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1. Introduction

Among various generalizations of concept of metric, Matthews [15] introduced a special kind of a
partial metric space where the self-distance d(x, x) is not necessarily zero. On the other hand, Amini-
Harandi [4] redefined a dislocated metric of Hitzler and Seda [11] and introduced metric-like spaces.
Combining these two concepts we get quasi-metric-like spaces. The study of partial metric spaces has
wide area of application, especially in computer science [14, 18]. Therefore, we can find many fixed
point results in the setting of partial metric spaces [3–6, 8–10].

The b-metric space [6, 7] and its partial versions, which extends the metric space by modifying the
triangle equality metric axiom by inserting a constant multiple s > 1 to the right-hand side, is one of
the most applied generalizations for metric spaces (see [1, 12]).

Very recently, the authors in [13] introduced a type of extended b-metric spaces by replacing the
constant s by a function θ(x, y) depending on the parameters of the left-hand side of the triangle
inequality.
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In this paper we introduce a new type of generalized metric space, which we call as a double
controlled quasi metric-Like type space. We also prove the corresponding Banach fixed point theorem
on this metric space and we provide an illustrating example.

2. Preliminary assertions

In 2017 Kamran et al. [13] initiated the concept of extended b-metric spaces.
Definition 2.1. [13] Let Υ be a non empty set and θ : Υ × Υ → [1,∞). An extended b-metric is a
function $ : Υ × Υ→ [0,∞) such that for all v, t, r ∈ Υ the following conditions hold:
(1) $(v, t) = 0⇔ v = t;
(2) $(v, t) = $(t, v);
(3) $(v, t) ≤ θ(v, t)

[
$(v, r) +$(r, t)

]
,

for all v, t, r ∈ Υ. The pair (Υ, $) is called an extended b-metric space.
Mlaiki et al. [17] generalized the notion of b-metric spaces.

Definition 2.2. [17] Given a nonempty set Υ and θ : Υ×Υ→ [1,∞). The function $ : Υ×Υ→ [0,∞)
is called a controlled metric type if
(1) $(v, t) = 0⇔ v = t;
(2) $(v, t) = $(t, v);
(3) $(v, t) ≤ θ(v, r)$(v, r) + θ(r, t)$(r, t)

]
for all v, t, r ∈ Υ. The pair (Υ, $) is called a controlled metric type space.

Next we present the definition of double controlled metric-type spaces.
Definition 2.3. [2] Let there be given two non-comparable functions β, ρ : Υ × Υ → [1,∞). Let
$ : Υ × Υ→ [0,∞) be a function satisfying
(1) $(v, t) = 0⇔ v = t;
(2) $(v, t) = $(t, v);
(3) $(v, t) ≤ β(v, r)$(v, r) + ρ(r, t)$(r, t),
for all v, t, r ∈ Υ. Then $ is called a double controlled metric type by β and ρ and the pair (Υ, $) is a
double controlled metric type space.

The following definition is a generalization of double controlled metric-type spaces to double
controlled metric-like-type spaces, where the condition (1) is replaced by a weaker one.
Definition 2.4. [16] Consider a set Υ be a non empty set and non-comparable functions
β, ρ : Υ × Υ → [1,∞). Suppose that a function $ : Υ × Υ → [0,∞) satisfies the following conditions
for all v, t, r ∈ Υ:
(1) $(v, t) = 0⇒ v = t;
(2) $(v, t) = $(t, v);
(3) $(v, t) ≤ β(v, r)$(v, r) + ρ(r, t)$(r, t)

]
.

Then the pair (Υ, $) is called a double controlled metric-like space.

3. Double controlled quasi metric-Like spaces and some topological properties of this space

In this section we present our generalization of the double controlled quasi metric-like-type spaces.
This concept is extension of the double controlled metric-like spaces, so called double controlled quasi
metric-like spaces “assuming that the self-distance may not be zero”.
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Definition 3.1. Let Υ be a non empty set and consider non-comparable functions

β, ρ : Υ × Υ→ [1,∞).

Suppose that a function $ : Υ × Υ→ [0,∞), for all v, t, r ∈ Υ, satisfies the following conditions:
($1) $(v, t) = $(t, v) = 0⇒ v = t;
($2) $(v, t) ≤ $(v, r)β(v, r) +$(r, t)ρ(r, t).

Then the pair (Υ, $) is called a double controlled quasi metric-like space or shortly (DCQMLS ).
Definition 3.2. Let (Υ, $) be a DCQMLS and (vn) be a sequence in Υ. Then we say

(i) (vn) converges to v ∈ Υ if and only if

lim
n−→+∞

$(vn, v) = $(v, v) = lim
n−→+∞

$(v, vn).

In this case v is called a double controlled quasi like-limit or shortly ($-limit) of (vn), and we
write lim

n−→+∞
vn = v.

(ii) A sequence (vn) is a $-Cauchy sequence if both lim
n,m−→+∞

$(vn, vm) and lim
n,m−→+∞

$(vm, vn) exist and

are finite.

(iii) (Υ, $) is $-complete if for any $-Cauchy sequence (vn), there exists some v ∈ Υ such that

$(v, v) = lim
n−→+∞

$(vn, v)

= lim
n−→+∞

$(v, vn)

= lim
n,m−→+∞

$(vn, vm)

= lim
n,m−→+∞

$(vm, vn).

(iv) The mapping Ξ : Υ → Υ is said to be continuous at v ∈ Υ if for any sequence (vn) converging to
v, we have lim

n−→+∞
Ξvn = Ξv, that is,

lim
n−→+∞

$(Ξvn,Ξv) = $(Ξv,Ξv) = lim
n−→+∞

$(Ξv,Ξvn).

Remark 3.1.

(i) Topology of (DCQMLS ) is not necessarily a Hausdorff topology, so the limit of convergent
sequence is not always unique.

(ii) There are convergent sequences in (DCQMLS ) that are not Cauchy sequences.

Example 3.1. Let Υ = {0, 1, 2} and $ : Υ × Υ→ [0,+∞) defined with

$(0, 0) = $(0, 1) = $(1, 1) = 1,

$(0, 2) = $(1, 0) = $(1, 2) = $(2, 0) = $(2, 1) = $(2, 2) = 2.

Consider the following β, ρ : Υ × Υ→ [1,∞):

β(1, 1) = β(1, 2) = β(1, 0) = β(0, 1) = β(0, 0) = β(0, 2) = β(2, 0) = 1,
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β(2, 1) = β(2, 2) = 2,

and
ρ(1, 1) = ρ(0, 1) = ρ(1, 0) = ρ(0, 0) = 1,

ρ(0, 2) = ρ(2, 0) = ρ(1, 2) = ρ(2, 1) = ρ(2, 2) = 2.

Thus, (Υ, $) is a (DCQMLS ).
The constant sequence (vn = 1)n∈N is convergent with both 1 and 2 as limits since

lim
n→+∞

$(vn, 1) = lim
n→+∞

$(1, vn) = $(1, 1) = 1

lim
n→+∞

$(vn, 2) = $(1, 2) = $(2, 1) = lim
n→+∞

$(2, vn) = $(2, 2) = 2.

Consider the sequence t2n = 1, t2n−1 = 0, n ∈ N. Obviously, (tn) is not a Cauchy sequence, but

lim
n→+∞

$(tn, 2) = lim
n→+∞

$(2, tn) = $(2, 2) = 2,

implying that lim
n→+∞

tn = 2.
Definition 3.3. Let (Υ, $) be a (DCQMLS ) with ε > 0, v0 ∈ Υ. The set
δ(v0, ε) = {v/v ∈ Υ,max

(
$(v0, v), $(v, v0)

)
< ε} is called $-open ball of radius ε,center v0 and

Bε(v0) = {v0} ∪ δ(v0, ε). The set δ(v0, ε) = {v/v ∈ Υ,max
(
$(v0, v), $(v, v0)

)
≤ ε} is called $-closed

ball of radius ε, center v0 and Bε(v0) = {v0} ∪ δ(v0, ε).

4. Main results

Theorem 4.1. Let (Υ, $) be a complete (DCQMLS ) defined by functions β, ρ : Υ × Υ → [1,∞).
Let Ξ : Υ→ Υ be a mapping such that

$(Ξv,Ξt) ≤ h$(v, t), (4.1)

for all v, t ∈ Υ, where h ∈ (0, 1). For v0 ∈ Υ, take vn = Ξnv0. Suppose that

sup
m≥1

lim
i→+∞

β(vi+1, vi+2)
β(vi, vi+1)

ρ(vi+1, vm) <
1
h
. (4.2)

Also assume that, for every v ∈ Υ, we have

lim
n→+∞

β(v, vn) and lim
n→+∞

ρ(vn, v) exist and are finite. (4.3)

Then Ξ has a unique fixed point.
Proof. Let vn = Ξnv0 in Υ be a sequence that satisfies the conditions of our theorem. By using (4.1) we
get

$(vn, vn+1) ≤ hn$(v0, v1) for all n ≥ 0. (4.4)
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Let n,m ∈ N be such that n < m. Then

$(vn, vm) ≤ β(vn, vn+1)$(vn, vn+1) + ρ(vn+1, vm)$(vn+1, vm)
≤ β(vn, vn+1)$(vn, vn+1) + ρ(vn+1, vm)β(vn+1, vn+2)$(vn+1, vn+2)

+ρ(vn+1, vm)ρ(vn+2, vm)$(vn+2, vm)
≤ β(vn, vn+1)$(vn, vn+1) + ρ(vn+1, vm)β(vn+1, vn+2)$(vn+1, vn+2)

+ρ(vn+1, vm)ρ(vn+2, vm)β(vn+2, vn+3)$(vn+2, vn+3)
+ρ(vn+1, vm)ρ(vn+2, vm)ρ(vn+3, vm)$(vn+3, vm)

≤
...

≤ β(vn, vn+1)$(vn, vn+1) +

m−2∑
i=n+1

( i∏
j=n+1

ρ(v j, vm)
)
β(vi, vi+1)$(vi, vi+1)

+
( m−1∏

k=n+1

ρ(vk, vm)
)
$(vm−1, vm)

≤ β(vn, vn+1)hn$(v0, v1) +

m−2∑
i=n+1

( i∏
j=n+1

ρ(v j, vm)
)
β(vi, vi+1)hi$(v0, v1)

+
( m−1∏

i=n+1

ρ(vi, vm)
)
hm−1$(v0, v1)

≤ β(vn, vn+1)hn$(v0, v1) +

m−2∑
i=n+1

( i∏
j=n+1

ρ(v j, vm)
)
β(vi, vi+1)hi$(v0, v1)

+
( m−1∏

i=n+1

ρ(vi, vm)
)
hm−1β(vm−1, vm)$(v0, v1)

= β(vn, vn+1)hn$(v0, v1) +

m−1∑
i=n+1

( i∏
j=n+1

ρ(v j, vm)
)
β(vi, vi+1)hi$(v0, v1)

≤ β(vn, vn+1)hn$(v0, v1) +

m−1∑
i=n+1

( i∏
j=0

ρ(v j, vm)
)
β(vi, vi+1)hi$(v0, v1).

Note that we are using the fact that β(v, t) ≥ 1 and ρ(v, t) ≥ 1. Let

Φp =

p∑
i=0

( i∏
j=0

ρ(v j, vm)
)
β(vi, vi+1)hi.

Then we have
$(vn, vm) ≤ $(v0, v1)

[
hnβ(vn, vn+1) + (Φm−1 − Φn)

]
. (4.5)

By condition (4.2), using the ratio test, we see that lim
n→+∞

Φn exists, and hence the real sequence (Φn)
a Cauchy sequence. Finally, if we take the limit in inequality (4.5) as n,m→ +∞, we deduce that

lim
n,m→+∞

$(vn, vm) = 0. (4.6)
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Similarly proceeding we have
lim

n,m→+∞
$(vm, vn) = 0.

Hence the sequence (vn) is$-Cauchy in (Υ, $), which is a complete (DCQMLS ), so (vn) converges
to some v∗ ∈ Υ, that is,

lim
n→+∞

$(vn, v∗) = lim
n→+∞

$(v∗, vn)

= $(v∗, v∗)
= lim

n,m→+∞
$(vn, vm) = lim

n,m→+∞
$(vm, vn)

= 0.

(4.7)

Then $(v∗, v∗) = 0. Next, we show that Ξv∗ = v∗. By the triangle inequality and (4.1) we have

$(v∗,Ξv∗) ≤ β(v∗, vn+1)$(v∗, vn+1) + ρ(vn+1,Ξv∗)$(vn+1,Ξv)
= β(v∗, vn+1)$(v∗, vn+1) + ρ(vn+1,Ξv∗)$(Ξvn,Ξv∗)
≤ β(v∗, vn+1)$(v∗, vn+1) + hρ(vn+1,Ξv∗)$(vn, v∗).

and
$(Ξv∗, v∗) ≤ β(Ξv∗, vn+1)$(Ξv∗, vn+1) + ρ(vn+1, v∗)$(vn+1, v∗)

= β(Ξv∗, vn+1)$(Ξv∗,Ξvn) + ρ(vn+1, v∗)$(vn+1, v∗)
≤ hβ(Ξv∗, vn+1)$(v∗, vn) + ρ(vn+1, v∗)$(vn+1, v∗).

Taking the limit as n→ +∞, by (4.3) and (4.7) we deduce that $(v∗,Ξv∗) = $(Ξv∗, v∗) = 0, that is,
Ξv∗ = v∗. Finally, assume that Ξ has two fixed points, say ν and ξ. Then

$(ν, ξ) = $(Ξν,Ξξ) ≤ h$(ν, ξ) < $(ν, ξ),

$(ξ, ν) = $(Ξξ,Ξν) ≤ h$(ξ, ν) < $(ξ, ν),

which leads us to a contradiction. Therefore $(ν, ξ) = $(ξ, ν) = 0, so ν = ξ. Hence Ξ has a unique
fixed point.
Remark 4.1. Note that condition (4.3) in Theorem 4.1 can be changed by the assumption that Ξ and
the (DCQMLS ) $ are continuous. To see this, the continuity gives us that if vn → v∗, then Ξvn → Ξv∗,
and hence we have

lim
n→+∞

$(Ξvn,Ξv∗) = lim
n→+∞

$(Ξv∗,Ξvn)

= $(Ξv∗,Ξv∗)
= lim

n→+∞
$(vn+1,Ξv∗) = lim

n→+∞
$(Ξv∗, vn+1)

= $(v∗,Ξv∗) = $(Ξv∗, v∗),

then
$(Ξv∗,Ξv∗) = $(v∗,Ξv∗) = $(Ξv∗, v∗) (4.8)

Next we show that $(Ξv∗,Ξv∗) = 0. In fact by (4.1) we have

$(Ξv∗,Ξv∗) ≤ β(Ξv∗, vn+1)$(Ξv∗, vn+1) + ρ(vn+1,Ξv∗)$(vn+1,Ξv∗)
= β(Ξv∗, vn+1)$(Ξv∗,Ξvn) + ρ(vn+1,Ξv∗)$(Ξvn,Ξv∗)
= hβ(Ξv∗, vn+1)$(v∗, vn) + hρ(vn+1,Ξv∗)$(vn, v∗).
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Taking the limit as n → +∞, by (4.3), (4.7) and (4.8) we deduce that $(Ξv∗,Ξv∗) = $(v∗,Ξv∗) =

$(Ξv∗, v∗) = 0, so Ξv∗ = v∗.
Definition 4.1. Let Ξ : Υ → Υ. For some v0 ∈ Υ, consider O(v0) = {v0,Ξv0,Ξ

2v0, · · · } to be the orbit
of v0. We say that a function ϕ is Ξ- orbitally lower semicontinuous at u ∈ Υ if for (vn) ⊂ O(v0) such
that vn → u, we have ϕ(u) ≤ lim

n→+∞
inf ϕ(vn).

Corollary 4.1. Let (Υ, $) be a complete (DCQMLS ) defined by functions β, ρ : Υ × Υ→ [1,∞). Let
Ξ : Υ→ Υ. Let v0 ∈ Υ and 0 < h < 1 be such that

$(Ξu,Ξ2u) ≤ h$(v,Ξu) for each u ∈ O(v0). (4.9)

Take vn = Ξnv0. Suppose that

sup
m≥1

lim
i→+∞

β(vi+1, vi+2)
β(vi, vi+1)

ρ(vi+1, vm) <
1
h
. (4.10)

Then lim
n→+∞

vn = u ∈ Υ. Moreover, Ξu = u⇔ u 7→ $(u,Ξu) is Ξ- orbitally lower semicontinuous at
u.

Next, we present the nonlinear case.
Theorem 4.2. Let (Υ, $) be a complete (DCQMLS ) defined by functions β, ρ : Υ × Υ → [1,∞) and
assume that there exists a nondecreasing and continuous function ψ : R+ → R+ such that

lim
n→+∞

ψn(v) = 0, v > 0, ψ(t) < t, f or all t > 0,

and
$(Ξv,Ξt) ≤ ψ

(
Θ(v, t)

)
, Θ(v, t) = max{$(v, t), $(v,Ξv), $(t,Ξt)}, (4.11)

for all v, t ∈ Υ. Moreover, assume that for each v0 ∈ Υ, we have

sup
m≥1

lim
i→+∞

β(vi+1, vi+2)
β(vi, vi+1)

ρ(vi+1, vm)
ψi+1($(v1, v0)

)
ψi($(v1, v0)

) < 1, (4.12)

where vn = Ξnv0, n ∈ N. If the (DCQMLS ) $ and Ξ are continuous, then Ξ admits a unique fixed
point v∗ ∈ Υ with Ξnv→ v∗ for each v ∈ Υ.
Proof. Assume that there exists k ∈ N such that vk = vk+1 = Ξvk, which implies that vk is a fixed point.
So we may assume that vn+1 , vn for each n. From condition (4.11) we have

$(vn, vn+1) = $(Ξvn,Ξvn−1) ≤ ψ
(
Θ(vn−1, vn)

)
, (4.13)

where Θ(vn−1, vn) = max{$(vn−1, vn), $(vn, vn+1)}. If for some n we accept that
Θ(vn−1, vn) = $(vn, vn+1), then by (4.13) and the assumption ψ(t) < t for all t > 0, we deduce that

0 < $(vn, vn+1) ≤ ψ
(
$(vn, vn+1)

)
< $(vn, vn+1), (4.14)

which is a contradiction. Thus, for all n ∈ N, we obtain Θ(vn−1, vn) = $(vn−1, vn). It follows that
0 < $(vn, vn+1) ≤ ψ

(
$(vn−1, vn)

)
. By using induction we easily see that for all n ≥ 0,

0 < $(vn, vn+1) ≤ ψn($(v0, v1)
)
.
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By the properties of ψ we can easily deduce that

lim
n→+∞

$(vn, vn+1) = 0.

Using the argument in the proof of Theorem 4.1, for n,m ∈ N such that n < m, we can easily deduce
that

$(vn, vm) ≤ β(vn, vn+1)ψn($(v0, v1)
)

+

m−1∑
i=n+1

( i∏
j=0

ρ(v j, vm)
)
β(vi, vi+1)ψi($(v0, v1)

)
. (4.15)

and

$(vm, vn) ≤ β(vm, vm+1)ψm(
$(v0, v1)

)
+

n−1∑
i=m+1

( i∏
j=0

ρ(v j, vn)
)
β(vi, vi+1)ψi($(v0, v1)

)
.

By condition (4.12), using the ratio test, we can easily deduce that the sequence (vn) is $-Cauchy.
Since (Υ, $) is a complete (DCQMLS ), if vn → r as n→ +∞, then lim

n→+∞
$(vn, r) = lim

n→+∞
$(r, vn) = 0.

Hence by Remark 4.1 we conclude that Ξr = r. Finally, assume that r and t are two fixed points of Ξ

such that r , t. From assumption (4.11) we have

$(r, t) = $(Ξr,Ξt) ≤ ψ
(
Θ(r, t)

)
= ψ

(
$(r, t)

)
< $(r, t),

and
$(t, r) = $(Ξt,Ξr) ≤ ψ

(
Θ(t, r)

)
= ψ

(
$(t, r)

)
< $(t, r),

which leads to a contradiction. Therefore r = t, as desired.
Remark 4.2. Note that if ψ(v) = αv, 0 < α < 1, then condition (4.11) in Theorem 4.2 becomes

$(Ξv,Ξt) ≤ αmax{$(v, t), $(v,Ξv), $(t,Ξt)}. (4.16)

Next, we prove the following result for mappings satisfying Kannan-type contraction.
Theorem 4.3. Let (Υ, $) be a complete (DCQMLS ) defined by functions β, ρ : Υ × Υ → [1,∞). Let
Ξ : Υ→ Υ be a Kannan mapping defined as follows:

$(Ξv,Ξt) ≤ δ{$(v,Ξv) +$(t,Ξt)} (4.17)

for v, t ∈ Υ, where δ ∈ (0, 1
2 ). For v0 ∈ Υ, take vn = Ξnv0. Suppose that

sup
m≥1

lim
i→+∞

β(vi+1, vi+2)
β(vi, vi+1)

ρ(vi+1, vm) <
1 − a

a
. (4.18)

Also, assume that for every v ∈ Υ, we have

lim
n→+∞

β(v, vn) <
1
δ

and lim
n→+∞

ρ(vn, v) <
1
δ

(4.19)

Then Ξ has a fixed point. Moreover, if for every fixed point z, we have $(z, z) = 0, then the fixed
point is unique.
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Proof. Consider the sequence (vn = Ξvn−1) in Υ satisfying hypotheses (4.18) and (4.19). From (4.17)
we obtain

$(vn, vn+1) = $(Ξvn−1,Ξvn)
≤ δ

{
$(vn−1,Ξvn−1) +$(vn,Ξvn)

}
= δ

{
$(vn−1, vn) +$(vn, vn+1)

}
.

Then $(vn, vn+1) ≤ δ
1−δ$(vn−1, vn). By induction we get

$(vn, vn+1) ≤
( δ

1 − δ
)n
$(v0, v1), ∀n ≥ 0. (4.20)

Next we show that (vn) is a $-Cauchy sequence. For two natural numbers n < m, we have

$(vn, vm) ≤ β(vn, vn+1)$(vn, vn+1) + ρ(vn+1, vm)$(vn+1, vm).

Similarly to the proof of Theorem 4.1, we get

$(vn, vm) ≤ β(vn, vn+1)$(vn, vn+1) +

m−2∑
i=n+1

( i∏
j=n+1

ρ(v j, vm)
)
β(vi, vi+1)$(vi, vi+1)

+
( m−1∏

k=n+1

ρ(vk, vm)
)
$(vm−1, vm)

≤ β(vn, vn+1)
( δ

1−δ

)n
$(v0, v1) +

m−2∑
i=n+1

( i∏
j=n+1

ρ(v j, vm)
)
β(vi, vi+1)

( δ

1 − δ
)i
$(v0, v1)

+
( m−1∏

i=n+1

ρ(vi, vm)
)( δ

1 − δ
)m−1

β(vm−1, vm)$(v0, v1)

Similarly proceeding we have

$(vm, vn) ≤ β(vm, vm+1)$(vm, vm+1) +

n−2∑
i=m+1

( i∏
j=m+1

ρ(v j, vn)
)
β(vi, vi+1)$(vi, vi+1)

+
( n−1∏

k=m+1

ρ(vk, vn)
)
$(vn−1, vn)

≤ β(vm, vm+1)
( δ

1−δ

)m
$(v0, v1) +

n−2∑
i=m+1

( i∏
j=m+1

ρ(v j, vn)
)
β(vi, vi+1)

( δ

1 − δ
)i
$(v0, v1)

+
( n−1∏

i=m+1

ρ(vi, vn)
)( δ

1 − δ
)n−1

β(vn−1, vn)$(v0, v1)

Since 0 ≤ δ < 1
2 , we have 0 < δ

1−δ < 1, and similarly to the argument in the proof of Theorem 4.1,
we obtain that (vn) is a $-Cauchy sequence in the complete (DCQMLS ) (Υ, $). Thus (vn) converges
to some z ∈ Υ. Suppose that Ξz , z. Then

0 < $(z,Ξz) ≤ β(z, vn+1)$(z, vn+1) + ρ(vn+1,Ξz)$(vn+1,Ξz)
≤ β(z, vn+1)$(z, vn+1) + ρ(vn+1,Ξz)

{
δ$(vn, vn+1) + δ$(z,Ξz)

}
.

,
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and
0 < $(Ξz, z) ≤ β(Ξz, vn+1)$(Ξz, vn+1) + ρ(vn+1, z)$(vn+1, z)

≤ β(Ξz, vn+1)
{
δ$(z,Ξz) + δ$(vn, vn+1)

}
+ ρ(vn+1, z)$(vn+1, z).

Taking the limit in both sides of these inequalities and using (4.19), we deduce that 0 < $(z,Ξz) <
$(z,Ξz) and 0 < $(Ξz, z) < $(Ξz, z) , which is a contradiction. Hence Ξz = z. Now assume that for
every fixed point w, we have $(z, z) = 0 and suppose that Ξ has more than one fixed point, say z and
η. Then

$(z, η) = $(Ξz,Ξη) ≤ δ
{
$(z,Ξz) +$(η,Ξη)

}
= δ

{
$(z, z) +$(η, η)

}
= 0,

and
$(η, z) = $(Ξη,Ξz) ≤ δ

{
$(η,Ξη) +$(z,Ξz)

}
= δ

{
$(η, η) +$(z, z)

}
= 0.

Thereby z = η, as required.
Remark 4.3. It will be interesting to find more applications to our current paper in other fields see
[19–23].
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