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1. Introduction

As the topic of multi-agent becomes hotter and hotter, for a long time in the past, there exist many
researches put forward in the consensus problem in order to improve the theory. In [1–3], the model
of integrator and first-order multi-agent systems which conclude linear and non-linear dynamics
function had been studied. In [4–8], the consensus problem of second-order or high-order multi-agent
systems were taken into consideration. In [9, 10, 12–14], the authors thought about the consensus
problem of the multi-agent system which contains a leader-followers consensus or leaderless
consensus in which the system was controlled by impulsive protocols. However, there is still an issue
about how to reduce unnecessary information interaction on multi-agent system or how to make
multi-agent system converge to a consensus with less cost. In this paper, edge event-triggered is an
effective control means of saving energy.
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With the same time, the theoretical analysis of impulsive system had also aroused the interest of
many scholars [15–22]. In actual situation, there were many restrictions on actuators and inputs.
In [18], the problem based on state-constraint impulsive protocol were taken into consideration.
In [19], the issue of time-delay complex networks system based on the impulsive control were
researched. On many occasions, impulsive control was regarded as a useful approach to handle some
stability or synchronization problems. Then, it was evident that impulsive control is more beneficial
in chaos from [23, 24] or complex networks [25–28] which compares with continuous control.

So far, there have been a great number of theorems and deductions about impulsive system. The
sufficient conditions of the primary outcomes are obtained with high requirements. Nevertheless, there
is no research on that state-constraint impulsive protocols are applied to nonlinear multi-agent systems
via edge event-triggered control so far, then, we will discuss the problem in this paper.

The contributions of this article are twofold:

(1) In real life, it is a common phenomenon to have a limitation of the input or actuator. For the
purpose of better closing to the actual situation, two kinds of impulsive control protocols which
conclude input saturation and double actuator saturation are discussed in this paper, the sufficient
conditions for system to reach consensus are obtained.

(2) Edge event-triggered strategy which is a novel control way of event-triggered can greatly
reduce the energy in the process of exchanging information. In this paper, we combine impulse
control with edge event trigger control and let the time triggered by the edge event be the impulse
time to avoid the Zeno-behavior. When the state error of the agent is small at a certain impulse time,
the information interaction can be eliminated. Then, compared to the single impulsive control [11],
the number of information exchange has been reduced and the energy consumption of the whole
system is correspondingly reduced.

The framework of the paper is as follows. Section II describes some preliminaries which conclude
notations, graph theory, state constraints and edge event-triggered strategy are introduced. In section
III, the models of the nonlinear dynamics and two types of impulsive control rules are formulated. In
section IV, some theorems and their proofs are offered. For the purpose of validating the feasibility of
the proposed methods, some numerical simulation are offered in section V. In section VI, conclusion
of this paper are offered.

2. Preliminaries

2.1. Notations

R is defined as the set of real number and let N be a set of positive real number. The matrix
inequality A > B stands for that every element of A is bigger than B. Suppose that every eigenvalue
of matrix A is real. λmin(C) and λmax(C) are the smallest eigenvalue and largest eigenvalue of matrix
C. Then, diag[a1, a2, . . . , aN] represents a diagonal matrix with elements ai on the diagonal. I is an
identity matrix and IN denotes a N- dimensional identity matrix. max(xi) means the maximum of xi

when xi ∈ R and i = 1, 2, . . . ,N. co{u j : j = 1, 2, . . . ,N} represents a convex hull. IN denotes an N-
dimensional identity matrix.
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2.2. Graph theory

In the paper, the symbol G=(v,ε) represents a graph in which v = {ν1, ν2, . . . , νN} is a set of nodes
and ε ⊆ ν× ν is a set of edge. Let A = [ai j] be a weighted adjacency matrix with nonnegative elements.
For an undirect graph G, the element of adjacency matrix A which is a symmetric matrix is 1 if there
exists an edge (νi, ν j) between node νi and node ν j, otherwise, the element is 0. The out-degree of node
i is defined as deg(i) =

∑N
j=1 ai j and let matrix D̃ be the degree matrix which is a diagonal matrix with

the out-degree of each node along the principal diagonal. Then, the Laplacian matrix L = [li j] and the
expression is:

li j =


degout(i), i = j
−ai j, j ∈ Ni

0, otherwise.

where Ni is a set which is made up of all the neighbors of node i.
Suppose there are % edges in graph G and label them be e1, e2, . . . , e%, then, it’s obvious that each

edge eg = (νi, ν j) where g ∈ [1, %]. Denote D = [di j] be a incidence matrix and the elements of D is
that

di j =


1, if νi is the head node of the jth oriented edge
−1, if νi is the tail node of the jth oriented edge
0, otherwise

So, there exists a relationship between the Laplacian matrix L and the incidence matrix D is that
L = DWDT . Then, W = [wii] is a diagonal matrix and define wii be weight value of ith edge.

From now on, we assume that the topologies of multi-agent systems are all undirected graphs which
are all connected.

2.3. State-constraint strategy

In practical industrial applications, the parameters will be limited by various physical conditions.
So it is a common phenomenon to limit the actuator or input. For example, the cost of electronic
devices during power transmission makes the input limited. In addition, almost all actual physical
systems are subject to state constrains which conclude actuator saturation constraints and input
saturation constraints. Then, define the saturation function be

sat(y) =


1, y > 1
y, −1 6 y 6 1
− 1, y < −1

(2.1)

where y ∈ R.

2.4. Edge event-triggered strategy

For a multi-agent system, we should first formulate some edge event-triggered rules. Then, at each
time of sampling, whether the state of each agent and its neighbors are updated depend on the edge
event is triggered or not. Namely, if agent j is a neighbor of agent i and the edge event is triggered by
their communication link, the relative state of the two agents are all sampled and their controllers are
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also updated respectively. Else, the edge event is not triggered, their relative state don’t renew and is
the same as the one at the most recent sampling moment. For convenience, let t(t)

g be the event-triggered
moment at the gth time and tgi j(t) be the time that is the last sampling time before t.

gi j(t) = max{g|tg ∈ {tg 6 t}}

In this paper, we assume that the moment of event-trigger is the impulse constant.

3. Problem description

The following nonlinear system is considered in the paper and the dynamics of each agent in the
system is expressed as follows:

ẋi (t) = f (t, xi (t)) + bi (t) , i = 1, 2, . . . ,N. (3.1)

in which xi (t) ∈ R is the desired state of the ith agent. f (t, xi) is a nonlinear functions. The nominal
control input of ith agent is represented by bi (t).

In the paper, the following two types of control protocols are formulated:

Control protocols

1: Input Saturation

bi(t) =

∞∑
k=1

sat(
∑
j∈Ni

riai j

(
x j

(
tgi j(tk)

)
− xi

(
tgi j(tk)

))
)δ(t − tk) (3.2)

2: Double Actuator Saturation

bi(t) =

∞∑
k=1

∑
j∈Ni

ai j

(
sat[x j

(
tgi j(tk)

)
] − sat[xi

(
tgi j(tk)

)
]
)
δ(t − tk) (3.3)

where ri is the strength of impulsive. The constant {tk} satisfies the inequality 0 < t0 < t1 < · · · <

tk < tk+1 < · · · . We let lim
k→∞

tk = +∞ and denote δ(t − tk) be a Dirac function. Then we assume that

M xi(tk) = xi(t+
k ) − xi(t−k ), xi(tk) = xi(t−k ) and xi(t−k ) = lim

t→t−k
xi(t), xi(t+

k ) = lim
t→t+k

xi(t).

Suppose that there exist m edges of graph G and label the m edges be e1, e2, . . . , em. Then, for any
edge eg = (νi, ν j) in which 1 6 g 6 m, let zg = xi(t) − x j(t), z̃g(t−k ) = xi(ti j(t−k )) − x j(ti j(t−k )) and define
x(t) = [x1(t), x2(t), . . . , xN(t)]T , z(t) = [z1(t), z2(t), . . . , zm(t)]T , z̃(t−k ) = [z̃1(t−k ), z̃2(t−k ), . . . , z̃m(t−k )]T . So,
it’s clear that z(t) = DT x(t).

Here, we bring forward the rule of edge event-triggered. For the system, the edge event eg will be
turned on at the time tk unless the following inequality is invalid.µg‖z̃g(tk)‖ 6 ‖zg(tk)‖ 6 σg‖z̃g(tk)‖

zg(tk)z̃g(tk) > 0
(3.4)

where µg and σg are all system parameters to be designed.
Then, the next definition and lemmas are shown for supporting derivation better:
Definition 1. The system achieves consensus with the control protocols while
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lim
t→∞
|x j (t) − xi (t) | = 0

where i, j = 1, 2, · · · ,N.
Lemma 1. [18] Let w1,w2, . . . ,wU ∈ Rn1 , m1,m2, . . . ,mV ∈ Rn2, w = (w1,w2, · · · ,wn)T, m =

(m1,m2, · · · ,mn)T and U,V, n1, n2 are positive integers. If w ∈ co{wu : u = 1, 2, . . . ,U} and m ∈
co{mv : v = 1, 2, . . . ,V}, then[

w
m

]
∈ co

{[
wu

mv

]
: u = 1, 2, . . . ,U; v = 1, 2, . . . ,V

}
. (3.5)

Lemma 2. [18] Let w, m ∈ Rn, w = (w1,w2, · · · ,wn)T, m = (m1,m2, · · · ,mn)T, n ∈ N+. E is a set
of n × n diagonal matrices and its diagonal elements are either 1 or 0. Assume that Ei stands for every
element of E. i = 1, 2, . . . 2n. Then, E = {Ei : i ∈ {1, 2, · · · , 2n}}. Denote E−i = I − Ei. It is obvious that
E−i is also one element of E when Ei ∈ E. When |mi| 6 1, sat(w) ∈ co{Eiw + E−i m : i ∈ {1, 2, · · · , 2n}}.

For example, if n = 2, then

E =

{[
0 0
0 0

]
,

[
1 0
0 0

]
,

[
0 0
0 1

]
,

[
1 0
0 1

]}
If x ∈ Rn and T,H ∈ Rn×n are two matrices, when ‖Hx‖∞ 6 1, we can get sat(T x) ∈ co{EiT x +

E−i Hx : i ∈ {1, 2, · · · , 2n}}. There exists 0 6 %i 6 1 and satisfies
∑2n

i=1 %i = 1. Then sat(T x) =∑2n

i=1 %i(EiT + E−i H)x.
Lemma 3. Let x = [x1, x2, . . . , xn]T , S AT (x) = [sat(x1), sat(x2), . . . , sat(xn)]T and

H = diag[h1, h2, . . . , hn]. Let V = diag[v1, v2, . . . , vn], W = diag[w1,w2, . . . ,wn] and 0 6 vi < 1.
Denote W = I − V , it is clearly that 0 < wi 6 1. Then, for S AT (x), there exists a matrix H such that
S AT (x) = V x + WHx when ‖Hx‖∞ 6 1.

Proof. Let V = diag[v1, v2, . . . , vn], W = diag[w1,w2, . . . ,wn], H = diag[h1, h2, . . . , hn]. We
assume 0 6 vi < 1and vi + wi = 1, then 0 < wi 6 1. So there exists a constant hi such that sat(xi) =

vixi + wihixi. For example, we choose vi = a, wi = 1 − a, then sat(xi) = axi + (1 − a)hixi. So we
let hi = 1 if −1 6 xi 6 1 and let hi =

sign(xi)−axi
(1−a)xi

when |xi| > 1. Then, we can easily obtain that
S AT (x) = V x + WHx when ‖Hx‖∞ 6 1. The proof is completed.

Lemma 4. [3] If there exist two matrices P and B belong to Rn×n, which are all positive definite and
symmetric, then for any x ∈ Rn, the following inequation holds

λmin(P−1B)xT Px 6 xT Bx 6 λmax(P−1B)xT Px. (3.6)

Remark 1. For Lemma 4, If matrix P is a identity matrix In, then the following inequation holds

λmin(B)xT x 6 xT Bx 6 λmax(B)xT x. (3.7)

Assumption 1. Nonlinear function f (·) satisfies a condition that there exists a positive constant τ
such that:

| f (t, a) − f (t, b)| 6 τ|a − b|. (3.8)
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4. Main results

4.1. Input saturation

Consider a consensus problem of system (3.1) based on protocol 1 (shown as (3.2)). Then the
system can be considered as follows:

ẋi (t) = f (t, xi (t)), t , tk

M xi(tk) = sat[
∑

j∈Ni
riai j

(
x j(tgi j(t−k )) − xi(tgi j(t−k ))

)
], t = tk

(4.1)

According to Lemma 2, we can get:

M x(tk) = (
2n∑
i=1

%i(EiR + E−i H))(−Lx(tgi j(t−k ))) (4.2)

denote R = diag[r1, r2, . . . , rN]. Assume S =
∑2n

i=1 %i(EiR + E−i H) and if the matrix H is selected for a
diagonal matrix, S is also a diagonal matrix.

Then, obviously

M x(tk) = −S Lx(tgi j(t−k )) (4.3)

Furthermore, the system can be described as follow

ẋ (t) = F(t, x (t)), t , tk

x(t+
k ) = x(t−k ) − S Lx(tgi j(t−k )), t = tk

(4.4)

define F(t, x(t)) = ( f (t, x1(t)), f (t, x2(t)), . . . , f (t, xN(t)))T .
Theorem 1. Suppose that there exists a matrix H such that ‖HLx‖∞ 6 1 under the impulsive control

protocol 1, if Assumption 1 holds and there exist two constants ξ̂, γ̂ that make the following inequities
hold:
(i) There exists a constant $̂ to make the expression 0 < tk+1 − tk 6 $̂, k ∈ N+ holds.
(ii) 0 < 1 − γ̂ 6 ξ̂;
(iii) ln(ξ̂) + 2τ$̂ 6 0;
The system (3.1) will be aligned under protocol 1.

Proof. Consider the following Lyapunov function:

V(x(t)) = xT (t)Lx(t) =
1
2

N∑
j=1

N∑
i=1

ai j(x j(t) − xi(t))2. (4.5)
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When t , tk, we can easily obtain that the derivative of V is:

V̇(t) =

N∑
j=1

N∑
i=1

ai j[(x j(t) − xi(t))(ẋ j(t) − ẋi(t))]

=

N∑
j=1

N∑
i=1

ai j[x j(t) − xi(t)][ f (t, x j (t)) − f (t, xi (t))]

6
N∑

j=1

N∑
i=1

ai j|x j(t) − xi(t)|| f (t, x j (t)) − f (t, xi (t))|

6 τ
N∑

j=1

N∑
i=1

ai j|x j(t) − xi(t)||x j(t) − xi(t)|

6 2τV(t).

(4.6)

When t = tk, we can get that

V(x(t+
k )) = xT (t+

k )Lx(t+
k )

= [x(t−k ) − S Lx(tgi j(t−k ))]T L[x(t−k ) − S Lx(tgi j(t−k ))]

= [xT (t−k ) − xT (tgi j(t−k ))LS ]L[x(t−k ) − S Lx(tgi j(t−k ))]

= xT (t−k )Lx(t−k ) − xT (t−k )LS Lx(tgi j(t−k )) − x(t−k )LS LxT (tgi j(t−k )) + xT (tgi j(t−k ))LS LS Lx(tgi j(t−k ))

= xT (t−k )Lx(t−k ) − 2xT (t−k )LS Lx(tgi j(t−k )) + xT (tgi j(t−k ))LS LS Lx(tgi j(t−k ))

= V(t−k ) − V1(t−k )

(4.7)

where

V1(t−k ) = 2xT (t−k )LS Lx(tgi j(t−k )) − xT (tgi j(t−k ))LS LS Lx(tgi j(t−k ))

For the convenience of the next, the case that the edge events labeled by 1 to g are triggered at t = tk

is assumed. Also, we can get L = DWDT , z(t) = DT x(t) and denote z = z(t), z̃ = z̃(t−k ). Then, according
to Lemma 4 and Remark 1, it’s easy to obtain that

V1(t−k ) = 2xT (t−k )LS Lx(tgi j(t−k )) − xT (tgi j(t−k ))LS LS Lx(tgi j(t−k ))

= 2zT WDT S DWz̃ − z̃T WDT S LS DWz̃

> 2α̂zT Wz̃ − β̂z̃T Wz̃

= 2α̂(w1z1z̃1 + w2z2z̃2 + . . . + wmzmz̃m) − β̂(w1z̃2
1 + w2z̃2

2 + . . . + wmz̃2
m)

> (2α̂ − β̂)(w1z2
1 + w2z2

2 + . . . + wgz2
g) + (2α̂µg+1 − β̂)wg+1z̃2

g+1 + . . . + (2α̂µm − β̂)wmz̃2
m

> (2α̂ − β̂)(w1z2
1 + w2z2

2 + . . . + wgz2
g) + (2α̂µg+1 − β̂)wg+1

1
σ2

g+1

z2
g+1 + . . . + (2α̂µm − β̂)wm

1
σ2

m
z2

m

= zT QWz

> γ̂V(t−k )
(4.8)
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denote
α̂ = λmin(DT S DW)

β̂ = λmax(DT S LS DW)

γ̂ = λmin(Q)

and Q is a diagonal matrix in which g elements are 2α̂ − β̂ and m − g elements are 2α̂µp−β̂

σ2
p

, where
p = m − g,m − g + 1, . . . ,m.

Based on (4.7) and (4.8), it’s clearly that

V(x(t+
k )) = V(t−k ) − V1(t−k )
6 (1 − γ̂)V(t−k )
6 ξ̂V(x(t−k ))

(4.9)

From (4.6) and (4.9), one obtains V̇(x(t)) 6 2τV(x(t)), t , tk

V(x(t+
k )) 6 ξ̂V(x(t−k )), t = tk

(4.10)

When t ∈ [t0, t1), in view of inequalities (4.10), we can get V(x(t)) 6 e2τ(t−t0)V(x(t0))
V(x(t+

1 )) 6 ξ̂e2τ(t1−t0)V(x(t0))
(4.11)

According to mathematical deduction, when t ∈ [tk, tk+1), it implies that V(x(t)) 6 e2τ(t−tk)V(x(t+
k )),

V(x(t+
k )) 6 ξ̂V(x(t−k )),

(4.12)

From (4.11) and (4.12), one gets

V(x(t)) 6 e2τ(t−tk)V(x(t+
k ))

6 ξ̂e2τ(t−tk)V(x(t−k ))
6 ξ̂e2τ(t−tk)e2τ(tk−tk−1)V(x(tk−1))
6 ξ̂e2τ(t−tk−1)V(x(tk−1))
6 ...

6 ξ̂ke2τ(t−t0)V(x(t0))

(4.13)

Notice that ln(ξ̂) + 2τ$̂ 6 0 from (iii) in Theorem 1, one obtains

0 < ξ̂e2τ(t−tk−1) 6 1. (4.14)

It is obvious that the system (4.1) which controlled by protocol 1 can reach consensus. The proof is
completed.
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4.2. Double actuator saturation

Discuss a consensus problem of the system (3.1) under control protocol 2 whose expression is (3.3).
For the sake of convenience, suppose this situation that the edge events labeled by 1 to g are triggered
at the moment t = tk. Then multi-agent system can be rewritten as follows:ẋi (t) = f (t, xi (t)), t , tk

M xi(tk) =
∑

j∈Ni
ai j

(
sat(tgi j(t−k )) − sat(xi(tgi j(t−k )))

)
, t = tk

(4.15)

According to Lemma 3, we can get the impulsive instant expression of agent is

M x(tk) = −LS AT (x(tgi j(t−k )))

= −L((V + WH̄)x(tgi j(t−k )))
(4.16)

where S AT (x(t)) = (sat(x1(t)), sat(x2(t)), . . . , sat(xN(t)))T and H̄ = diag(h1, h2, . . . , hN)T . We let O =

V + WH̄, it’s clearly that O is a diagonal matrix. Then

M x(tk) = −LOx(tgi j(t−k )) (4.17)

Then the system can be reformulated as:ẋ (t) = F(t, x (t)), t , tk

x(t+
k ) = x(t−k ) − LOx(tgi j(t−k )), t = tk

(4.18)

Theorem 2. Assume that there exists a matrix H̄ such that ‖H̄x‖∞ 6 1 under the impulsive control
protocol 2, if Assumption 1 holds and there exist two constants ξ̄, γ̄ that make the following inequities
hold
(i) There exists a constant $̄ to make the inequation 0 < tk+1 − tk 6 $̄, k ∈ N+ holds.
(ii) 0 < 1 − γ̄ 6 ξ̄;
(iii) ln(ξ̄) + 2τ$̄ 6 0;
Then, system (3.1) can achieve consensus based on the action of protocol 2.

Proof. Taking the following Lyapunov function into account:

V(x(t)) = xT (t)Lx(t) =
1
2

N∑
j=1

N∑
i=1

ai j(x j(t) − xi(t))2. (4.19)

When t , tk, the proof is the same as Theorem 1, so we can easily obtain:

V̇(t) 6 2τV(t). (4.20)

When t = tk, one can gather

V(x(t+
k )) = xT (t+

k )Lx(t+
k )

= [x(t−k ) − LOx(tgi j(t−k ))]T L[x(t−k ) − LOx(tgi j(t−k ))]

= [xT (t−k ) − xT (tgi j(t−k ))OL]L[x(t−k ) − LOx(tgi j(t−k ))]

= xT (t−k )Lx(t−k ) − 2xT (t−k )LLOx(tgi j(t−k )) + xT (tgi j(t−k ))OLLLOx(tgi j(t−k ))

= V(t−k ) − V2(t−k )

(4.21)
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where
V2(t−k ) = 2xT (t−k )LLOx(tgi j(t−k )) − xT (tgi j(t−k ))OLLLOx(tgi j(t−k ))

Then, according to the above, it’s easy to obtain that

V2(t−k ) = 2xT (t−k )LLOx(tgi j(t−k )) − xT (t(t−k )
ei j )OLLLOx(tgi j(t−k ))

> 2ζxT (t−k )LLx(tgi j(t−k )) − δ2xT (tgi j(t−k ))LLLx(tgi j(t−k ))

= 2ζzT WDT DWz̃ − δ2z̃T WDT LDWz̃

> 2ζᾱzT Wz̃ − δ2β̄z̃T Wz̃

= 2ζᾱ(w1z1z̃1 + w2z2z̃2 + . . . + wmzmz̃m) − δ2β̄(w1z̃2
1 + w2z̃2

2 + . . . + wmz̃2
m)

> (2ζᾱ − δ2β̄)(w1z2
1 + w2z2

2 + . . . + wgz2
g) + (2ζᾱµg+1 − δ

2β̄)wg+1z̃2
g+1 + . . .

+ (2ζᾱµm − δ
2β̄)wmz̃2

m

> (2ζᾱ − δ2β̄)(w1z2
1 + w2z2

2 + . . . + wgz2
g) + (2ζᾱµg+1 − δ

2β̄)wg+1
1

σ2
g+1

z2
g+1 + . . .

+ (2ζᾱµm − δ
2β̄)wm

1
σ2

m
z2

m

= zT Q̄Wz

> γ̄V(t−k )

(4.22)

where
ζ = λmin(O)

δ = λmax(O)

ᾱ = λmin(DT DW)

β̄ = λmax(DT LDW)

γ̄ = λmin(Q̄)

and Q̄ is a diagonal matrix in which g elements are 2ζᾱ− δ2β̄ and m− g elements are 2ζᾱµp−δ
2β̄

σ2
p

in which
p = m − g,m − g + 1, . . . ,m.

Focus on (4.21) and (4.22), it’s clearly that

V(x(t+
k )) = V(t−k ) − V1(t−k )
6 (1 − γ̄)V(t−k )
6 ξ̄V(x(t−k ))

(4.23)

From (4.20) and (4.23), we can observe V̇(x(t)) 6 2τV(x(t)), t , tk

V(x(t+
k )) 6 ξ̄V(x(t−k ), t = tk

(4.24)
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When t ∈ [t0, t1), from the inequality of (4.24), we can get V(x(t)) 6 e2τ(t−t0)V(x(t0))
V(x(t+

1 )) 6 ξ̄e2τ(t1−t0)V(x(t0))
(4.25)

Thus, we can easily obtain that V(x(t)) 6 e2τ(t−tk)V(x(t+
k )), t ∈ [tk, tk+1)

V(x(t+
k )) 6 ξ̄V(x(t−k )), t = tk

(4.26)

According to (4.26), by mathematical deduction, it holds that

V(x(t)) 6 e2τ(t−tk)V(x(t+
k ))

6 ξ̄e2τ(t−tk)V(x(t−k ))
6 ξ̄e2τ(t−tk)e2τ(tk−tk−1)V(x(tk−1))
6 ξ̄e2τ(t−tk−1)V(x(tk−1))
6 ...

6 ξ̄ke2τ(t−t0)V(x(t0))

(4.27)

From (iii) in Theorem 2, we can receive ln(ξ̄) + 2τ$̄ 6 0. Then,

0 < ξ̄e2τ(t−tk−1) 6 1. (4.28)

It’s evident that the system (4.15) which controlled by protocol 2 reach consensus. The proof is
completed.

5. Numerical simulations

Example 1. We consider the multi-agent system (4.1) under the control of protocol 1.

ẋi (t) = f (t, xi (t)) + bi (t) , i = 1, 2, 3, 4 (5.1)

For the system (4.1), the undirect graph is chosen as the Figure 1.

1 2

4 3

ed1

e
d

2

ed3

e
d

4

Figure 1. The network topology in Example 1.
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From the graph of Figure 1, we can clearly acquire the incidence matrix

D =


1 0 0 −1
−1 1 0 0
0 −1 1 0
0 0 −1 1


And we select that nonlinear functions are as follows: f (t, xi(t)) = cos2(xi(t)) − |sin(xi(t))|. And

choose x1(0) = 3, x2(0) = −0.4, x3(0) = −2.7, x4(0) = 1.3 and τ = 1.2.
With regard to Theorem 1, let’s define the step size to be 0.001, R = diag[0.5, 0.7, 0.6, 0.4], µ1 =

µ2 = µ3 = µ4 = 0.8, σ1 = σ2 = σ3 = σ4 = 1.2, %1 = 0.2, %2 = 0.1, %3 = 0.3, %4 = 0.1, %5 = 0.3, the
rest of %i are all zero and ξ̂ = 0.86, tk − tk−1 = 0.2, k > 1. According to calculation, the conditions
of (ii), (iii) in Theorem 1 are all hold. Then, Figure 2 displays the state value of ith agent under the
control of impulsive and event-triggered, Figure 3 indicates the error between every two agents, Figure
4 reveals the event-triggered time of each edge.

We can obviously see the system is consensus under the control of protocol 1 from Figure 2 and
Figure 3.
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Figure 2. The state of every agent with impulsive in Example 1.
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Figure 3. The error between every two agents in Example 1.
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Figure 4. The event-triggered time of each edge in Example 1.

Example 2. We take the multi-agent system (4.15) into consideration which is controlled by
protocol 2.

ẋi (t) = f (t, xi (t)) + bi (t) , i = 1, 2, 3, 4 (5.2)

As the system (4.15), we let the graph and the direction of every edge as follows in Figure 5:

1 2

4 3

ed1

ed
4

ed3

Figure 5. The network topology in Example 2.

So, the incidence matrix D is

D =


1 1 0 −1
−1 0 0 0
0 −1 1 0
0 0 −1 1


Then we assume that the nonlinear function of the dynamics of each agent are f (t, x(t)) cos2(x(t))−

|0.4 cos(x(t)) − 1| and choose x(0) = [3,−0.4,−2.28, 0.3], τ = 1.6.
About Theorem 2, suppose step size be 0.001, R = diag[0.4, 0.6, 0.6, 0.4], µ1 = µ2 = µ3 = µ4 =

0.72, σ1 = σ2 = σ3 = σ4 = 1.46 ξ̄ = 0.79, %1 = 0.3, %3 = 0.2, %5 = 0.2, %7 = 0.1, %9 = 0.2, the rest of
%i are all zero and tk − tk−1 = 0.2, k > 1. By calculation, we can verify that the conditions of Theorem
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2 are established. Then, the state of ith agent with the impulsive control is manifested in Figure 6 and
the error between every two agents is evident in Figure 7. The event-triggered moment of each edge is
displayed in Figure 8.

It is clear that the multi-agent system reach consensus under the control of protocol 2 from Figure
6 and Figure 7.
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Figure 6. The state of each agent with impulsive in Example 2.
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Figure 7. The error between every two agents in Example 2.
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Figure 8. The event-triggered time of each edge in Example 2.

6. Conclusions

We discuss the nonlinear multi-agent consensus issue under the control state-constrain impulsive
and edge event-triggered tactics in the above. Impulsive protocol based on the relative information
between the agents and their neighbors has been adopted to deal with the problem of consensus. Edge
event-triggered strategy can reduce cost by reducing the number of information exchange. According
to theoretical analysis, we can gather sufficient conditions to ensure the consensus of the system in
this paper. Numerical simulations have verified that the consensus problem are solved by the control
protocols. The asynchronous event-based problem of multi-agent systems will be taken into
consideration.

Acknowledgment

This work was supported by the National Natural Science Foundation of China under Grants
61873213 and 61633011, and in part by National Key Research and Development Project under Grant
2018AAA0100101.

Conflict of interest

All authors declare no conflicts of interest in this paper.

References

1. X. Tan, J. Cao, X. Li, Leader-following mean square consensus of stochastic multi-agent systems
with input delay via event-triggered control, IET Contr. Theory Appl., 12 (2017), 299–309.

2. Y. Han, C. Li, W. Zhang, et al. Impulsive consensus of multiagent systems with limited bandwidth
based on encoding-decoding, IEEE Trans. Cybern., 50 (2020), 36–47.

3. Z. Xu, C. Li, Y. Han, Leader-following fixed-time quantized consensus of multi-agent systems via
impulsive control, J. Franklin Inst., 356 (2019), 441–456.

AIMS Mathematics Volume 5, Issue 5, 4151–4167.



4166

4. G. Wen, Z. Duan, W. Yu, et al. Consensus of second-order multi-agent systems with delayed
nonlinear dynamics and intermittent communications, Int. J. Control, 86 (2013), 322–331.

5. H. Li, X. Liao, T. Huang, et al. Event-triggering sampling based leader-following consensus in
second-order multi-agent systems, IEEE Trans. Autom. Control, 60 (2014), 1998–2003.

6. Q. Song, J. Cao, W. Yu, Second-order leader-following consensus of nonlinear multi-agent systems
via pinning control, Syst. Control Lett., 59 (2010), 553–562.

7. R. Olfati-Saber, R. Murray, Consensus problems in networks of agents with switching topology and
time-delays, Syst. Control Lett., 49 (2004), 1520–1533.

8. R. Olfati-Saber, J. Fax , R, Murray, Consensus and cooperation in networked multi-agent systems,
Proc. IEEE, 95 (2007), 215–233.

9. T. Ma, Z. Zhang, Adaptive consensus of multi-agent systems via odd impulsive control,
Neurocomputing, 321 (2018), 139–145.

10. Z. Guan, F. Sun, Y. Wang, et al. Finite-time consensus for leader-following second-order multi-
agent networks, IEEE Trans. Circuits Syst., 59 (2012), 2646–2654.

11. Y. Han, C. Li, Second-order consensus of discrete-time multi-agent systems in directed networks
with nonlinear dynamics via impulsive protocols, Neurocomputing, 286 (2018), 51–57.

12. G. Wen, P. Chen, Y. Liu, et al. Neural-network-based adaptive leader-following consensus control
for second-order non-linear multi-agent systems, IET Control Theory Appl., 9 (2015), 1927–1934.

13. J. Mei, W. Ren, Distributed consensus of second-order multi-agent systems with heterogeneous
unknown inertias and control gains under a directed graph, IEEE Trans. Autom. Control, 61
(2016), 2019–2034.

14. Y. Huang, Y. Li, W. Hu, Distributed rotating formation control of second-order leader-following
multi-agent systems with nonuniform delays, J. Franklin Inst., 356 (2019), 3090–3101.

15. Y. Feng, C. Li, Sandwich control systems with impulse time windows, Int. J. Mach. Learn. Cybern.,
8 (2017), 2009–2015.

16. Z. He , C. Li , L. Chen, et al. Dynamic behaviors of the FitzHugh CNagumo neuron model with
state-dependent impulsive effects, Neural Netw, 121 (2020), 497–511.

17. X. Li, X. Yang, T. Huang, Persistence of delayed cooperative models: Impulsive control method,
Appl. Math. Comput., 342 (2019), 130–146.

18. L. Li, C. Li, H. Li, An analysis and design for time-varying structures dynamical networks via state
constraint impulsive control, Int. J. Control, 92 (2019), 2820–2828.

19. G. Cai, Z. Zhang, G. Feng, et al. Delay feedback impulsive control of a time-delay nonlinear
complex financial networks, Indian J. Phys., 93 (2019), 1181–1186.

20. X. Li, B. Martin, An impulsive delay differential inequality and applications, Comput. Math. Appl.,
64 (2012), 1875–1881.

21. X. Li, H. Daniel, J. Cao, Finite-time stability and settling-time estimation of nonlinear impulsive
systems, Automatica, 99 (2019), 361–368.

22. L. Chen, Z. He, C. Li, et al. On existence and continuation of solutions of the state-dependent
impulsive dynamical system with boundary constraints, Adv. Differ. Equ., 2019 (2019).

AIMS Mathematics Volume 5, Issue 5, 4151–4167.



4167

23. X. Zhang, X. Lv, X. Li, Sampled-data-based lag synchronization of chaotic delayed neural
networks with impulsive control, Nonlinear Dyn., 90 (2017), 2199–2207.

24. X. He, C. Li, X. Pan, Impulsive control and Hopf bifurcation of a three-dimensional chaotic system,
J. Vib. Control, 20 (2014), 1361–1368.

25. X. Hai, G. Ren, Y. Yu, et al. Impulsive control and Hopf bifurcation of a three-dimensional chaotic
system, Commun. Nonlinear Sci. Numer. Simul., 82, 2020.

26. K. Guan, F. Tan, J. Yang, Global power synchronization of complex dynamical networks with
proportional delay and impulsive effects, Neurocomputing, 366 (2019), 23–34.

27. Z. Xu, X. Li, P. Duan, Synchronization of complex networks with time-varying delay of unknown
bound via delayed impulsive control, Neural Netw., 125 (2020), 224–232.

28. Z. Guan, H. Zhang, Stabilization of complex network with hybrid impulsive and switching control,
Chaos, Solitons Fractals, 37 (2008), 1372–138.

c© 2020 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 5, Issue 5, 4151–4167.

http://creativecommons.org/licenses/by/4.0

	Introduction
	Preliminaries
	Notations
	Graph theory
	State-constraint strategy
	Edge event-triggered strategy

	Problem description
	Main results
	Input saturation
	Double actuator saturation

	Numerical simulations
	Conclusions

