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Abstract: Let (M, g, ϕ) be an n-dimensional locally decomposable Riemann manifold, that is,
g(ϕX,Y) = g(X, ϕY) and ∇ϕ = 0, where ∇ is Riemann (Levi-Civita) connection of metric g. In
this paper, we construct a new connection on locally decomposable Riemann manifold, whose name is
statistical (α, ϕ)-connection. A statistical α-connection is a torsion-free connection such that ∇g = αC,
where C is a completely symmetric (0, 3)-type cubic form. The aim of this article is to use connection
∇ and product structure ϕ in the same equation, which is possible by writing the cubic form C in terms
of the product structure ϕ. We examine some curvature properties of the new connection and give
examples of it.
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1. Introduction

Statistical structures in modern differential geometry have studied by many authors in recent years.
One of them is Lauritzen. In [1], Lauritzen created a statistical manifold by defining a totally symmetric
tensor field C (cubic form) of type (0, 3) on a Riemann manifold (Mn, g). He has shown that there is
a torsion-free linear connection (α)∇ such that (α)∇g = αC, where g is Riemann metric and α = ±1.
Then, he examined some properties of the curvature tensor field and defined the dual connection of this
connection. Also, he showed the relationship between curvature and dual curvature tensor field of that
connection and presented examples on the statistical manifold.

In this paper, we create a special connection inspired by statistical manifold on locally product
Riemann manifold (Mn, ϕ, g). We call this new connection as statistical (α, ϕ)-connection. We
investigate the decomposable condition for cubic form C expressed by the product structure ϕ. Then,
we calculate the curvature tensor field of that connection and examine its some properties. We give
two examples that support this connection. Finally, we define the dual of the new connection and
investigate its curvature tensor field.
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2. Preliminaries

Let Mn be a n-dimensional manifold. Throughout this article, all tensor fields, linear connections,
and manifolds will always be regarded as differentiable of class C∞. The class of (p, q)-type tensor
fields will also be denoted =p

q(Mn). For example if the tensor field V is of type (1, 2), then V ∈ =1
2(Mn).

The tensor field K of type (0, q) is called pure with respect to the ϕ if the following equation holds:

K(ϕY1,Y2, ...,Yq) = K(Y1, ϕY2, ...,Yq)
= ...

= K(Y1,Y2, ..., ϕYq),

where ϕ is endomorphism, namely, ϕ ∈ =1
1(Mn) and Y1,Y2, ...,Yq ∈ =

1
0(Mn) [2, p.208]. Then, the Φ

operator (or Tachibana operator) applied to pure tensor field K of type (0, q) is given by

(ΦϕXK)(Y1,Y2, ...,Yq) = (ϕX)(K(Y1,Y2, ...,Yq)) (2.1)
−X(K(ϕY1,Y2, ...,Yq))

+

q∑
i=1

K(Y1, ..., (LYiϕ)X, ...,Yq),

where LY is the Lie differentiation according to a vector field Y [2, p.211].
In the equation (2.1), if ΦϕK = 0, then K is named Φ-tensor field. Especially, if ϕ is product

structure, that is, ϕ2 = I and ΦϕK = 0, then K is called a decomposable tensor field [2, p.214].
The almost product Riemann manifold (Mn, ϕ, g) is a manifold that satisfies

g(ϕX,Y) = g(X, ϕY)

and ϕ2 = I, where g is Riemann metric. In [3], the authors (in Theorem 1) show that in almost product
Riemann manifold, if Φϕg = 0, then ϕ is integrable. Then, it is clear that the condition Φϕg = 0 is
equivalent ∇ϕ = 0, where ∇ is Riemann (or Levi-Civita) connection of Riemann metric g. It is well-
known that if ϕ is integrable, then the triplet (Mn, ϕ, g) is named locally product Riemann manifold.
Besides, locally product Riemann manifold (Mn, ϕ, g) is a locally decomposable if and only if the
product structure ϕ is parallel according to the Riemann connection ∇, in other words, ∇ϕ = 0 [4,
p.420]. Thus, it is easily said that the (Mn, ϕ, g) is a locally decomposable Riemann manifold if and
only if Φϕg = 0 [3] (in Theorem 2).

In adition, in [5], the authors (in Proposition 4.2) examined properties of the Riemann curvature
tensor field R of the locally product Riemann manifold (Mn, ϕ, g) and showed that ΦϕR = 0, that is, the
Riemann curvature tensor field R is decomposable.

3. Statistical (α, ϕ)-connections

Let (Mn, g, ϕ) be a locally decomposable Riemann manifold and (α)∇ be a torsion-free linear
connection on this manifold that provides the following equation:

(α)∇XY = ∇XY −
α

2
C(X,Y). (3.1)
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Then, the connection (α)∇ is named statistical α-connection If ((α)∇Xg)(Y,Z) = αC(X,Y,Z) is
satisfied and C is totally symmetric, where α = ±1, C is a the cubic form such that
C(X,Y,Z) = g(C(X,Y),Z) and ∇ is Riemann connection of metric g [1, p.179–180].

In this paper, we will study a special version of cubic form C, which is expressed as follows:

C(X,Y) = η(X)Y + η(Y)X + g(X,Y)U (3.2)
+η(ϕX)(ϕY) + η(ϕY)(ϕX) + g(ϕX,Y)(ϕU),

where ϕ is a product structure, that is, ϕ2(X) = I(X), η is a covector field (or 1-form) and U is a vector
field such that U = g](η) = η], where g] : =0

1(Mn) −→ =1
0(Mn), that is g] is a musical isomorphisms.

From the equation (3.2) and C(X,Y,Z) = g(C(X,Y),Z), we have

C(X,Y,Z) = η(X)g(Y,Z) + η(Y)g(X,Z) + η(Z)g(X,Y) (3.3)
+η(ϕX)g(ϕY,Z) + η(ϕY)g(ϕX,Z) + η(ϕZ)g(ϕX,Y).

Then, it is clear that
((α)∇Xg)(Y,Z) = αC(X,Y,Z)

and C(X,Y,Z) is completely symmetric, that is,

C(X,Y,Z) = C(X,Z,Y) = C(Z, X,Y)
= C(Z,Y, X) = C(Y, X,Z) = C(Y,Z, X).

From the (3.2), we get

Proposition 3.1. The product structure ϕ is parallel according to the α-connection (α)∇ on locally
decomposable Riemann manifold (Mn, g, ϕ), that is, (α)∇ϕ = 0.

Throughout this paper, the α-connection (α)∇ on locally decomposable Riemann manifold (Mn, g, ϕ)
is called “statistical (α, ϕ)-connection”.

We easily say that the cubic form C is pure with regard to the product structure ϕ, that is,

C(ϕX,Y,Z) = C(X, ϕY,Z) = C(X,Y, ϕZ).

Therefore, we get
(α)∇(ϕX)Y = (α)∇X(ϕY) = ϕ((α)∇XY),

i.e., the connection (α)∇ is pure according to product structure ϕ. Also, in [6, p.19] , the author has
already shown that any ϕ-connection ∇ is pure if and only if its torsion tensor is pure. Then, we write

Theorem 3.1. In locally decomposable Riemann manifold (Mn, g, ϕ), if the covector field η in (3.3) is
a decomposable tensor field, then the cubic form C is a decomposable tensor field.

Proof. For the cubic form C given by the (3.3), from the (2.1), we obtain

(ΦϕXC)(Y1,Y2,Y3) = (∇ϕXC)(Y1,Y2,Y3) − (∇XC)(ϕY1,Y2,Y3). (3.4)
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Substituting (3.3) into the last equation, we get

(ΦϕXC)(Y1,Y2,Y3) =
[
(∇ϕXη)(Y1) − (∇Xη)(ϕY1)

]
g(Y2,Y3) (3.5)

+
[
(∇ϕXη)(Y2) − (∇Xη)(ϕY2)

]
g(Y1,Y3)

+
[
(∇ϕXη)(Y3) − (∇Xη)(ϕY3)

]
g(Y1,Y2)

+
[
(∇ϕXη)(ϕY1) − (∇Xη)(Y1)

]
g(ϕY2,Y3)

+
[
(∇ϕXη)(ϕY2) − (∇Xη)(Y2)

]
g(ϕY1,Y3)

+
[
(∇ϕXη)(ϕY3) − (∇Xη)(Y3)

]
g(ϕY1,Y2).

and for covector field η, we have

(ΦϕXη)(Y) = (∇ϕXη)(Y) − (∇Xη)(ϕY). (3.6)

From the last two equations, we get

(ΦϕC)(X,Y1,Y2,Y3) = (ΦϕXη)(Y1)g(Y2,Y3) + (ΦϕXη)(Y2)g(Y1,Y3)
+(ΦϕXη)(Y3)g(Y1,Y2) + (ΦϕXη)(ϕY1)g(ϕY2,Y3)
+(ΦϕXη)(ϕY2)g(ϕY1,Y3) + (ΦϕXη)(ϕY3)g(ϕY1,Y2).

It is clear that if Φϕη = 0, then ΦϕC = 0. �

Corollary 3.1. From the equation (3.4) in Theorem 3.1, we can write

(∇ϕXC)(Y1,Y2,Y3) = (∇XC)(ϕY1,Y2,Y3)
= (∇XC)(Y1, ϕY2,Y3)
= (∇XC)(Y1,Y2, ϕY3),

that is, the covariant derivation of the cubic form C is pure with respect to product structure ϕ.

In the following sections of the paper, we will assume that the covector field η is decomposable
tensor field, i.e., the following equation always applies:

(∇ϕXη)(Y) − (∇Xη)(ϕY) = 0.

The α-curvature tensor field (α)R of the statistical (α, ϕ)-connection (α)∇ is given by

(α)R(X,Y,Z) = ((α)∇X
(α)∇Y −

(α) ∇Y
(α)∇X −

(α) ∇[X,Y])Z.

Substituting (3.1) into the last equation, we obtain

(α)R(X,Y,Z,W) = R(X,Y,Z,W) (3.7)
−g(Y,W)ρ(X,Z) + g(X,W)ρ(Y,Z)
−g(Y,Z)q(X,W) + g(X,Z)q(Y,W)
−g(ϕY,W)ρ(X, ϕZ) + g(ϕX,W)ρ(Y, ϕZ)
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−g(ϕY,Z)q(X, ϕW) + g(ϕX,Z)q(Y, ϕW)
−g(Z,W)[ρ(X,Y) − ρ(Y, X)]
+g(ϕZ,W)[ρ(X, ϕY) − ρ(ϕY, X)],

where g((α)R(X,Y,Z),W) = (α)R(X,Y,Z,W) and R is Riemann curvature tensor field of Riemann metric
g,

ρ(X,Y) =
α

2
(∇Xη)Y +

α2

4
η(X)η(Y) +

α2

8
η(U)g(X,Y) (3.8)

+
α2

4
η(ϕX)η(ϕY) +

α2

8
η(ϕU)g(ϕX,Y)

and

q(X,Y) =
α

2
(∇Xη)Y −

α2

4
η(X)η(Y) −

α2

8
η(U)g(X,Y) (3.9)

−
α2

4
η(ϕX)η(ϕY) −

α2

8
η(ϕU)g(ϕX,Y).

From the last two equations, we get

ρ(X,Y) − ρ(Y, X) = q(X,Y) − q(Y, X)

=
α

2
[(∇Xη)Y − (∇Yη)X]

=
α

2
[(∇Xη)Y) − (∇Yη)X + η(∇XY − ∇Y X) − η([X,Y])]

=
α

2
[(∇Xη)Y + η(∇XY) − (∇Yη)X − η(∇Y X) − η([X,Y])]

=
α

2
[Xη(Y) − Yη(X) − η([X,Y])]

= α(dη)(X,Y),

where d is exterior derivate operator applied to the covector field η. Then, we can write the following
proposition and corollary.

Proposition 3.2. The covector field η is closed, that is, dη = 0 if and only if

ρ(X,Y) − ρ(Y, X) = q(X,Y) − q(Y, X) (3.10)
= 0.

Corollary 3.2. For the differentiable function f on locally decomposable Riemann manifold (Mn, g, ϕ),
it is well-known that d2 f = 0. So, if η = d f =

∂ f
∂xi dxi, then dη = 0 is directly obtained and we can write

the equation (3.10).

The tensor fields ρ and q are given by Eqs (3.8) and (3.9), respectively, is pure according to the
product structure ϕ. Then, we write

ρ(X, ϕY) − ρ(ϕX,Y) = q(X, ϕY) − q(ϕX,Y)
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=
α

2

[
(∇Xη)(ϕY)−(∇ϕXη)(Y)

]
= 0.

In addition, from the Eqs (2.1) and (3.8), we get

(ΦϕXρ)(Y1,Y2) = (∇ϕXρ)(Y1,Y2) − (∇Xρ)(ϕY1,Y2). (3.11)

Substituting (3.8) into the Eq (3.11), we obtain

(Φϕρ)(X,Y1,Y2) =
α

2

[(
∇ϕX∇Y1η

)
(Y2) −

(
∇X∇ϕY1η

)
(Y2)

]
.

For the Ricci identity of the covector field η, we have(
∇ϕX∇Y1η

)
(Y2) =

(
∇Y1∇ϕXη

)
(Y2) −

1
2
η(R(ϕX,Y1,Y2)) (3.12)

and

(
∇X∇Y1η

)
(ϕY2) =

(
∇Y1∇Xη

)
(ϕY2) −

1
2
η(R(X,Y1, ϕY2)). (3.13)

From the last equations, we write

(ΦϕXρ)(Y1,Y2) = −
1
2
η(R(ϕX,Y1,Y2) − R(X,Y1, ϕY2))

= 0

and in the same way (ΦϕXq) = 0. Then, we have

Proposition 3.3. The tensor fields ρ and q are given by Eqs (3.8) and (3.9), respectively are a
decomposable tensor fields and because of the equation (3.11), we can write

(∇ϕXρ)(Y,Z) = (∇Xρ)(ϕY,Z) = (∇Xρ)(Y, ϕZ)

and
(∇ϕXq)(Y,Z) = (∇Xq)(ϕY,Z) = (∇Xq)(Y, ϕZ),

that is, the covariant derivation of the tensor fields ρ and q are pure with respect to the product structure
ϕ.

With the simple calculation, we can say that the α-curvature tensor field (α)R is pure with regard to
the product structure ϕ, namely,

(α)R(ϕY1,Y2,Y3,Y4) = (α)R(Y1, ϕY2,Y3,Y4)
= (α)R(Y1,Y2, ϕY3,Y4)
= (α)R(Y1,Y2,Y3, ϕY4).

Then, from the Eq (2.1), we have

(ΦϕX
(α)R)(Y1,Y2,Y3,Y4) = (∇ϕX

(α)R)(Y1,Y2,Y3,Y4) (3.14)
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−(∇X
(α)R)(ϕY1,Y2,Y3,Y4).

If the expression of the α-curvature tensor field (α)R is written in the last equation, then we obtain

(ΦϕX
(α)R)(Y1,Y2,Y3,Y4) = (ΦϕXR)(Y1,Y2,Y3,Y4)

−[(∇ϕXρ)(Y1,Y3) − (∇Xρ)(Y1, ϕY3)]g(Y2,Y4)
+[(∇ϕXρ)(Y2,Y3) − (∇Xρ)(Y2, ϕY3)]g(Y1,Y4)
−[(∇ϕXq)(Y1,Y4) − (∇Xq)(Y1, ϕY4)]g(Y2,Y3)
+[(∇ϕXq)(Y2,Y4) − (∇Xq)(Y2, ϕY4)]g(Y1,Y3)
−[(∇ϕXρ)(Y1, ϕY3) − (∇Xρ)(Y1,Y3)]g(Y2, ϕY4)
+[(∇ϕXρ)(Y2, ϕY3) − (∇Xρ)(Y2,Y3)]g(Y1, ϕY4)
−[(∇ϕXq)(Y1, ϕY4) − (∇Xq)(Y1,Y4)]g(Y2, ϕY3)
+[(∇ϕXq)(Y2, ϕY4) − (∇Xq)(Y2,Y4)]g(Y1, ϕY3)
−[(∇ϕXρ)(Y1,Y2) − (∇ϕXρ)(Y2,Y1)
−((∇Xρ)(Y1, ϕY2) − (∇Xρ)(ϕY2,Y1))]g(Y3,Y4)

+[(∇ϕXρ)(Y1, ϕY2) − (∇ϕXρ)(ϕY2,Y1)
−((∇Xρ)(Y1,Y2) − (∇Xρ)(Y2,Y1))]g(ϕY3,Y4).

Furthermore, from Proposition 3.3, the last equation becomes the following form:

(ΦϕX
(α)R)(Y1,Y2,Y3,Y4)

= (ΦϕXR)(Y1,Y2,Y3,Y4)
−(ΦϕXρ)(Y1,Y3)g(Y2,Y4) + (ΦϕXρ)(Y2,Y3)g(Y1,Y4)
−(ΦϕXq)(Y1,Y4)g(Y2,Y3) + (ΦϕXq)(Y2,Y4)g(Y1,Y3)
−(ΦϕXρ)(Y1, ϕY3)g(Y2, ϕY4) + (ΦϕXρ)(Y2, ϕY3)g(Y1, ϕY4)
−(ΦϕXq)(Y1, ϕY4)g(Y2, ϕY3) + (ΦϕXq)(Y2, ϕY4)g(Y1, ϕY3)
−[(ΦϕXρ)(Y1,Y2) − (ΦϕXρ)(Y2,Y1)]g(Y3,Y4)
+[(ΦϕXρ)(Y1, ϕY2) − (ΦϕXρ)(ϕY2,Y1)]g(ϕY3,Y4)

and

(ΦϕX
(α)R)(Y1,Y2,Y3,Y4) = 0.

Then, we obtain

Theorem 3.2. The α-curvature tensor field (α)R of the statistical (α, ϕ)-connection (α)∇ is decomposable
tensor field and due to the equation (3.14), we can say that

(∇ϕX
(α)R)(Y1,Y2,Y3,Y4) = (∇X

(α)R)(ϕY1,Y2,Y3,Y4)
= (∇X

(α)R)(Y1, ϕY2,Y3,Y4)
= (∇X

(α)R)(Y1,Y2, ϕY3,Y4)
= (∇X

(α)R)(Y1,Y2,Y3, ϕY4),

namely, the covariant derivation of the α-curvature tensor field (α)R-is pure with respect to the product
structure ϕ.
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4. Some example for Statistical (α, ϕ)-connections

Example 4.1. Let M2 = {(x, y) ∈ R2, x > 0} be a manifold with the metric g such that

[
gi j(x, y)

]
=

[ 1
x 0
0 1

]
.

Then, (M2, g) is a Riemann manifold. The component of the Riemann connection of this manifold is as
follow:

Γ1
11(x, y) = −

1
2x

and the others are zero. In addition, we say that (M2, g) is a flat manifold, that is, Riemann curvature
tensor R of that manifold is vanishing. The equation system satisfying the conditions ϕm

i gm j = ϕm
j gim

(purity) and ϕm
i ϕ

j
m = δ

j
i (product structure) is

a2 + bc = 1
b(a + d) = 0
c(a + d) = 0
d2 + bc = 1

c = 1
xb

, (4.1)

where [
ϕ

j
i (x, y)

]
=

[
a(x, y) b(x, y)
c(x, y) d(x, y)

]
. (4.2)

Then, a general solution of the equation system (4.1) isa = −d, b = x

√
−

1
x

(d − 1) (d + 1), c =

√
−

1
x

(d − 1) (d + 1)

 . (4.3)

In the last equation, a special solution for d = 0 is as follow:

[
ϕ

j
i (x, y)

]
=

[
0
√
×

1
√

x 0

]
.

Here, because of ∇ϕ = 0, the triplet (M2, g, ϕ) is locally decomposable Riemann manifold.
The expression of the cubic form in local coordinates given by (3.2) is

C
k
i j = ηiδ

k
j + ηiδ

k
j + ηkgi j + ηtϕ

t
iϕ

k
j + ηtϕ

t
jϕ

k
i + ηtϕk

tϕi j,

where ηk = ηigik and ϕi j = ϕk
i gk j. For η(x, y) = (η1(x, y), η2(x, y)), the matrix shape of the cubic form is

as follows: [
C

1
i j(x, y)

]
=

[
3η1 3η2

3η2 3xη1

]
,

[
C

2
i j(x, y)

]
=

[ 3
xη2 3η1

3η1 3η2

]
,
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for example, C
1
11 = 3η1, C

2
11 = 3

xη2,..., etc. In adition, the statistical (α, ϕ)-connection is given by

(α)Γk
i j(x, y) = Γk

i j(x, y) −
α

2
C

k
i j (x, y)

and these components are [
(α)Γ1

i j(x, y)
]

=

[
− 1

2x −
3α
2 η1 −3α

2 η2

−3α
2 η2 −3α

2 xη1

]
,

[
(α)Γ2

i j(x, y)
]

=

[
−3α

2xη2 −
3α
2 η1

−3α
2 η1 −

3α
2 η2

]
.

For i, j,m = 1, 2, the components of the Φϕη are

(Φϕη)i j = ϕm
i (

∂

∂xm
η j) − ϕm

j (
∂

∂xi
ηm),

where ∂
∂x1

= ∂
∂x and ∂

∂x2
= ∂

∂y . Then, we have

(Φϕη)11 = −
1
x

(Φϕη)22 =
1
√

x
(
∂

∂y
η1 −

∂

∂x
η2),

(Φϕη)12 = −(Φϕη)21 =
1
√

x
(
∂

∂y
η2 − x

∂

∂x
η1)

and because of Φϕη = 0, we obtain
∂

∂y
η1 =

∂

∂x
η2,

∂

∂y
η2 = x

∂

∂x
η1.

Then, the components of the α-curvature tensor field (α)R are

(α)R1212(x, y) = (α)R1221(x, y) =
1
2x
η1.

Example 4.2. Let N2 = {(x, y) ∈ R2, x < 0} be a manifold with the metric g such that[
gi j(x, y)

]
=

[
1 + x2 −x
−x 1

]
.

Then, (N2, g) is a Riemann manifold and the component of the Riemann connection of this manifold is
the following form:

Γ2
11(x, y) = −1

and the others are zero. Also, (N2, g) is a flat manifold. The equation system satisfying the conditions
ϕm

i gm j = ϕm
j gim and ϕm

i ϕ
j
m = δ

j
i is as follow:

a2 + bc = 1
b(a + d) = 0
c(a + d) = 0
d2 + bc = 1

x(d − a) + c = b(1 + x2)

,
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where [
ϕ

j
i (x, y)

]
=

[
a(x, y) b(x, y)
c(x, y) d(x, y)

]
.

Then, a general solution of the equation system (4.2) is[
a = −d, b =

1
x2 + 1

(√
−d2 + x2 + 1 + dx

)
, c =

√
−d2 + x2 + 1 − dx

]
. (4.4)

In the equation (4.4), a special solution for d = 1 is

[
ϕ

j
i (x, y)

]
=


[
−1 2x

1+x2

0 1

]
, i f x > 0[

−1 0
−2x 1

]
, i f x < 0

,

where for x < 0, (N2, g, ϕ) is locally decomposable Riemann manifold because of ∇ϕ = 0. Then, we
get [

C
1
i j(x, y)

]
=

[
6(η1 + xη2) 0

0 0

]
,

[
C

2
i j(x, y)

]
=

[
6x(η1 + 2xη2) −6xη2

−6xη2 6η2

]
and [

(α)Γ1
i j(x, y)

]
=

[
−3α(η1 + xη2) 0

0 0

]
,

[
(α)Γ2

i j(x, y)
]

=

[
−3αx(η1 + 2xη2) − 1 3αxη2

3αxη2 −3αη2

]
.

From the equation (3.6), we have

(Φϕη)11 = 2x(
∂

∂x
η2 −

∂

∂y
η1),

(Φϕη)12 = 2(x
∂

∂y
η2 −

∂

∂x
η2),

(Φϕη)21 = 2(
∂

∂y
η1 +

∂

∂y
η2),

(Φϕη)22 = 0.

and because of Φϕη = 0,
∂

∂x
η2 =

∂

∂y
η1 = −x

∂

∂y
η2.

Then, we easily say that the components of the α-curvature tensor field (α)R are

(α)R1221(x, y) = −x(α)R1222(x, y) = −6αx(
∂

∂x
η2).

Then, we get

AIMS Mathematics Volume 5, Issue 5, 4722–4733.
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Corollary 4.1. The α-curvature tensor field (α)R of (N2, g, ϕ) is vanishing, that is, (α)R = 0 if and only
if

η = (η1(x, y), η2(x, y)) = (η1(x, c1), η2(c2, c3)) ,

where c1, c2, and c3 are scalars.

5. Dual statistical (α, ϕ)-connections

In [1, p.181], the author defined the dual of the α-connection (α)∇ of given by the equation (3.1) as
follows:

D(α)∇XY = ∇XY +
α

2
C(X,Y).

We easily say that D(α)∇ = −(α)∇. Furthermore,

(D(α)∇Xg)(Y,Z) = −((α)∇Xg)(Y,Z)
= −αC(X,Y,Z)

and
(D(α)∇XF)(Y) = 0,

that is, the dual α-connection D(α)∇ is statistical (α, ϕ)-connection and is named ”dual statistical (α, ϕ)-
connection”. Also, in [1, p.182] (in Proposition 3.5), the author shows that the dual α-curvature tensor
field D(α)R of D(α)∇ is as follow:

(α)R(X,Y,Z,W) = − D(α)R(X,Y,W,Z).

Then, we have

Theorem 5.1. The dual α-curvature tensor field D(α)R is a decomposable tensor field, i.e.,

Φ ϕ
(α)R = −(Φϕ

D(α)R) = 0.

6. Conclusions

In this study, we define a special connection using the cubic form C on locally product Riemann
manifold. We name this new connection as statistical (α, ϕ)-connection. We examine the curvature
properties and give examples of this new connection. However, the cubic form C customized for the
locally product Riemann manifold is made only for the product structure. This cubic form can also
be studied on different special Riemann manifolds such that Kahler (or Anti-Kahler) manifold with
complex structure E, E2 = −I, Tangent (dual) manifold with tangent structure F, F2 = 0 and Golden
Riemann manifold with golden structure ϕ, ϕ2 = ϕ + I, which is the most interesting structure lately.

Acknowledgments

The author sincerely thank the reviewers for their careful reading and constructive comments.

AIMS Mathematics Volume 5, Issue 5, 4722–4733.



4733

Conflict of interest

The author declares no conflict of interest in this paper.

References

1. S. L. Lauritzen, Statistical manifolds in Differential Geometry in Statistical Inferences, In: IMS
Lecture Notes Monogr. Ser., Inst. Math. Statist., Hayward California, 1987.

2. S. Tachibana, Analytic tensor and its generalization, Tohoku Math. J., 12 (1960), 208–221.

3. A. Salimov, K. Akbulut, S. Aslanci, A note on integrability of almost product Riemannian
structures, Arab. J. Sci. Eng. Sect. A Sci., 34 (2009), 153–157.

4. K. Yano, M. Kon, Structures on Manifolds, In: Series in Pure Mathematics, World Scientific
Publishing Co., Singapore, 1984.

5. A. Gezer, N. Cengiz, A. A. Salimov, On integrability of golden Riemannian structures, Turk. J.
Math., 37 (2013), 693–703.

6. A. Salimov, Tensor operators and their applications, In: Mathematics Research Developments
Series, Nova Science Publishers Inc., NewYork, 2013.

c© 2020 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 5, Issue 5, 4722–4733.

http://creativecommons.org/licenses/by/4.0

	Introduction
	Preliminaries
	Statistical (,)-connections
	Some example for Statistical (,)-connections
	Dual statistical (,)-connections
	Conclusions

