344 148 93 66 51 41 34 28
IT2 341 145 89 63 47 37 30 25
ω ω9 ω10 ω11 ω12 ω13 = 1 ω14 ω15 ω16

ρ1 0.8141 0.7930 0.7719 0.7507 0.7296 0.8648 1.0000 1.1352
ρ2 0.7457 0.7027 0.6542 0.5984 0.5323 0.7671 1.0000 1.2358
IT1 24 21 18 16 14 12 16 22
IT2 20 17 14 12 9 8 10 13

A(0, 1, 1)
ω ω1 ω2 ω3 ω4 ω5 = 1 ω6 ω7 ω8

ρ1 0.8897 0.7744 0.6580 0.5427 0.4255 0.7128 1.0029 1.2882
ρ2 0.8840 0.7488 0.5957 0.4131 0.1629 0.5813 1.0035 1.4651
IT1 105 48 29 20 14 19 62 1000
IT2 101 44 25 16 9 12 19 35
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Figure 1. ρ and IT of Algorithms 1 and 2 with Ω = ωD−1.

From Table 2 and Figure 1, we can find that Theorem 3.3 and Corollary 3.2 provide the convergent
domains of ω for iterative methods (3.1) and (3.5), respectively, and the initial iteration vector is
arbitrary when ω falls in these domains. When ω exceeds the convergence domain, the two iterative
methods are convergent sometimes when x(0) = zeros(n, 1). Meanwhile, we can find that iterative
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method (3.5) is usually faster than iterative method (3.1) in terms of IT when ω takes the same value.
In addition, this example illustrates the optimal parameter conclusion in Theorem 3.3, i.e., ω = 1 is a
good parameter for iterative method (3.1).

Example 4.3 In this example, we apply the GFP method to solve the LCP (A, q) in [4], where the
matrix A satisfies (3.9). We set Ω = ωD−1 and λθ = 0.5, 1, 1.5, 2, respectively. Similarly, just as
Example 4.2, we set ω = 1− floor

(
1
δ

)
∗ δ : δ : 2

1+ρ(D−1 |B|) + δ with δ = 1
2

(
2

1+ρ(D−1 |B|) − 1
)
, ρ1 = ρ(|I −ΩA|)

in (3.2) and ρ2 = ρ((I − Ω|L|)−1|I − Ω(D − U)|) in (3.6). Then ω = 1 is the fourth from the bottom of
these values of ω. We set n = 900 and x(0) = randn(n, 1) in our experiments, then we obtain Figure 2
as follows.
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Figure 2. The numerical results for cases λθ = 0.5, 1, 1.5, 2 and Ω = ωD−1.
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From Figure 2, we can find that both iterative method (3.1) and iterative method (3.5) have good
performance when ω = 1, i.e., the two iterative methods solve the LCP (A, q) in very few iteration
steps. Meanwhile, this example also verifies that iterative method (3.5) is faster than iterative method
(3.1) when ω = 1, which is a conclusion given at the end of Section 3.

Example 4.4 In this example, we compare the GFP method with the FP method ( [4]). The system
matrix is generated by

A(η) = Â − 4I + ηB + C,

where C = diag([1 2 · · · n]) and n = 900. The initial iteration vector is x(0) = zeros(n, 1). For
the FP method, the parameter matrix is Ω = ωI, and for the GFP method, the parameter matrix is
Ω = ωD−1 = ω(diag(A))−1. We consider two cases in our experiments, that is η = 0 and η = 1.
Thus, these two matrices are H+-matrices. Since the convergence domains of ω are different, we
can not use the same ω values for the two methods. For the GFP method, based on Theorem 3.3
and Corollary 3.2, we know that the convergence domain is 0 < ω < 2

1+ρ(D−1 |B|) , and we set ω to be
1

3(1+ρ(D−1 |B|)) : 1
3(1+ρ(D−1 |B|)) : 2

1+ρ(D−1 |B|) . For the FP method, there are two different situations. For η = 0,
since the system matrix is a symmetric positive definite matrix, based on Theorem 3.4, we know that
the convergence domain is 0 < ω < 2

λmax
, we set ω to be

1
3λmax

:
1

3λmax
:

2
λmax

.

For η = 1, by performing many experiments, we set ω to be 0.0003 : 0.0002 : 0.0013, which include
the convergence parameter values. The numerical results are shown in Tables 3 and 4, respectively.

Table 3. The comparison between GFP method and FP method for η = 0.

GFP method FP method
ω ρ1 IT1 ρ2 IT2 ω ρ IT

0.1795 0.9743 77 0.9721 76 0.0004 0.9999 1000
0.3591 0.9486 35 0.9390 34 0.0007 0.9998 1000
0.5386 0.9228 21 0.8989 20 0.0011 0.9998 1000
0.7181 0.8971 13 0.8487 12 0.0015 0.9997 1000
0.8976 0.8714 9 0.7828 7 0.0019 0.9996 1000
1.0772 1.0000 8 1.0000 6 0.0022 1.0000 1000

Table 4. The comparison between GFP method and FP method for η = 1.

GFP method FP method
ω ρ1 IT1 ρ2 IT2 ω ρ IT

0.2822 0.7689 46 0.7624 46 0.0003 0.9997 1000
0.5645 0.5378 19 0.5084 18 0.0005 0.9995 1000
0.8467 0.3066 10 0.2262 8 0.0007 0.9993 1000
1.1289 0.3333 10 0.2261 8 0.0009 0.9991 1000
1.4111 0.6667 23 0.6109 17 0.0011 0.9989 1000
1.6934 1.0000 125 1.0000 40 0.0013 0.9987 1000
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From Tables 3 and 4, we can find that since ρ is very large, the FP method can not obtain an
approximate solution even the number of iteration steps reaches 1000. On the contrary, for the GFP
method, both (3.1) and (3.5) can obtain the approximate solution in fewer iteration steps. Therefore, it
is obvious that the GFP method is better than the FP method.

5. Conclusions

In this paper, based on an equivalent fixed-point equation with a parameter matrix Ω, we present the
general fixed-point (GFP) method for solving the LCP(A, q), which is the generalization of the fixed-
point (FP) method. For this method, we discussed two iterative forms: one is the basic form and the
other is the converted form, which is associated with matrix splitting. Both iterative forms can keep the
spare structure of A in the iteration processes, thus the sparse structure of A can be applied to improve
the effectiveness of this method. For the GFP method, the convergence conditions are proved and some
concrete convergence domains of Ω as well as the optimal cases are presented. The iteration form of
the GFP method is simple and the convergence rate is affected by the spectral radius of the iteration
matrix. The numerical experiments show that the GFP method is an effective and competitive iterative
method.
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