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1. Introduction

Assume thatD is a nonempty, closed and convex subset of a real Hilbert space E. Let f : E×E → R
be a bifunction with f (v, v) = 0 for all v ∈ D. An equilibrium problem (shortly, EP) for f on D is
defined in the following manner: Find ζ∗ ∈ D such that

f (ζ∗, v) ≥ 0, ∀ v ∈ D. (EP)

Moreover, the solution set of an equilibrium is denoted by S EP. In this study, the problem (EP) is
studied based on the following conditions. A bifunction f : E × E → R is said to be (see for more
details [3, 4]):
(C1) pseudomonotone onD if

f (v1, v2) ≥ 0 =⇒ f (v2, v1) ≤ 0, ∀ v1, v2 ∈ D; (1.1)

(C2) Lipschitz-type continuous [15] onD if there exists two constants k1, k2 > 0 such that

f (v1, v3) ≤ f (v1, v2) + f (v2, v3) + k1‖v1 − v2‖
2 + k2‖v2 − v3‖

2, ∀ v1, v2, v3 ∈ D; (1.2)

(C3) For any weakly convergent sequence {vn} ⊂ D (vn ⇀ v∗) the following inequality holds

lim sup
n→∞

f (vn, v) ≤ f (v∗, v), ∀ v ∈ D; (1.3)

(C4) f (v, ·) is convex and subdifferentiable on E for each fixed v ∈ E.

The general format of the problem (EP) has become attractive and has received a lot of attention
from several authors in recent years. Mathematically, the problem (EP) can be considered as a
generalization of many mathematical models, such as the fixed-point problems, scalar and vector
minimization problems, the complementarity problems, the variational inequalities problems, the
Nash equilibrium problems in non-cooperative games, the saddle point problems and the inverse
minimization problems [4,12,17]. The equilibrium problem (EP) has applications in economics [8] or
the dynamics of offer and demand [1], continuing to exploit the theoretical structure of
non-cooperative games and the Nash equilibrium idea [18,19]. To the best of our knowledge, the term
“equilibrium problem” was first used in the literature in 1992 by Muu and Oettli [17] and was later
studied further by Blum and Oettli [4].

By using the idea of the Korpelevich extragradient method [13], Flam et al. [10] and Quoc et al. [21]
introduced the following method for solving equilibrium problems involving pseudomonotone and
Lipschitz-type bifunction. Choose a random starting point of u0 ∈ D; looking the given iteration un

and choose the next iteration using the iterative scheme:
vn = arg min

v∈D
{ρ f (un, v) + 1

2‖un − v‖2},

un+1 = arg min
v∈D

{ρ f (vn, v) + 1
2‖un − v‖2},

(1.4)

where 0 < ρ < min
{ 1

2k1
, 1

2k2

}
and k1, k2 are two Lipschitz-type constants of a bifunction (1.2). The

method (1.4) has been extended and modified in various ways [16, 24–27, 29] and others in [2, 6, 22,
30, 32, 34–36].
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It deserves mention that the above well-established method carries two significant drawbacks. The
first is the constant stepsize that requires the knowledge or approximation of the Lipschitz constant of
the relevant bifunction and it only converges weakly in Hilbert spaces. From the computational point
of view, it might be hard to use a fixed stepsize, and hence, the convergence rate and usefulness of
the method could be influenced. The inertial-type algorithms are of particular interest here. These
algorithms are derived from an oscillator equation with damping and a conservative restoring force.
This second-order dynamical system is known as Heavy Ball with Friction, and it was first studied
by Polyak [20]. In general, the main feature of the inertial-type algorithms is that we can use the
two previous iterations to construct the next one. Recently, inertial-type algorithms have been widely
studied for the special cases of the problem (EP).

A natural question therefore arises:
Is it possible to introduce a new inertial strongly convergent extragradient method with a

non-monotone stepsize rule to determine the numerical solution of the problem (EP) involves a
pseudomonotone bifunction?

In this study, we provide a positive answer to this question, i.e., the gradient method still operate in
the case of a non-monotonic stepsize rule for solving equilibrium problems accompanied by a
pseudomonotone bifunction and obtain a strong convergence of the iterative sequence. We introduce a
new extragradient-type method to solve the problem (EP) in the context of an infinite-dimensional
real Hilbert space, inspired by the works of [7,20,21]. The key contributions to this research are given
below:

(•) We introduce a new self-adaptive subgradient extragradient method by using an inertial scheme
and a non-monotone stepsize rule to solve equilibrium problems. Also, we confirm that the generated
sequence is strongly convergent. This result can be regarded as a modification of the method (1.4).

(•) The applications of our main results are considered in order to solve particular classes of
equilibrium problems in a real Hilbert space.

(•) The numerical experiments regarding Algorithm 1 with Algorithm 3.1 in [11], Algorithm 1
in [28] and Algorithm 3 in [31]. The numerical results have indicated that the suggested method is
appropriate and performed better compared to the existing ones.

The rest of the study has been arranged as follows: Section 2 includes basic definitions and key
lemmas that are used throughout this manuscript. Section 3 consists of the proposed iterative scheme
with a variable stepsize rule and a theorem of convergence analysis. Section 4 sets out the application of
the proposed results to solve the problems of variational inequalities and fixed point problems. Section
5 gives numerical results to illustrate the performance of the new algorithms and equate them with the
two existing algorithms.

2. Preliminaries

Let D be a nonempty, closed and convex subset of a real Hilbert space E. The metric projection
PD(u) of u ∈ E onto a closed and convex subsetD of E is defined by

PD(u) = arg min
v∈D

‖v − u‖.

Definition 2.1. LetD be a subset of a real Hilbert space E and κ : D → R a given convex function.
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(1). The subdifferential of set κ at u ∈ D is defined by

∂κ(u) = {z ∈ E : κ(v) − κ(u) ≥ 〈z, v − u〉, ∀ v ∈ D}.

(2). The normal cone at u ∈ D is defined by

ND(u) = {z ∈ E : 〈z, v − u〉 ≤ 0, ∀ v ∈ D}.

Lemma 2.2. [23] Assume that κ : D → R is a convex, subdifferentiable and lower semicontinuous
function onD. An element u ∈ D is a minimizer of a function κ if and only if

0 ∈ ∂κ(u) + ND(u),

where ∂κ(u) stands for the subdifferential of κ at u ∈ D and ND(u) the normal cone ofD at u.

Lemma 2.3. [33] Assume that {an} ⊂ (0,+∞) is a sequence satisfying the following inequality

an+1 ≤ (1 − bn)an + bncn, ∀ n ∈ N.

Moreover, {bn} ⊂ (0, 1) and {cn} ⊂ R are sequences such that

lim
n→+∞

bn = 0,
+∞∑
n=1

bn = +∞ and lim sup
n→+∞

cn ≤ 0.

Then, limn→∞ an = 0.

Lemma 2.4. [14] Assume that {an} ⊂ R is a sequence and there exists a subsequence {ni} of {n} such
that ani < ani+1 for all i ∈ N. Then, there exists a nondecreasing sequence mk ⊂ N such that mk → ∞ as
k → ∞, and the subsequent conditions are fulfilled by all (sufficiently large) numbers k ∈ N:

amk ≤ amk+1 and ak ≤ amk+1 .

Indeed, mk = max{ j ≤ k : a j ≤ a j+1}.

3. Main algorithm and its convergence analysis

Now, we introduce a new variant of Algorithm (1.4) in which the constant stepsize ρ is chosen
adaptively.
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Algorithm 1 (Inertial Non-monotone Strongly Convergent Iterative Scheme)

Step 0: Choose u0, u1 ∈ D, φ > 0, 0 < σ < min
{
1, 1

2k1
, 1

2k2

}
, µ ∈ (0, 1), ρ1 > 0. Moreover, select

{ψn} ⊂ (0, 1) satisfies the conditions, i.e.,

lim
n→+∞

ψn = 0 and
+∞∑
n=1

ψn = +∞.

Step 1: Compute χn = un + φn(un − un−1) − ψn
[
un + φn(un − un−1)

]
where

0 ≤ φn ≤ φ̂n and φ̂n =

min
{
φ

2 ,
εn

‖un−un−1‖

}
if un , un−1,

φ

2 otherwise,
(3.1)

where εn = ◦(ψn) is a positive sequence such that limn→+∞
εn
ψn

= 0.
Step 2: Compute vn = arg min

v∈D
{ρn f (χn, v) + 1

2‖χn − v‖2}.

If χn = vn, then STOP. Otherwise, go to Step 3.
Step 3: Firstly choose ωn ∈ ∂2 f (χn, vn) satisfying χn − ρnωn − vn ∈ ND(vn) and generate a half-space

En = {z ∈ E : 〈χn − ρnωn − vn, z − vn〉 ≤ 0}

and compute

un+1 = arg min
v∈En

{ρn f (vn, v) +
1
2
‖χn − v‖2}.

Step 4: Next, the stepsize rule ρn+1 is updated as follows:

ρn+1 =


min

{
σ, µ f (vn,un+1)

f (χn,un+1)− f (χn,vn)−k1‖χn−vn‖2−k2‖un+1−vn‖2+1

}
,

if µ f (vn,un+1)
f (χn,un+1)− f (χn,vn)−k1‖χn−vn‖2−k2‖un+1−vn‖2+1 > 0,

σ otherwise.

(3.2)

Set n = n + 1 and go back to Step 1.

Remark 3.1. By the use of ρn+1 in expression (3.2), we obtain

ρn+1
[
f (χn, un+1) − f (χn, vn) − k1‖χn − vn‖

2 − k2‖vn − un+1‖
2] ≤ µ f (vn, un+1). (3.3)

Lemma 3.1. Suppose that the conditions (C1)–(C4) are satisfied and {un} be a sequence generated by
Algorithm 1. Then, we have

‖un+1 − ζ
∗‖2 ≤ ‖χn − ζ

∗‖2 − (1 − ρn+1)‖un+1 − χn‖
2

− ρn+1(1 − 2k1ρn)‖χn − vn‖
2 − ρn+1(1 − 2k2ρn)‖un+1 − vn‖

2.
(3.4)

Proof. By the use of definition of un+1, we obtain

0 ∈ ∂2

{
ρn f (vn, ·) +

1
2
‖χn − ·‖

2
}
(un+1) + ND(un+1).
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Thus, there exists ωn ∈ ∂2 f (vn, un+1) and ωn ∈ ND(un+1) such that

ρnωn + un+1 − χn + ωn = 0.

The above expression implies that

〈χn − un+1, v − un+1〉 = ρn〈ωn, v − un+1〉 + 〈ωn, v − un+1〉, ∀ v ∈ D.

Due to ωn ∈ ND(un+1) imply that 〈ωn, v − un+1〉 ≤ 0, for every v ∈ D. Thus, we obtain

ρn〈ωn, v − un+1〉 ≥ 〈χn − un+1, v − un+1〉, ∀ v ∈ D. (3.5)

By given ωn ∈ ∂2 f (vn, un+1), we have

f (vn, v) − f (vn, un+1) ≥ 〈ωn, v − un+1〉, ∀ v ∈ D. (3.6)

From expressions (3.5) and (3.6), we obtain

ρn f (vn, v) − ρn f (vn, un+1) ≥ 〈χn − un+1, v − un+1〉, ∀ v ∈ D. (3.7)

In the similar way, vn gives that

ρn
{
f (χn, v) − f (χn, vn)

}
≥ 〈χn − vn, v − vn〉, ∀ v ∈ D. (3.8)

By the use of v = un+1 into expression (3.8), we get

ρn
{
f (χn, un+1) − f (χn, vn)

}
≥ 〈χn − vn, un+1 − vn〉. (3.9)

By the use of v = ζ∗ into expression (3.7), we obtain

ρn f (vn, ζ
∗) − ρn f (vn, un+1) ≥ 〈χn − un+1, ζ

∗ − un+1〉. (3.10)

Since ζ∗ ∈ S EP implies that f (ζ∗, vn) ≥ 0 and pseudomonotonicity of a bifunction f gives that
f (vn, ζ

∗) ≤ 0. Thus, expression (3.10) implies that

〈χn − un+1, un+1 − ζ
∗〉 ≥ ρn f (vn, un+1). (3.11)

From expression (3.2), we have

f (vn, un+1) ≥ ρn+1

[
f (χn, un+1) − f (χn, vn) − k1‖χn − vn‖

2 − k2‖vn − un+1‖
2
]
. (3.12)

Combining expressions (3.11) and (3.12) gives that

〈χn − un+1, un+1 − ζ
∗〉 ≥ ρn+1

[
ρn

{
f (χn, un+1) − f (χn, vn)

}
− k1ρn‖χn − vn‖

2 − k2ρn‖un+1 − vn‖
2
]
.

(3.13)

From expressions (3.9) and (3.13), we obtain

2〈χn − un+1, un+1 − ζ
∗〉 ≥ ρn+1

[
2〈χn − vn, un+1 − vn〉

− 2k1ρn‖χn − vn‖
2 − 2k2ρn‖un+1 − vn‖

2
]
.

(3.14)
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By the use of following formulas:

2〈χn − un+1, un+1 − ζ
∗〉 = ‖χn − ζ

∗‖2 − ‖un+1 − χn‖
2 − ‖un+1 − ζ

∗‖2.

2〈χn − vn, un+1 − vn〉 = ‖χn − vn‖
2 + ‖un+1 − vn‖

2 − ‖χn − un+1‖
2.

Finally, we have

‖un+1 − ζ
∗‖2 ≤ ‖χn − ζ

∗‖2 − (1 − ρn+1)‖un+1 − χn‖
2

− ρn+1(1 − 2k1ρn)‖χn − vn‖
2 − ρn+1(1 − 2k2ρn)‖un+1 − vn‖

2.
(3.15)

�

Theorem 3.2. Assume that conditions (C1)–(C4) are satisfied. Then, the sequence {un} generated by
Algorithm 1 converges strongly to an element ζ∗ = PS EP(0).

Proof. Thus, expression (3.1) implies that

lim
n→+∞

φn

ψn

∥∥∥un − un−1

∥∥∥ ≤ lim
n→+∞

εn

ψn
= 0. (3.16)

By the use of definition of {χn} and inequality (3.16), we obtain∥∥∥χn − ζ
∗
∥∥∥ =

∥∥∥un + φn(un − un−1) − ψnun − φnψn(un − un−1) − ζ∗
∥∥∥

=
∥∥∥(1 − ψn)(un − ζ

∗) + (1 − ψn)φn(un − un−1) − ψnζ
∗
∥∥∥ (3.17)

≤ (1 − ψn)
∥∥∥un − ζ

∗
∥∥∥ + (1 − ψn)φn

∥∥∥un − un−1

∥∥∥ + ψn

∥∥∥ζ∗∥∥∥
≤ (1 − ψn)‖un − ζ

∗‖ + ψnK1, (3.18)

where
(1 − ψn)

φn

ψn

∥∥∥un − un−1

∥∥∥ +
∥∥∥ζ∗∥∥∥ ≤ K1.

By the use of Lemma 3.1, we obtain

‖un+1 − ζ
∗‖2 ≤ ‖χn − ζ

∗‖2, ∀ n > 1. (3.19)

Combining (3.18) with (3.19), we obtain

‖un+1 − ζ
∗‖ ≤ (1 − ψn)‖un − ζ

∗‖ + ψnK1

≤ max
{
‖un − ζ

∗‖,K1
}

...

≤ max
{
‖u2 − ζ

∗‖,K1
}
. (3.20)

Thus, we infer that the sequence {un} is bounded. Indeed, by (3.18) we have∥∥∥χn − ζ
∗
∥∥∥2
≤ (1 − ψn)2‖un − ζ

∗‖2 + ψ2
nK2

1 + 2K1ψn(1 − ψn)‖un − ζ
∗‖

≤ ‖un − ζ
∗‖2 + ψn

[
ψnK2

1 + 2K1(1 − ψn)‖un − ζ
∗‖
]

≤ ‖un − ζ
∗‖2 + ψnK2, (3.21)

AIMS Mathematics Volume 6, Issue 10, 10707–10727.



10714

for some K2 > 0. Combining the expressions (3.4) with (3.21), we have

‖un+1 − ζ
∗‖2 ≤ ‖un − ζ

∗‖2 + ψnK2 − (1 − ρn+1)‖un+1 − χn‖
2

− ρn+1(1 − 2k1ρn)‖χn − vn‖
2 − ρn+1(1 − 2k2ρn)‖un+1 − vn‖

2. (3.22)

Due to the Lipschitz-continuity and pseudomonotonicity of f implies that the solution set S EP is a
closed and convex set (for further details see [21]). It is given that ζ∗ = PS EP(0) such that

〈0 − ζ∗, v − ζ∗〉 ≤ 0, ∀ v ∈ S EP. (3.23)

The remainder of the proof is divided into the following two cases:
Case 1: Assume that there exists a fixed number N1 ∈ N such that

‖un+1 − ζ
∗‖ ≤ ‖un − ζ

∗‖, ∀ n ≥ N1. (3.24)

Thus, above expression implies that limn→+∞ ‖un − ζ
∗‖ exists and let limn→+∞ ‖un − ζ

∗‖ = l, for some
l ≥ 0. From the expression (3.22), we have

(1 − ρn+1)‖un+1 − χn‖
2 + ρn+1(1 − 2k1ρn)‖χn − vn‖

2 + ρn+1(1 − 2k2ρn)‖un+1 − vn‖
2

≤ ‖un − ζ
∗‖2 + ψnK2 − ‖un+1 − ζ

∗‖2. (3.25)

Due to existence of limit of the sequence ‖un − ζ
∗‖ and ψn → 0, we conclude that

‖χn − vn‖ → 0 and ‖un+1 − vn‖ → 0 as n→ +∞. (3.26)

It continues from (3.25) that
lim

n→+∞
‖un+1 − χn‖ = 0. (3.27)

Next, we have to compute

‖χn − un‖ = ‖un + φn(un − un−1) − ψn
[
un + φn(un − un−1)

]
− un‖

≤ φn‖un − un−1‖ + ψn‖un‖ + φnψn‖un − un−1‖

= ψn
φn

ψn
‖un − un−1‖ + ψn‖un‖ + ψ2

n
φn

ψn
‖un − un−1‖ −→ 0. (3.28)

The above expression implies that

lim
n→+∞

‖un − un+1‖ ≤ lim
n→+∞

‖un − χn‖ + lim
n→+∞

‖χn − un+1‖ = 0. (3.29)

he above explanation guarantees that the sequences {χn} and {vn} are also bounded. Due to the
reflexivity of E and the boundedness of {un} guarantees that there exists a subsequence {unk} such that
{unk}⇀ û ∈ E as k → +∞. Next, we have to prove that û ∈ S EP. Due to the inequality (3.7) we have

ρnk f (vnk , v) ≥ ρnk f (vnk , unk+1) + 〈χnk − unk+1, v − unk+1〉

≥ ρnkρnk+1 f (χnk , unk+1) − ρnkρnk+1 f (χnk , vnk) − k1ρnkρnk+1‖χnk − vnk‖
2

− k2ρnkρnk+1‖vnk − unk+1‖
2 + 〈χnk − unk+1, v − unk+1〉
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≥ ρnk+1〈χnk − vnk , unk+1 − vnk〉 − k1ρnkρnk+1‖χnk − vnk‖
2

− k2ρnkρnk+1‖vnk − unk+1‖
2 + 〈χnk − unk+1, v − unk+1〉, (3.30)

where v is an arbitrary element in En. It continues from that (3.26)–(3.29) and the boundedness of {un}

that the right-hand side goes to zero. From ρn > 0, the condition (1.3) and vnk ⇀ û, we have

0 ≤ lim sup
k→+∞

f (vnk , v) ≤ f (û, v), ∀ v ∈ En. (3.31)

It implies that f (û, v) ≥ 0, ∀ v ∈ D, and hence û ∈ S EP. Next, we have

lim sup
n→+∞

〈ζ∗, ζ∗ − un〉

= lim
k→+∞

〈ζ∗, ζ∗ − unk〉 = 〈ζ∗, ζ∗ − û〉 ≤ 0. (3.32)

By the use of limn→+∞

∥∥∥un+1 − un

∥∥∥ = 0. Thus, expression (3.32) implies that

lim sup
n→+∞

〈ζ∗, ζ∗ − un+1〉

≤ lim sup
n→+∞

〈ζ∗, ζ∗ − un〉 + lim sup
n→+∞

〈ζ∗, un − un+1〉 ≤ 0. (3.33)

By the use of expression (3.17), we have∥∥∥χn − ζ
∗
∥∥∥2

=
∥∥∥un + φn(un − un−1) − ψnun − φnψn(un − un−1) − ζ∗

∥∥∥2

=
∥∥∥(1 − ψn)(un − ζ

∗) + (1 − ψn)φn(un − un−1) − ψnζ
∗
∥∥∥2

≤
∥∥∥(1 − ψn)(un − ζ

∗) + (1 − ψn)φn(un − un−1)
∥∥∥2

+ 2ψn〈−ζ
∗, χn − ζ

∗〉

= (1 − ψn)2
∥∥∥un − ζ

∗
∥∥∥2

+ (1 − ψn)2φ2
n

∥∥∥un − un−1

∥∥∥2

+ 2φn(1 − ψn)2
∥∥∥un − ζ

∗
∥∥∥∥∥∥un − un−1

∥∥∥ + 2ψn〈−ζ
∗, χn − un+1〉 + 2ψn〈−ζ

∗, un+1 − ζ
∗〉

≤ (1 − ψn)
∥∥∥un − ζ

∗
∥∥∥2

+ φ2
n

∥∥∥un − un−1

∥∥∥2
+ 2φn(1 − ψn)

∥∥∥un − ζ
∗
∥∥∥∥∥∥un − un−1

∥∥∥
+ 2ψn

∥∥∥ζ∗∥∥∥∥∥∥χn − un+1

∥∥∥ + 2ψn〈−ζ
∗, un+1 − ζ

∗〉

= (1 − ψn)
∥∥∥un − ζ

∗
∥∥∥2

+ ψn

[
φn

∥∥∥un − un−1

∥∥∥φn

ψn

∥∥∥un − un−1

∥∥∥
+ 2(1 − ψn)

∥∥∥un − ζ
∗
∥∥∥φn

ψn

∥∥∥un − un−1

∥∥∥ + 2
∥∥∥ζ∗∥∥∥∥∥∥χn − un+1

∥∥∥ + 2〈ζ∗, ζ∗ − un+1〉
]
. (3.34)

From expressions (3.19) and (3.34) we obtain∥∥∥un+1 − ζ
∗
∥∥∥2

≤ (1 − ψn)
∥∥∥un − ζ

∗
∥∥∥2

+ ψn

[
φn

∥∥∥un − un−1

∥∥∥φn

ψn

∥∥∥un − un−1

∥∥∥
+ 2(1 − ψn)

∥∥∥un − ζ
∗
∥∥∥φn

ψn

∥∥∥un − un−1

∥∥∥ + 2
∥∥∥ζ∗∥∥∥∥∥∥χn − un+1

∥∥∥ + 2〈ζ∗, ζ∗ − un+1〉
]
. (3.35)
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By the use of (3.27), (3.33), (3.35) and applying Lemma 2.3, conclude that limn→+∞

∥∥∥un − ζ
∗
∥∥∥ = 0.

Case 2: Suppose that there exists a subsequence {ni} of {n} such that

‖uni − ζ
∗‖ ≤ ‖uni+1 − ζ

∗‖, ∀ i ∈ N.

By using Lemma 2.4 there exists a sequence {mk} ⊂ N as {mk} → +∞ such that

‖umk − ζ
∗‖ ≤ ‖umk+1 − ζ

∗‖ and ‖uk − ζ
∗‖ ≤ ‖umk+1 − ζ

∗‖, for all k ∈ N. (3.36)

As similar to Case 1, the expression (3.25) implies that

(1 − ρmk+1)‖umk+1 − χmk‖
2 + ρmk+1(1 − 2k1ρmk)‖χmk − vmk‖

2

+ ρmk+1(1 − 2k2ρmk)‖umk+1 − vmk‖
2

≤ ‖umk − ζ
∗‖2 + ψmk K2 − ‖umk+1 − ζ

∗‖2. (3.37)

Due to ψmk → 0, we deduce the following:

lim
k→+∞

‖χmk − vmk‖ = lim
k→+∞

‖umk+1 − vmk‖ = 0. (3.38)

It follows that
lim

k→+∞
‖umk+1 − χmk‖ = 0. (3.39)

Next, we have to evaluate

‖χmk − umk‖ = ‖umk + φmk(umk − umk−1) − ψmk

[
umk + φmk(umk − umk−1)

]
− umk‖

≤ φmk‖umk − umk−1‖ + ψmk‖umk‖ + φmkψmk‖umk − umk−1‖

= ψmk

φmk

ψmk

‖umk − umk−1‖ + ψmk‖umk‖ + ψ2
mk

φmk

ψmk

‖umk − umk−1‖ −→ 0. (3.40)

It follows that

lim
k→+∞

‖umk − umk+1‖ ≤ lim
k→+∞

‖umk − χmk‖ + lim
k→+∞

‖χmk − umk+1‖ = 0. (3.41)

By using the same explanation as in the Case 1, such that

lim sup
k→+∞

〈ζ∗, ζ∗ − umk+1〉 ≤ 0. (3.42)

By using the expressions (3.35) and (3.36), we obtain∥∥∥umk+1 − ζ
∗
∥∥∥2

≤ (1 − ψmk)
∥∥∥umk − ζ

∗
∥∥∥2

+ ψmk

[
φmk

∥∥∥umk − umk−1

∥∥∥φmk

ψmk

∥∥∥umk − umk−1

∥∥∥
+ 2(1 − ψmk)

∥∥∥umk − ζ
∗
∥∥∥φmk

ψmk

∥∥∥umk − umk−1

∥∥∥ + 2
∥∥∥ζ∗∥∥∥∥∥∥χmk − umk+1

∥∥∥ + 2〈ζ∗, ζ∗ − umk+1〉
]

≤ (1 − ψmk)
∥∥∥umk+1 − ζ

∗
∥∥∥2

+ ψmk

[
φmk

∥∥∥umk − umk−1

∥∥∥φmk

ψmk

∥∥∥umk − umk−1

∥∥∥
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+ 2(1 − ψmk)
∥∥∥umk − ζ

∗
∥∥∥φmk

ψmk

∥∥∥umk − umk−1

∥∥∥ + 2
∥∥∥ζ∗∥∥∥∥∥∥χmk − umk+1

∥∥∥ + 2〈ζ∗, ζ∗ − umk+1〉
]
. (3.43)

Thus, above expression implies that∥∥∥umk+1 − ζ
∗
∥∥∥2

≤
[
φmk

∥∥∥umk − umk−1

∥∥∥φmk

ψmk

∥∥∥umk − umk−1

∥∥∥
+ 2(1 − ψmk)

∥∥∥umk − ζ
∗
∥∥∥φmk

ψmk

∥∥∥umk − umk−1

∥∥∥ + 2
∥∥∥ζ∗∥∥∥∥∥∥χmk − umk+1

∥∥∥ + 2〈ζ∗, ζ∗ − umk+1〉
]
. (3.44)

Since ψmk → 0, and
∥∥∥umk − ζ

∗
∥∥∥ is a bounded sequence. Therefore, expressions (3.42) and (3.44) implies

that
‖umk+1 − ζ

∗‖2 → 0, as k → +∞. (3.45)

It implies that
lim

n→+∞
‖uk − ζ

∗‖2 ≤ lim
n→+∞

‖umk+1 − ζ
∗‖2 ≤ 0. (3.46)

As a consequence un → ζ∗. This completes the proof of the theorem. �

4. Applications

In this section, we have written about the new results from our main proposed methods to solve
variational inequalities. In the last few years, variational inequalities have drawn a considerable amount
of attention from both researchers and readers. It is well established that variational inequalities deal
with a large variety of topics in partial differential equations, optimal control, optimization techniques,
applied mathematics, engineering, finance, and operational science. The variational inequality problem
for an operatorA : E → E is defined as follows:

Find ζ∗ ∈ D such that
〈
A(ζ∗), v − ζ∗

〉
≥ 0, ∀ v ∈ D. (VIP)

We consider the following conditions to study the variational inequalities.

(A1) The solution set of the problem (VIP) is denoted by VI(A,D) and it is nonempty;
(A2) An operatorA : E → E is said to be a pseudomonotone if〈

A(u), v − u
〉
≥ 0 =⇒

〈
A(v), u − v

〉
≤ 0, ∀ u, v ∈ D;

(A3) An operatorA : E → E is said to be a Lipschitz continuous if there exists a constants L > 0 such
that

‖A(u) −A(v)‖ ≤ L‖u − v‖, ∀ u, v ∈ D;

(A4) An operator A : E → E is said to be sequentially weakly continuous, i.e., {A(un)} weakly
converges toA(u) for every sequence {un} converges weakly to u.

On the other hand, we have also developed some results to solve fixed point problems. The existence
of a solution to a theoretical or real-world problem should be analogous to the existence of a fixed point
for an appropriate map or operator. Fixed-point theorems are thus extremely important in many fields
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of mathematics, engineering, and science. In many cases, it is not difficult to find an exact solution.
Therefore, it is crucial to create effective techniques to approximate the desired result. The fixed point
problem for an operator B : E → E is defined as follows:

Find ζ∗ ∈ D such that B(ζ∗) = ζ∗. (FPP)

The following conditions are required to study fixed point theorems.

(B1) The solution set of the problem (FPP) is denoted by Fix(B,D) is nonempty;
(B2) B : D → D is said to be a κ-strict pseudocontraction [5] onD if

‖Bu − Bv‖2 ≤ ‖u − v‖2 + κ‖(u − Bu) − (v − Bv)‖2, ∀ u, v ∈ D;

(B3) B : E → E is said to be weakly sequentially continuous, i.e., {B(un)} weakly converges to B(u)
for every sequence {un} converges weakly to u.

Corollary 4.1. Assume that an operator A : D → E satisfies the conditions (A1)–(A4) and the
solution set VI(A,D) , ∅. Choose u0, u1 ∈ D, φ > 0, 0 < σ < min

{
1, 1

L

}
, µ ∈ (0, 1), ρ1 > 0. Moreover,

select {ψn} ⊂ (0, 1) meet the conditions, i.e.,

lim
n→+∞

ψn = 0 and
+∞∑
n=1

ψn = +∞.

(i) Compute
χn = un + φn(un − un−1) − ψn

[
un + φn(un − un−1)

]
,

where φn modified on each iteration as follows:

0 ≤ φn ≤ φ̂n and φ̂n =

min
{
φ

2 ,
εn

‖un−un−1‖

}
if un , un−1,

φ

2 otherwise,

where εn = ◦(ψn) is a positive sequence such that limn→+∞
εn
ψn

= 0.
(ii) Compute vn = PD(χn − ρnA(χn)),

un+1 = PEn(χn − ρnA(vn)),

where
En = {z ∈ E : 〈χn − ρnA(χn) − vn, z − vn〉 ≤ 0}.

(iii) Compute

ρn+1 =


min

{
σ, µ〈Avn,un+1−vn〉

〈Aχn,un+1−vn〉−
L
2 ‖χn−vn‖2−

L
2 ‖un+1−vn‖2+1

}
,

if µ〈Avn,un+1−vn〉

〈Aχn,un+1−vn〉−
L
2 ‖χn−vn‖2−

L
2 ‖un+1−vn‖2+1

> 0,

σ otherwise.

Then, the sequences {un} converge strongly to ζ∗ ∈ VI(A,D).
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Corollary 4.2. Assume that B : D → D is a κ-strict pseudocontraction and weakly continuous with
solution set Fix(B,D) , ∅. Choose u0, u1 ∈ D, φ > 0, 0 < σ < min

{
1, 1−κ

3−2κ

}
, µ ∈ (0, 1), ρ1 > 0.

Moreover, select {ψn} ⊂ (0, 1) meet the conditions, i.e.,

lim
n→+∞

ψn = 0 and
+∞∑
n=1

ψn = +∞.

(i) Compute
χn = un + φn(un − un−1) − ψn

[
un + φn(un − un−1)

]
,

where φn modified one each iteration as follows:

0 ≤ φn ≤ φ̂n and φ̂n =

min
{
φ

2 ,
εn

‖un−un−1‖

}
if un , un−1,

φ

2 otherwise.

where εn = ◦(ψn) is a positive sequence such that limn→+∞
εn
ψn

= 0.
(ii) Compute vn = PD

[
χn − ρn(χn − B(χn))

]
,

un+1 = PEn

[
χn − ρn(vn − B(vn))

]
,

where
En = {z ∈ E : 〈(1 − ρn)χn + ρnB(χn) − vn, z − vn〉 ≤ 0}.

(iii) Evaluate stepsize rule for next iteration is evaluated as follows:

ρn+1 =


min

{
σ, µ〈vn−Bvn,un+1−vn〉

〈χn−B(χn),un+1−vn〉−
(

3−2κ
2−2κ

)
‖χn−vn‖2−

(
3−2κ
2−2κ

)
‖un+1−vn‖2+1

}
,

if µ〈vn−Bvn,un+1−vn〉

〈χn−B(χn),un+1−vn〉−
(

3−2κ
2−2κ

)
‖χn−vn‖2−

(
3−2κ
2−2κ

)
‖un+1−vn‖2+1

> 0,

σ otherwise.

Then, the sequence {un} converges strongly to ζ∗ ∈ Fix(B,D).

5. Numerical illustrations

In this section, the numerical performance of the proposed method is described in contrast with
some similar works in the literature.

Example 5.1. The test problem here taken from the Nash-Cournot Oligo-polistic equilibrium model
in [9, 21]. Suppose that the setD is defined by

D := {u ∈ RN : −10 ≤ ui ≤ 10}

and f : D×D → R is defined as follows

f (u, v) = 〈Mu + Nv + r, v − u〉, ∀ u, v ∈ D,

where r ∈ RN and M, N matrices of order N. The matrix M is symmetric positive semi-definite and
the matrix N −M is symmetric negative semi-definite with Lipschitz-type criteria k1 = k2 = 1

2‖M − N‖
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(see [21] for details). Two matrices M,N are taken randomly [Two diagonal matrices randomly A1

and A2 with elements from [0, 2] and [−2, 0], respectively. Two random orthogonal matrices O1 =

RandOrthMat(N) and O2 = RandOrthMat(N) are generated. Thus, a positive semi-definite matrix
B1 = O1A1OT

1 and a negative semi-definite matrix B2 = O2A2OT
2 is obtained. Finally, set N = B1 + BT

1 ,

S = B2 + BT
2 and M = N − S ].

Experiment 1: In the first experiment, we take into account the numerical efficiency of the Algorithm
1 using different starting point choices. This experiment helps the reader see how much the starting
points influenced the efficiency of the Algorithm 1. For these numerical results, we have use N = 20,
u0 = u1, ρ1 = 0.50, σ = 1

2.2k1
, µ = 0.22, φ = 1.00, εn = 1

(n+1)2 , ψn = 1
20(n+2) , Dn = Error = ‖un+1 − un‖

for Algorithm 1 (Alg-4). Figures 1 and 2 demonstrate the numerical efficacy of the proposed mehod.

0 20 40 60 80 100 120 140 160 180

Number of iterations

10
-4

10
-2

10
0

10
2

Figure 1. Numerical illustration of Algorithm 1 for different starting points while N = 20
and the number of iterations are 104, 133, 151, 178, 164, respectively.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Elapsed time [sec]

10-4

10-2

100

102

Figure 2. Numerical illustration of Algorithm 1 for different starting points while N = 20
and the execution time are 1.0100, 1.2801, 1.8741, 1.8852, 1.8766, respectively.

Experiment 2: In the second experiment, we consider the numerical efficiency of the Algorithm 1
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using different inertial parameter φ choices. This experiment helps the reader see how much the inertial
parameter φ influenced the efficiency of the Algorithm 1. For these numerical results, we have use
N = 20, u0 = u1 = (1, 1, · · · , 1, 1), ρ1 = 0.30, σ = 1

2.5k1
, µ = 0.33, εn = 1

(n+1)2 , ψn = 1
10(n+2) ,

Dn = Error = ‖un+1 − un‖ for Algorithm 1 (Alg-4). Figures 3 and 4 demonstrate the numerical efficacy
of the proposed method.

0 20 40 60 80 100 120

Number of iterations

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

Figure 3. Numerical illustration of Algorithm 1 for φ = 1, 0.8, 0.6, 0.4, 0.2 and the number
of iterations are 114, 93, 78, 63, 54, respectively.

0 0.2 0.4 0.6 0.8 1 1.2

Elapsed time [sec]

10-5
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10-3

10-2

10-1

100

101

Figure 4. Numerical illustration of Algorithm 1 for φ = 1, 0.8, 0.6, 0.4, 0.2 and the
execution time are 1.0763, 0.8257, 1.0927, 0.5489, 0.5748, respectively.

Experiment 3: In third experiment, we provide the numerical comparison of Algorithm 1 with
Algorithm 1 in [28] and Algorithm 3.1 in [11] and Algorithm 3 in [31]. For these numerical studies
we have assumed that starting points are u0 = u1 = v0 = (1, 1, · · · , 1), N = 5, 10, 40, 100 and error
term Dn = ‖un+1 − un‖. Figures 5–12 have shown a number of results for Tolerance=10−4. Information
regarding the control parameters shall be considered as described in the following:
(i) ρn = 1

4k1
, φn = 1

(n+1)0.5 , and Error = ‖un+1 − un‖ for Algorithm 3.1 in [11] (Alg-1).
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(ii) ρ = 1
4k1
, θ = 0.50, εn = 1

(n+1)2 , γn = 1
20(n+2) , βn = 7

10 (1 − γn), Error = ‖un+1 − un‖ for Algorithm 3
in [31] (Alg-2).
(iii) ρ = 1

5k1
, φn = 1

100(n+2) , f (u) = u
2 and Error = ‖un+1 − un‖ for Algorithm 1 (Alg-3) in [28].

(iv) ρ1 = 0.50, σ = 1
2.2k1

, µ = 0.22, φ = 1.00, εn = 1
(n+1)2 , ψn = 1

20(n+2) , Error = ‖un+1−un‖ for Algorithm
1 (Alg-4).

Then numerical results are reported in Table 1.

0 10 20 30 40 50 60

Number of iterations

10
-5

10
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10
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10
-2

10
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10
0

10
1

Figure 5. Numerical illustration of Algorithm 1 with Algorithm 1 in [28] and Algorithm 3.1
in [11] and Algorithm 3 in [31] for N=5.
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Figure 6. Numerical illustration of Algorithm 1 with Algorithm 1 in [28] and Algorithm 3.1
in [11] and Algorithm 3 in [31] for N=5.
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Figure 7. Numerical illustration of Algorithm 1 with Algorithm 1 in [28] and Algorithm 3.1
in [11] and Algorithm 3 in [31] for N=10.
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Figure 8. Numerical illustration of Algorithm 1 with Algorithm 1 in [28] and Algorithm 3.1
in [11] and Algorithm 3 in [31] for N=10.
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Figure 9. Numerical illustration of Algorithm 1 with Algorithm 1 in [28] and Algorithm 3.1
in [11] and Algorithm 3 in [31] for N=40.
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Figure 10. Numerical illustration of Algorithm 1 with Algorithm 1 in [28] and Algorithm
3.1 in [11] and Algorithm 3 in [31] for N=40.
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Figure 11. Numerical illustration of Algorithm 1 with Algorithm 1 in [28] and Algorithm
3.1 in [11] and Algorithm 3 in [31] for N=100.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Elapsed time [sec]

10-5

10-4

10-3

10-2

10-1

100

101

Figure 12. Numerical illustration of Algorithm 1 with Algorithm 1 in [28] and Algorithm
3.1 in [11] and Algorithm 3 in [31] for N=100.
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Table 1. Numerical finding and their values for Figures 5–12.

Number of iterations Elapsed time in seconds
N Alg-1 Alg-2 Alg-3 Alg-4 Alg-1 Alg-2 Alg-3 Alg-4
5 57 44 38 27 0.4910193 0.4805127 0.5035203 0.3568740
10 63 58 47 35 0.5564982 0.6466944 0.4253435 0.3249474
40 75 82 66 52 0.6889176 1.0781367 1.1124397 0.6130995
100 118 143 81 66 1.4267609 1.8261292 1.767970 1.448753

6. Conclusions

We constructed an explicit, inertial extragradient-type method to find a numerical solution to the
pseudomonotone equilibrium problems in a real Hilbert space. This method is seen as a modification
of the two-step gradient method. A strongly convergent result is well-proven, corresponding to the
proposed algorithm. Numerical findings were presented to demonstrate our algorithm’s numerical
superiority over existing methods. These computational findings have indicated that the variable
stepsize rule continues to increase the performance of the iterative sequence in this context.
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