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1. Introduction

Functions with convexity property have been frequently deployed in numerous fields of pure and
applied mathematics, by way of illustration in function theory, mathematical analysis, functional
analysis, probability theory, optimization theory, operational research and information theory. Briefly,
convex functions entail a strong and elegant interaction between analysis and geometry, and convex
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functions got prominence in the mathematical inequalities and applications, and most of inequalities
are regularly used in solving several problems of the applied sciences like as, Jensen’s inequality [1]
which is lord among inequalities because it make out at once the main part of the other classical
inequalities (e.g., those by Hölder, Minkowski, Beckenbach-Dresher and Young, the A-G inequality
etc.) that holds for the class of convex functions under certain conditions. Some recent work on the
applications of mathematical inequalities can be found in [2–9]. The following inequality holds for
any convex function Φ defined on R

Φ

(w1 + w2

2

)
≤

1
w2 − w1

∫ w2

w1

Φ(w)dw ≤
Φ(w1) + Φ(w2)

2
, w1, w2 ∈ R, w1 , w2. (1.1)

Further, the simple generalization to a convex function extensively widens our scope for analysis, and
during the investigation of convexity, many researchers founded new classes of functions which are
not convex in general. Some of them are the so called harmonic convex functions [10], harmonic
(w1,m)-convex functions [11], harmonic (s,m)-convex functions [12, 13] and harmonic
(p, (s,m))-convex functions [14]. For a quick glance on importance of these classes and applications
see [15–29] and references therein.

It is import to bring into your kind knowledge that the harmonic property has taken a significant
apart in different fields of pure and applied sciences. In [30], the authors have emphasized on the
important character of the harmonic mean in Asian stock options. More interestingly, harmonic means
are applied in electric circuit theory. Specifically, the total resistance of a set of parallel resistor is just
half of the harmonic mean of the total resistors. For instance, suppose R1 and R2 are the resistances of
two parallel resistors, then the total resistance RT is computed by the following formula:

RT =
R1R2

R1 + R2
.

Definition 1.1. A function Φ : I ⊆ R\{0} → R is said to be harmonic convex function on I if

Φ

(
w1w2

tw1 + (1 − t)w2

)
≤ tΦ (w2) + (1 − t) Φ (w1) (1.2)

holds for all w1,w2 ∈ I and t ∈ [0, 1]. If the inequality is reversed, then Φ is said to be harmonic
concave.

Example 1.2. Here, we present some non-trivial examples

• The functions Φ1(w) = ln w, Φ2(w) =
√

w for all w ∈ (0,∞), are examples of harmonic convex
functions as well as concave functions.
• The functions Φ3(w) =

(w−1)2+1
w and Φ4(w) = 1

w2 for all w ∈ (0,∞), are examples of harmonic
convex function which are also convex functions.

• The function Ψ(w) =


1−w

w , i f 0 < w ≤ 1
0, i f 1 < w ≤ 2
w−2

w , i f w > 2
is an example of harmonic convex function that is

neither convex nor concave function.

Clearly, the function π(w) = − ln w, is example of convex functions which is not harmonic convex
function. In the presence of these example, Baloch et al. [31] claimed that class of harmonic convex
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functions is neither exactly that of convex functions nor it is entirely different from class of convex
functions. More precisely, they investigated remarkable relations between these two classes under
certain conditions as follows:

Lemma 1.3. Let I ⊆ R/{0} be a real interval. Define I−1 = {w2 ∈ R,w2 = 1
w1
,w1 ∈ I}. A function Φ :

I→ R is harmonic convex if and only if Ψ : I−1 → R is convex, where Ψ is defined as Ψ(w2) = Φ(w1).

Lemma 1.4. Let I ⊆ (0,∞) and I−1 has similar definition as given in Lemma 1.3. A function Φ : I→ R
is harmonic convex if and only if Ψ : I→ R is convex, where Ψ is defined as Ψ(w) = wΦ(w) .

Proposition 1.5. Let I ⊆ R/{0} be a real interval and Φ : I→ R is a function, then;

1). If I ⊂ (0,∞) and Φ is convex and nondecreasing function, then Φ is harmonic convex function.
2). If I ⊂ (0,∞) and Φ is harmonic convex and nonincreasing function, then Φ is convex function.
3). If I ⊂ (−∞, 0) and Φ is harmonic convex and nondecreasing function, then Φ is convex function.
4). If I ⊂ (−∞, 0) and Φ is convex and nonincreasing function, then Φ is harmonic convex function.

In [10], İ. İşcan proved the following result, which is known as Hermite-Hadamard type inequality
for harmonic convex functions.

Theorem 1.6. Let Φ : I ⊂ R/{0} → R be a harmonic convex function and w1,w2 ∈ I with w1 < w2. If
Φ ∈ L[w1,w2], then the following inequalities hold

Φ

(
2w1w2

w1 + w2

)
≤

w1w2

w2 − w1

∫ w2

w1

Φ(w)
w2 dw ≤

Φ(w1) + f (w2)
2

. (1.3)

In [32], Chen et al. proved Fejér type inequalities for harmonic convex functions as follows:

Theorem 1.7. Let Φ : I ⊂ R/{0} → R be a harmonic convex function and w1,w2 ∈ I with w1 < w2. If
Φ ∈ L[w1,w2], then the following inequalities hold

Φ

(
2w1w2

w1 + w2

) ∫ w2

w1

Ψ(w)
w2 dw ≤

w1w2

w2 − w1

∫ w2

w1

Φ(w)Ψ(w)
w2 dw ≤

Φ(w1) + Φ(w2)
2

∫ w2

w1

Ψ(w)
w2 dw, (1.4)

where Ψ : [w1,w2]→ R is non-negative, integral and satisfies

Ψ

(w1w2

w

)
= Ψ

( w1w2

w1 + w2 − w

)
(1.5)

Note: Here, we mention the worth of the class of harmonic convex functions in view of following
applications in the field of mathematics.

• Baloch et al. [31] proved many outstanding facts and disclosed that harmonic convexity gives an
analytic tool to estimate several known definite integrals like

∫ w2

w1

ew

wn dw,
∫ w2

w1
ew2

dw,
∫ w2

w1

sin w
wn dw

and
∫ w2

w1

cos w
wn dw, ∀n ∈ N, where w1,w2 ∈ (0,∞).

• Secondly, Baloch et al. [33] explored that the inequality (1.6) provides a very nice short proof of
Discrete form of Hölder’s inequality.
• Thirdly, Baloch et al. [34] used inequalities (1.6) and (1.7) to establish a very simple short proof

of weighted HGA inequality.
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In [35], S. S. Dragomir proved the following result, which is known as Jensen-type inequality for
harmonic convex functions.

Theorem 1.8. Let I ⊆ (0,∞) be an interval. If Φ : I→ R is harmonic convex function, then

Φ

 1∑n
k=1

ak
wk

 ≤ n∑
k=1

akΦ(wk), (1.6)

holds for all w1, ...,wn ∈ I and ak ∈ [0, 1] with
∑n

k=1 ak = 1.

In [33], Baloch et al. proved the subsequent result which is a variant of Jensen-type inequality for
harmonic convex functions.

Theorem 1.9. Let [m,M] ⊆ (0,∞) be an interval. If Φ : [m,M] → R is harmonic convex function,
then for any finite sequence (wk)n

k=1 ∈ [m,M] and ak ∈ [0, 1] with
∑n

k=1 ak = 1, we have

Φ

 1
1
m + 1

M −
∑n

k=1
ak
wk

 ≤ Φ(m) + Φ(M) −
n∑

k=1

akΦ(wk) (1.7)

In [36], Baloch et al. also proved the following nice result:

Theorem 1.10. If Φ : I → R is harmonic convex function on harmonic convex subset I ⊆ R\{0} , then
for any finite positive sequence {wk}

n
k=1 ∈ I and ak with An :=

∑n
k=1 ak > 0, we have

n min
1≤k≤n
{ak}

[1
n

n∑
k=1

Φ(wk) − Φ

( 1
1
n

∑n
k=1

1
wk

)]
(1.8)

≤
1
An

n∑
k=1

akΦ(wk) − Φ

( 1
1

An

∑n
k=1

ak
wk

)
≤ n max

1≤k≤n
{ak}

[1
n

n∑
k=1

Φ(wk) − Φ

( 1
1
n

∑n
k=1

1
wk

)]
2. Results

In this section, we firstly give refinement of Hermite-Hadamard type inequalities (1.2) for univariate
harmonic convex functions.

Theorem 2.1. Let Φ : I ⊂ R/{0} → R be a harmonic convex function and w1,w2 ∈ I with w1 < w2. If
Φ ∈ L[w1,w2], then for all λ ∈ [0, 1], the following inequalities hold

Φ

( 2w1w2

w1 + w2

)
≤ l(λ) ≤

w1w2

w2 − w1

∫ w2

w1

Φ(w)
w2 dw ≤ L(λ) ≤

Φ(w1) + Φ(w2)
2

(2.1)

where
l(λ) := λΦ

( 2w1w2

λw1 + (2 − λ)w2

)
+ (1 − λ)Φ

( 2w1w2

(1 − λ)w2 + (1 + λ)w1

)
and

L(λ) :=
λΦ(w1) + Φ

(
w1w2

λw1+(1−λ)w2

)
+ (1 − λ)Φ(w2)

2
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Proof. Let Φ be harmonic convex function on I, applying (1.6) on the sub-interval [w1,
w1w2

λw1+(1−λ)w2
],

with λ , 0, we get

Φ

( 2w1w2

λw1 + (2 − λ)w2

)
≤

w1w2

λ(w2 − w1)

∫ w1w2
λw1+(1−λ)w2

w1

Φ(w)
w2 dw (2.2)

≤

Φ(w1) + Φ

(
w1w2

λw1+(1−λ)w2

)
2

.

Applying (1.6) again on the sub-interval [ w1w2
λw1+(1−λ)w2

,w2], with λ , 0, we get

Φ

( 2w1w2

(1 − λ)w2 + (1 + λ)w1

)
≤

w1w2

(1 − λ)(w2 − w1)

∫ w2

w1w2
λw1+(1−λ)w2

Φ(w)
w2 dw (2.3)

≤

Φ

(
w1w2

λw1+(1−λ)w2

)
+ Φ(w2)

2
.

Multiply (2.2) by λ, (2.3) by 1 − λ and adding the resulting inequalities, we get

l(λ) ≤
w1w2

w2 − w1

∫ w2

w1

Φ(w)
w2 dw ≤ L(λ) (2.4)

where l(λ) and L(λ) are same as defined in Theorem 2.1.
Using the fact that Φ is harmonic convex, we obtain

Φ

( 2w1w2

w1 + w2

)
= Φ

 1

λλw1+(2−λ)w2
2w1w2

+ (1 − λ) (1−λ)w2+(1+λ)w1
2w1w2

 (2.5)

≤ λΦ

 2w1w2

λw1 + (1 − λ)w2 + w2

 + (1 − λ)Φ

 2w1w2

(1 − λ)w2 + λw1 + w1


≤

1
2

λΦ

 2w1w2

λw1 + (1 − λ)w2

 + λΦ(w1) + (1 − λ)Φ

 2w1w2

λw1 + (1 − λ)w2

 + (1 − λ)Φ(w2)


≤

Φ(w1) + Φ(w2)
2

.

Then by (2.4) and (2.5), we get (2.1). �

Corollary 2.2. Under the assumptions of Theorem 2.1, we have

Φ

( 2w1w2

w1 + w2

)
≤ l ≤

w1w2

w2 − w1

∫ w2

w1

Φ(w)
w2 dw ≤ L ≤

Φ(w1) + Φ(w2)
2

(2.6)

where
l :=

1
2

[
Φ

( 4w1w2

w1 + 3w2

)
+ Φ

( 4w1w2

3w1 + w2

)]
and

L :=
Φ(w1) + 2Φ( 2w1w2

w1+w2
) + f Φ(w2)

4
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Corollary 2.3. Under the assumptions of Theorem 2.1, we have

Φ

( 2w1w2

w1 + w2

)
≤ sup

λ∈[0,1]
l(λ) ≤

w1w2

w2 − w1

∫ w2

w1

Φ(w)
w2 dw ≤ inf

λ∈[0,1]
L(λ) ≤

Φ(w1) + Φ(w2)
2

. (2.7)

Theorem 2.4. Let Φ : I ⊂ R/{0} → R be a harmonic convex function and w1,w2 ∈ I with w1 < w2. If
Φ,Ψ ∈ L[w1,w2], Ψ is non-negative and satisfies condition (1.8) , then for all λ ∈ [0, 1], the following
inequalities hold

Φ

( 2w1w2

w1 + w2

) ∫ w2

w1

Ψ(w)
w2 dw ≤ l(λ)

∫ w2

w1

Ψ(w)
w2 dw (2.8)

≤
w1w2

w2 − w1

∫ w2

w1

Φ(w)Ψ(w)
w2 dw

≤ L(λ)
∫ w2

w1

Ψ(w)
w2 dw

≤
Φ(w1) + Φ(w2)

2

∫ w2

w1

Ψ(w)
w2 dw,

where l(λ) and L(λ) are as defined in Theorem 2.1.

Proof. The proof follows on the same lines as that of Theorem 2.1. �

Corollary 2.5. Under the assumptions of Theorem 2.4, we have

Φ

( 2w1w2

w1 + w2

) ∫ w2

w1

Ψ(w)
w2 dw ≤ l

∫ w2

w1

Ψ(w)
w2 dw (2.9)

≤
w1w2

w2 − w1

∫ w2

w1

Φ(w)Ψ(w)
w2 dw

≤ L
∫ w2

w1

Ψ(w)
w2 dw

≤
Φ(w1) + Φ(w2)

2

∫ w2

w1

Ψ(w)
w2 dw,

where l and L are same as defined in Corollary 2.13.

Corollary 2.6. Under the assumptions of Theorem 2.4, we have

Φ

( 2w1w2

w1 + w2

) ∫ w2

w1

Ψ(w)
w2 dw ≤ sup

λ∈[0,1]
l(λ)

∫ w2

w1

Ψ(w)
w2 dw (2.10)

≤
w1w2

w2 − w1

∫ w2

w1

Φ(w)Ψ(w)
w2 dw

≤ inf
λ∈[0,1]

L(λ)
∫ w2

w1

Ψ(w)
w2 dw

≤
Φ(w1) + Φ(w2)

2

∫ w2

w1

Ψ(w)
w2 dw
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For a function Φ : I ⊂ R/{0} → C, we consider the symmetrical transform of Φ on interval I
denoted by Φ̆I or simply Φ̆ as defined by

Φ̆(t) :=
1
2

[
Φ(t) + Φ

( w1w2t
(w1 + w2)t − w1w2

)]
, t ∈ I.

The anti-symmetrical transform of Φ on interval I denoted by Φ̃I or simply Φ̆ as defined by

Φ̃(t) :=
1
2

[
Φ(t) − Φ

( w1w2t
(w1 + w2)t − w1w2

)]
, t ∈ I.

It is obvious for any function Φ, we have Φ = Φ̆ + Φ̃ and further, if Φ is harmonic convex on I then Φ̆

is also harmonic convex on I but reverse is not true in general.

Definition 2.7. A function Φ : I ⊂ R/{0} → C is said to be symmetrized harmonic convex (concave)
on I if Φ̆ is harmonic convex (concave) on Φ.

Theorem 2.8. Assume that function Φ : I ⊂ R/{0} → C is symmetrized harmonic convex, integrable
on I and Ψ is non-negative integrable function that satisfies condition

∫ w2

w1

Φ(w)Ψ
(

w1w2t
(w1+w2)t−w1w2

)
w2 dw =

∫ w2

w1

Φ(x)Ψ(w)
w2 dw, (2.11)

then we have inequalities (1.6) and (1.7).

Proof. Since, function Φ : I ⊂ R/{0} → C is symmetrized harmonic convex, integrable on I, then by
Hermite-Hadamard type inequality (1.6) for Φ̆, we have

Φ̆

(
2w1w2

w1 + w2

)
≤

w1w2

w2 − w1

∫ w2

w1

Φ̆(w)
w2 dw ≤

Φ̆(w1) + Φ̆(w2)
2

. (2.12)

After some simple calculations, we see that Φ̆
(

2w1w2
w1+w2

)
= Φ

(
2w1w2
w1+w2

)
, Φ̆(w1)+Φ̆(w2) = Φ(w1)+Φ(w2) and∫ w2

w1

Φ̆(w)
w2 dw =

∫ w2

w1

Φ(w)
w2 dw

Therefore, by substituting these values in (2.12), we get (1.6).
Similarly, we can prove (1.7) for symmetrized harmonic convex function Φ. �

Corollary 2.9. Assume that function Φ : I ⊂ R/{0} → C is symmetrized harmonic convex, integrable
on I and Ψ is non-negative integrable function that satisfies condition (1.8), then we have (1.7).

Theorem 2.10. Assume that function Φ : [w1,w2] ⊂ R/{0} → C is symmetrized harmonic convex on
[w1,w2], then for any w ∈ [w1,w2] we have bounds

Φ

(
2w1w2

w1 + w2

)
≤ Φ̆(w) ≤

Φ(w1) + Φ(w2)
2

. (2.13)
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Proof. Since, Φ̆ is harmonic convex on [w1,w2], then for any w ∈ [w1,w2] we have

Φ̆

(
2w1w2

w1 + w2

)
≤

Φ̆(w) + φ̆
(

w1w2t
(w1+w2)t−w1w2

)
2

and simple calculations shows that Φ̆
(

2w1w2
w1+w2

)
= Φ

(
2w1w2
w1+w2

)
, Φ̆(w) = Φ(w) and

Φ̆

( w1w2t
(w1 + w2)t − w1w2

)
= Φ

( w1w2t
(w1 + w2)t − w1w2

)
,

we get first inequality in (2.13).
Also, by the harmonic convexity of f̆ on [w1,w2], we have

Φ̆(w) ≤
w2(w1 − w)
w(w1 − w2)

Φ̆(w1) +
w1(w − w2)
w(w1 − w2)

Φ̆(w2)

=
w2(w1 − w)
w(w1 − w2)

Φ(w1) + Φ(w2)
2

+
w1(w − w2)
w(w1 − w2)

Φ(w1) + Φ(w2)
2

=
Φ(w1) + Φ(w2)

2
,

which gives second inequality in (2.13). �

More precisely,

Corollary 2.11. Assume that function Φ : [w1,w2] ⊂ R/{0} → C is symmetrized harmonic convex on
[w1,w2], then for any w ∈ [w1,w2] we have

inf
w∈[w1,w2]

Φ̆(w) = Φ̆

(
2w1w2

w1 + w2

)
= Φ

(
2w1w2

w1 + w2

)
,

and
sup

w∈[w1,w2]
Φ̆(w) = Φ̆(w1) = Φ̆(w2) =

Φ(w1) + Φ(w2)
2

.

Next, we obtain some new discrete inequalities for univariate harmonic convex functions that can
be seen as counterparts of Baloch’s et al. result in Theorem 1.10.

Theorem 2.12. Let [m,M] ⊆ (0,∞) be an interval. If Φ : [m,M] → R is harmonic convex function,
then for any finite sequence (wk)n

k=1 ∈ [m,M] and ak ∈ [0, 1] with
∑n

k=1 ak = 1, we have

Φ

 1
1
m + 1

M −
∑n

k=1
ak
wk

 (2.14)

≥ Φ

 1
1
m + 1

M −
∑n

k=1
ak
wk

 − min
1≤k≤n
{ak}

[ n∑
k=1

Φ(wk) − nΦ

( 1
1
n

∑n
k=1

1
wk

)]
≥ Φ

 1
1
m + 1

M −
∑n

k=1
ak
wk

 − [ n∑
k=1

akΦ(wk) − Φ

( 1∑n
k=1

ak
wk

)]
≥ 2Φ

( 2mM
m + M

)
−

n∑
k=1

akΦ(wk).
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Proof. Since, 1
1
m + 1

M−
∑n

k=1
ak
wk

, 2mM
m+M ∈ [m,M], then by the harmonic convexity of Φ on [m,M], we have

1
2

Φ  1
1
m + 1

M −
∑n

k=1
ak
Φk

 + Φ

 1∑n
k=1

ak
wk

  (2.15)

≥ Φ

 1
1
2

[
1
m + 1

M −
∑n

k=1
ak
wk

+
∑n

k=1
ak
wk

]


= Φ

( 2mM
m + M

)
.

Equivalently

Φ

 1
1
m + 1

M −
∑n

k=1
ak
wk

 + Φ

 1∑n
k=1

ak
wk

 ≥ 2Φ

( 2mM
m + M

)
. (2.16)

By subtracting in both sides of (2.16)the same quantity
∑n

k=1 akΦ(wk), we get

Φ

 1
1
m + 1

M −
∑n

k=1
ak
wk

 − [ n∑
k=1

akΦ(wk) − Φ

 1∑n
k=1

ak
wk

 ] (2.17)

≥ 2Φ

( 2mM
m + M

)
−

n∑
k=1

akΦ(wk).

By using first inequality in (1.8), we get

−

[ n∑
k=1

akΦ(wk) − Φ

( 1∑n
k=1

ak
wk

)]
≤ − min

1≤k≤n
{ak}

[ n∑
k=1

Φ(wk) − nΦ

( 1
1
n

∑n
k=1

1
wk

)]
,

which implies  1
1
m + 1

M −
∑n

k=1
ak
wk

 − [ n∑
k=1

akΦ(wk) − Φ

( 1∑n
k=1

ak
wk

)]
(2.18)

≤

 1
1
m + 1

M −
∑n

k=1
ak
wk

 − min
1≤k≤n
{ak}

[ n∑
k=1

Φ(wk) − nΦ

( 1
1
n

∑n
k=1

1
wk

)]
.

By making the use of inequalities (2.17) and (2.18), we get second and third inequalities in (2.14). �

Corollary 2.13. With the assumptions of Theorem 2.1, we have

1
2

[
Φ

 1
1
m + 1

M −
∑n

k=1
ak
wk

 +

n∑
k=1

akΦ(wk)
]
− Φ

( 2mM
m + M

)
(2.19)

≥
1
2

[ n∑
k=1

akΦ(wk) − Φ

( 1∑n
k=1

ak
wk

)]
−

1
2

min
1≤k≤n
{ak}

[ n∑
k=1

Φ(wk) − nΦ

( 1
1
n

∑n
k=1

1
wk

)]
≥ 0,

for all (wk)n
k=1 ∈ [m,M] and ak ∈ [0, 1] with

∑n
k=1 ak = 1.
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3. Applications

Throughout this section, l(λ) and L(λ) are same as in Theorem 2.1.
Consider the harmonic convex function Φ : [w1,w2] ⊂ (0,∞) → R, Φ(w) = w,, then by using (2.1)

we get

2w1w2

w1 + w2
≤ l(λ) ≤

w1w2

w2 − w1
(ln w2 − ln w1) ≤ L(λ) ≤

w1 + w2

2
, (3.1)

the inequality (3.1) is a refinement of inequality presented in [31].
For harmonic convex function Φ : [w1,w2] ⊂ (0,∞)→ R, Φ(w) = ln w, using (2.1) we get

2w1w2

w1 + w2
≤ exp(l(λ)) ≤ e

(ww2
1

ww1
2

) 1
w2−w1

≤ exp(L(λ)) ≤
√

w1w2, (3.2)

the inequality (3.2) is a refinement of inequality presented in [31].
For harmonic convex function Φ : [w1,w2] ⊂ (0,∞)→ R, Φ(w) = ew, using (2.1) we get

e
2w1w2
w1+w2 ≤ l(λ) ≤

w1w2

w2 − w1

∫ w2

w1

ew

w2 dw ≤ L(λ) ≤
ew1 + ew2

2
, (3.3)

the inequality (3.3) is a refinement of inequality presented in [31].
For harmonic convex function Φ : [w1,w2] ⊂ (0,∞)→ R, Φ(w) = w2ew2

, using (2.1) we get( 2w1w2

w1 + w2

)2

e( 2w1w2
w1+w2

)2
≤ l(λ) ≤

w1w2

w2 − w1

∫ w2

w1

ew2
dw ≤ L(λ) ≤

w2
1ew2

1 + w2
2ew2

2

2
, (3.4)

the inequality (3.4) is a refinement of inequality presented in [31].
Now by considering the harmonic convex function Φ : [m,M] ⊂ (0,∞) → R, Φ(w) = ln w, wk ∈

[m,M], ak ≥ 0, for k ∈ {1, ..., n} and such that
∑n

k=1 ak = 1. Then by using (2.19) we get

1
2

[
ln

 1
1
m + 1

M −
∑n

k=1
ak
wk

 +

n∑
k=1

ak ln(wk)
]
− ln

( 2mM
m + M

)
(3.5)

≥
1
2

[ n∑
k=1

ak ln(wk) − ln
( 1∑n

k=1
ak
wk

)]
−

1
2

min
1≤k≤n
{ak}

[ n∑
k=1

ln(wk) − n ln
( 1

1
n

∑n
k=1

1
wk

)]
≥ 0,

which is equivalent to  ∏n
k=1 wak

k
1
m + 1

M −
∑n

k=1
ak
wk


1
2 (m + M

2mM

)
(3.6)

≥


(∏n

k=1 wak
k

)(∑n
k=1

ak
wk

)
[(∏n

k=1 wk

)(
1
n

∑n
k+1

1
wk

)n]min1≤k≤n{ak}


1
2

≥ 1
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Now, we consider the harmonic convex function Φ : [m,M] ⊂ (0,∞) → R, Φ(w) = w, wk ∈ [m,M],
ak = 1

n , for k ∈ {1, ..., n}. Then by using (2.19) and (1.7), we get

1
2

[  1
1
m + 1

M −
1
n

∑n
k=1

1
wk

 +
1
n

n∑
k=1

wk

]
≥

2mM
m + M

, (3.7)

and
1
2

[  1
1
m + 1

M −
1
n

∑n
k=1

1
wk

 +
1
n

n∑
k=1

wk

]
≤

m + M
2

. (3.8)

From (3.7) and (3.8), we get

2mM
m + M

≤
1
2

[  1
1
m + 1

M −
1
n

∑n
k=1

1
wk

 +
1
n

n∑
k=1

wk

]
≤

m + M
2

, (3.9)

and hence, using (3.9), we get another improvement of inequality (2.2) presented by Baloch et al.
in [33] as follow: ( 2mM

m + M

)2

≤
1
4

[  1
1
m + 1

M −
1
n

∑n
k=1

1
wk

 +
1
n

n∑
k=1

wk

]2

(3.10)

≤

(m + M
2

)2

≤
1
3

(m2 + mM + M2)

≤
m2 + M2

2
.

4. Conclusions

We presented refinements of Hermite-Hadamard type and Fejér types inequalities. Further, we
generalized Hermite-Hadamard type and Fejér types inequalities for a class which is not harmonic
convex and next we gave bounds for functions of this new class. Moreover, we discussed the
importance of this class by giving lot of applications in the theory of inequalities. Our techniques and
results are new in the field of mathematics for the class of harmonic convex functions and believe that
it will be source of motivation for further research.
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11. İ. İşcan, Hermite-Hamard type inequalities for harmonically (α,m)-convex functions, 2015.
Avaliable from: https://arxiv.org/pdf/1307.5402v3.
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