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1. Introduction

Fractional partial differential equations (FPDEs) are the generalizations of classical partial
differential equations with integer orders, which are used to describe several phenomena in many
fields of sciences, such as mechanics, signal processing, plasma physics, systems identification,
electricity, chemistry, biology, control theory and other areas.

The exact solutions of FPDEs play a crucial role in the study of nonlinear sciences. It is used
to describe observed various qualitative and quantitative features of nonlinear phenomenons in many
fields of mathematical physics, it can let our better understand some complex physics phenomena.
Therefore, it is an important task to seek more exact solutions of different forms for the FPDEs.

In recent decades, with the development of science and technology, especially symbolic
computation package such as Maple and Mathematica, many researchers have presented many direct
and powerful approaches to establish exact solutions of fractional partial differential equations. For
example, the fractional sub-equation method [1,2], the first integral method [3], the extended
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fractional Riccati expansion method [4], the fractional complex transform [5], the Jacobi elliptic
equation method [6], the fractional mapping method [7], the (G′/G)-expansion method [8], the
improved fractional (DαG/G) method [9], the extended fractional (Dα

ξG/G)-expansion method [10],
the separation variables approach [11], the modified extended tanh method [12], the exp(−Φ(ξ))
method [13,14], the invariant subspace method [15], and other methods [16–19]. Due to these
methods, various exact solutions or numerical solutions of FPDEs have been established successfully.

The two variable (φ′/φ, 1/φ)-expansion method is the generalization of (G′/G)-expansion method,
the main idea of this method is that the solutions to FPDEs are represented as a polynomial in two
variables (φ′/φ) and (1/φ), wherein φ = φ(ξ) satisfies the second order ODE φ′′ + δφ = µ, where δ and
µ are constants. The objective of this article is to establish further general and some fresh close form
solitary wave solution to the time-fractional Kuramoto-Sivashinsky (K-S) equation,
(3+1)-dimensional time-fractional KdV-Zakharov-Kuznetsov (KdV-ZK) equation and time-fractional
Sharma-Tasso-Olver (FSTO) equation by means of the two variable (φ′/φ, 1/φ)-expansion method,
the results suggest that the method is significative and further general.

The organization of the paper is as follows. In Section 2, the description of conformable fractional
derivative and its properties are given. In Section 3, we describe the algorithm for solving
time-fractional partial differential equations by using the two variable (φ′/φ, 1/φ)-expansion method
with the help of fractional complex transform. In Section 4, we apply the two variable
(φ′/φ, 1/φ)-expansion to the time-fractional K-S equation, (3+1)-dimensional KdV-ZK equation and
FSTO equation. In Section 5, some typical wave figures of the exact solutions are given. Results and
discussion part are added in Section 6. The conclusion part is in Section 7.

2. Conformable fractional derivative and its properties

In fractional calculus, the most famous fractional derivatives are the Riemann-Liouville and the
Caputo fractional derivatives, the Riemann-Liouville fractional derivative is defined as follows [20]:

If n is a positive integer and αε[n − 1, n], the α derivative of a function f is given by

Dα
t ( f )(t) =

1
Γ(n − α)

dn

dtn

∫ t

a

f (x)
(t − x)α−n+1 dx. (2.1)

Also, the Caputo fractional derivative is defined as follows [20]

Dα
t ( f )(t) =

1
Γ(n − α)

dn

dtn

∫ t

a

f (n)(x)
(t − x)α−n+1 dx. (2.2)

Some flaws arise in these definitions of these fractional derivatives, for example, all these derivatives
do not satisfy: the known formula of the derivative of the product of two functions, the known formula
of the derivative of the quotient of two functions and the chain rule of two functions.

In 2014, Khalil et al. [21] introduced a novel definition of fractional derivative named the
conformable fractional derivative to overcome the flaws found in Riemann-Liouville and the Caupto
fractional derivatives.
Definition 1. Suppose f : [0,∞)→ R is a function. Then, the conformable fractional derivative of f of
order α is defined as
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Dα
t ( f )(t) = lim

ε→0

f (t + εt1−α) − f (t)
ε

, (2.3)

for all t > 0 and α ∈ (0, 1]. If f is α-differentiable in some (0, a), a > 0, and limt→0+ f (α)(t) exists, then
f (α)(0) = limt→0+ f (α)(t).

Some properties of the conformable fractional derivative are given below as in [21]
Thereom 1. Suppose α ∈ (0, 1], and f = f (t) and g = g(t) are α−differentiable at t > 0. Then

Dα
t (a f + bg) = aDα

t ( f ) + bDα
t (g), ∀a, b ∈ R. (2.4)

Dα
t (tµ) = µtµ−α, ∀µ ∈ R. (2.5)

Dα
t ( f g) = f Dα

t (g) + gDα
t ( f ). (2.6)

Dα
t (

f
g

) =
gDα

t ( f ) − f Dα
t (g)

g2 . (2.7)

If, in addition to f differentiable, then

Dα
t ( f )(t) = t1−αd f

dt
. (2.8)

Thereom 2. Suppose functions f , g: [0,∞) → R be α−differentiable, where (0 < α ≤ 1). Then the
following rule is obtained

Dα
t ( f ◦ g)(t) = t1−αg′(t) f ′(g(t)). (2.9)

The above equations play an important role in fractional calculus in the following sections.

3. The two variable (φ′/φ, 1/φ)-expansion method

In this section we give the description of the two variable (φ′/φ, 1/φ)-expansion method to find
exact traveling wave solutions of time-fractional partial differential equation.

Suppose that a time-fractional partial differential equation in the variables x, y, z, t is given by

P(u, ux, uy, uz, uxx, uxy, uxz, uxxx, · · · ,Dα
t u,D2α

tt u, · · · ) = 0, 0 < α ≤ 1, (3.1)

where Dα
t u,D2α

tt u are fraction-order derivatives of u with respect to t, P is a polynomial of
u = u(x, y, z, t) and its various partial conformable derivatives including the highest order derivatives
and nonlinear terms.

We use the conformable wave transformation:

u(x, y, z, t) = u(ξ), ξ = c(x + y + z −
υtα

α
), (3.2)

where c and υ are constant to be determine later, the FPDE (3.1) is reduced to the following nonlinear
ordinary differential equation (ODE) for u(x, y, z, t) = u(ξ):

P(u, cu′, c2u′′, c3u′′′, · · · ,−cυu′, . . .) = 0, (3.3)

where u′ = uξ, u′′ = uξξ, · · · .
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We suppose the solution u of (3.3) can be expressed in the following form:

u =

n∑
i=0

ai(
φ′

φ
)i +

n−1∑
j=0

bi(
φ′

φ
) j 1
φ
, (3.4)

where ai, b j(i = 0, 1, 2, . . . , n; j = 0, 1, 2, . . . , n − 1) are constants and anbn−1 , 0. The positive number
n can be determined by considering the homogeneous balance between the highest order derivatives
and nonlinear terms appearing in (3.3). The function φ = φ(ξ) satisfies the second order linear ODE in
the form

φ′′ + δφ = µ, (3.5)

where δ and µ are constants. Equation (3.5) has three types of general solution with double arbitrary
parameters as follows [22]:

φ(ξ) =


A1 cosh(

√
−δξ) + A2 sinh(

√
−δξ) +

µ

δ
, when δ < 0,

A1 cos(
√
δξ) + A2 sin(

√
δξ) +

µ

δ
, when δ > 0,

A1ξ + A2 +
µ

2ξ
2, when δ = 0.

(3.6)

and (
φ′

φ

)2

=


(δA2

1 − δA2
2 −

µ2

δ
)( 1
φ
)2 − δ +

2µ
φ
, when δ < 0,

(δA2
1 + δA2

2 −
µ2

δ
)( 1
φ
)2 − δ +

2µ
φ
, when δ > 0,

(A2
1 − 2µA2)( 1

φ
)2 +

2µ
φ
, when δ = 0.

(3.7)

where A1, A2 are arbitrary constants.
By substituting (3.4) into (3.3) and using the second order linear ODE (3.5) and (3.7), collecting all

terms with the same order of 1
φi and 1

φi
φ′

φ
together, the left-hand side of (3.3) is converted into another

polynomial in 1
φi and 1

φi
φ′

φ
. Equating each coefficient of this different power terms to zero yields a set

of algebraic equations for ai, b j(i = 0, 1, 2, . . . , n; j = 0, 1, 2, . . . , n − 1), δ, µ, c and υ.
Assuming constants ai, b j(i = 0, 1, 2, . . . , n; j = 0, 1, 2, . . . , n − 1), δ, µ, c and υ can be determined

by solving the nonlinear algebraic equations. Then substituting these terms and the general solutions
(3.6) of (3.5) into (3.4), we can obtain more exact traveling wave solutions of (3.1).

4. Applications of the two variable (φ′/φ, 1/φ)-expansion method

In this subsection, we investigate more general and new exact traveling wave solutions of time-
fractional differential equations by means of the two variable (φ′/φ, 1/φ)-expansion method.

4.1. Time-fractional Kuramoto-Sivashinsky (K-S) equation

we consider the time-fractional Kuramoto-Sivashinsky (K-S) equation [23]:

Dα
t u + auux + buxx + kuxxxx = 0, (4.1)

where 0 < α ≤ 1 and a, b, k are arbitrary constants.
The K-S equation (4.1) was examined as a prototypical example of spatiotemporal chaos in one

space dimension. This equation represents the motion of a fluid going down a vertical wall, the
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variations of the position of a flame front, or a spatially uniform oscillating chemical reaction in a
homogeneous medium.

To solve (4.1), we use the wave transformations:

u = u(ξ), ξ = c(x −
υtα

α
), (4.2)

then (4.1) is reduced into a nonlinear ODE in the form

− cυu′(ξ) + acu(ξ)u′(ξ) + bc2u′′(ξ) + kc4u(4)(ξ) = 0. (4.3)

By reducing (4.3), we get

− υu′(ξ) + au(ξ)u′(ξ) + bcu′′(ξ) + kc3u(4)(ξ) = 0. (4.4)

By balancing the highest order derivative term u(4) and nonlinear term uu′ in (4.4), the value of n
can be determined, which is n = 3 in this problem. Therefore, by (3.4), we have the following ansatz:

u(ξ) = a0 + a1

(
φ′

φ

)
+ a2

(
φ′

φ

)2

+ a3

(
φ′

φ

)3

+ b0
1
φ

+ b1

(
φ′

φ

)
1
φ

+ b2

(
φ′

φ

)2 1
φ
, (4.5)

where a0, a1, a2, a3, b0, b1 and b2 are constants to be determined later, and function φ(ξ) satisfies (3.5).
By substituting (4.5) into (4.4) and using the second order linear ODE (3.5) and (3.7), collecting all

terms with the same order of 1
φi and 1

φi
φ′

φ
together, the left-hand side of (4.4) is converted into another

polynomial in 1
φi and 1

φi
φ′

φ
. Equating each coefficient of this different power terms to zero yields a set

of algebraic equations for a0, a1, a2, a3, b0, b1, b2, δ, µ, k, a, b, c and υ. Solving this system of algebraic
equations, with the aid of Maple, we obtain

1.a1 = ±
3b2δ

2
√

Ξi
, a2 = −

b2µ

2Ξi
, a3 = ±

b2
√

Ξi
, b0 =

b2(µ2 + Ξiδ)
Ξi

, b1 = ∓
3b2µ

2
√

Ξi
, b = ±

19b2aδ
60c
√

Ξi
,

k = ±
ab2

60c3
√

Ξi
, υ =

a(b2µδ + 2a0Ξi)
2Ξi

, (4.6)

2.a1 = ±
21b2δ

22
√

Ξi
, a2 = −

b2µ

2Ξi
, a3 = ±

b2
√

Ξi
, b0 =

b2(11µ2 + 5Ξiδ)
11Ξi

, b1 = ∓
3b2µ

2
√

Ξi
,

b = ∓
19b2aδ

660c
√

Ξi
, k = ±

ab2

60c3
√

Ξi
, υ =

a(b2µδ + 2a0Ξi)
2Ξi

, (4.7)

where Ξi(i = 1, 2, 3) are given later.
Substituting (4.6) and (4.7) and the general solutions (3.6) of Eq. (3.5) into (4.5), we obtain more

exact traveling wave solutions of (4.1):

u1i(ξ) = a0 ±
3b2δ

2
√

Ξi
Φi −

b2µ

2Ξi
Φ2

i ±
b2
√

Ξi
Φ3

i + Ψi(
b2(µ2 + Ξiδ)

Ξi
∓

3b2µ

2
√

Ξi
Φi + b2Φ

2
i ), (4.8)
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where ξ = c(x − (b2δµ+2a0Ξi)a
2Ξiα

tα), b = ± 19b2aδ
60c
√

Ξi
, k = ± ab2

60c3
√

Ξi
.

u2i(ξ) = a0 ±
21b2δ

22
√

Ξi
Φi −

b2µ

2Ξi
Φ2

i ±
b2
√

Ξi
Φ3

i + Ψi(
b2(11µ2 + 5Ξiδ)

11Ξi
∓

3b2µ

2
√

Ξi
Φi + b2Φ

2
i ), (4.9)

where ξ = c(x − (b2δµ+2a0Ξi)a
2Ξiα

tα), b = ∓ 19b2aδ
660c

√
Ξi
, k = ± ab2

60c3
√

Ξi
.

When i = 1 for δ < 0, i = 2 for δ > 0, i = 3 for δ = 0. And

Φ1 =
A1 sinh(

√
−δξ) + A2 cosh(

√
−δξ)

A1 cosh(
√
−δξ) + A2 sinh(

√
−δξ) + µ/δ

·
√
−δ, (4.10)

Ψ1 =
1

A1 cosh(
√
−δξ) + A2 sinh(

√
−δξ) + µ/δ

, Ξ1 = A2
1δ − A2

2δ − µ
2/δ. (4.11)

Φ2 =
−A1 sin(

√
δξ) + A2 cos(

√
δξ)

A1 cos(
√
δξ) + A2 sin(

√
δξ) + µ/δ

·
√
δ, (4.12)

Ψ2 =
1

A1 cos(
√
δξ) + A2 sin(

√
δξ) + µ/δ

, Ξ2 = A2
1δ + A2

2δ − µ
2/δ. (4.13)

Φ3 =
A1 + µξ

A1ξ + A2 + µξ2/2
, Ψ3 =

1
A1ξ + A2 + µξ2/2

, Ξ3 = A2
1 − 2A2µ. (4.14)

Since A1 and A2 are arbitrary constants, one may choose arbitrarily their values. For example, if we
choose A1 = 0, A2 , 0 and µ = 0 in (4.8), we obtain some traveling wave solutions.
Case 1.1 when δ < 0, we have

u1(ξ) = a0 +
b2δ

A2

(
3
2

coth(
√
−δξ) − coth3(

√
−δξ) − csch3(

√
−δξ)

)
, (A2 > 0), (4.15)

where ξ = c(x − a0a
α

tα), b = 19b2aδ
60A2c

√
−δ
, k = ab2

60c3A2
√
−δ
.

u2(ξ) = a0 −
b2δ

A2

(
3
2

coth(
√
−δξ) − coth3(

√
−δξ) + csch3(

√
−δξ)

)
, (A2 < 0), (4.16)

where ξ = c(x − a0a
α

tα), b = − 19b2aδ
60A2c

√
−δ
, k = − ab2

60c3A2
√
−δ
.

Case 1.2 when δ > 0, we have

u3(ξ) = a0 +
b2δ

A2

(
3
2

cot(
√
δξ) + cot3(

√
δξ) + csc3(

√
δξ)

)
, (A2 > 0), (4.17)

where ξ = c(x − a0a
α

tα), b = 19b2aδ
60A2c

√
δ
, k = ab2

60c3A2
√
δ
.

u4(ξ) = a0 −
b2δ

A2

(
3
2

cot(
√
δξ) + cot3(

√
δξ) − csc3(

√
δξ)

)
, (A2 < 0), (4.18)

where ξ = c(x − a0a
α

tα), b = − 19b2aδ
60A2c

√
δ
, k = − ab2

60c3A2
√
δ
.

Again if A2 = 0, A1 , 0 and µ = 0 in (4.8), we obtain some traveling wave solutions.
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Case 2.1 when δ < 0, we have

u5(ξ) = a0 +
b2δ
√
−δ√

A2
1δ

(
3
2

tanh(
√
−δξ) − tanh3(

√
−δξ)

)
+

b2δ

A1
sech3(

√
−δξ), (4.19)

where ξ = c(x − a0a
α

tα), b = 19b2aδ

60c
√

A2
1δ
, k = ab2

60c3
√

A2
1δ
.

Case 2.2 when δ > 0, we have

u6(ξ) = a0 −
b2δ

A1

(
3
2

tan(
√
δξ) + tan3(

√
δξ)) − sec3(

√
δξ)

)
, (A1 > 0), (4.20)

where ξ = c(x − a0a
α

tα), b = 19b2aδ
60cA1

√
δ
, k = ab2

60c3A1
√
δ
.

u7(ξ) = a0 +
b2δ

A1

(
3
2

tan(
√
δξ) + tan3(

√
δξ)) + sec3(

√
δξ)

)
, (A1 < 0), (4.21)

where ξ = c(x − a0a
α

tα), b = − 19b2aδ
60cA1

√
δ
, k = − ab2

60c3A1
√
δ
.

If we choose A1 = 0, A2 , 0 and µ = 0 in (4.9), we obtain some traveling wave solutions, for
example
Case 3.1 when δ < 0, we have

u8(ξ) = a0 +
b2δ

A2

(
21
22

coth(
√
−δξ) − coth3(

√
−δξ) +

(
5

11
− coth2(

√
−δξ)

)
csch(

√
−δξ)

)
, (A2 > 0),

(4.22)
where ξ = c(x − a0a

α
tα), b = − 19b2aδ

660A2c
√
−δ
, k = ab2

60c3A2
√
−δ
.

u9(ξ) = a0 −
b2δ

A2

(
21
22

coth(
√
−δξ) − coth3(

√
−δξ) −

(
5

11
− coth2(

√
−δξ)

)
csch(

√
−δξ)

)
, (A2 < 0),

(4.23)
where ξ = c(x − a0a

α
tα), b = 19b2aδ

660A2c
√
−δ
, k = − ab2

60c3A2
√
−δ
.

Case 3.2 when δ > 0, we have

u10(ξ) = a0 +
b2δ

A2

(
21
22

cot(
√
δξ) + cot3(

√
δξ) +

(
5

11
+ cot2(

√
δξ)

)
csc(
√
δξ)

)
, (A2 > 0), (4.24)

where ξ = c(x − a0a
α

tα), b = − 19b2aδ
660A2c

√
δ
, k = ab2

60c3A2
√
δ
.

u11(ξ) = a0 −
b2δ

A2

(
21
22

cot(
√
δξ) + cot3(

√
δξ) −

(
5

11
+ cot2(

√
δξ)

)
csc(
√
δξ)

)
, (A2 < 0), (4.25)

where ξ = c(x − a0a
α

tα), b = 19b2aδ
660A2c

√
δ
, k = − ab2

60c3A2
√
δ
.

Again if A2 = 0, A1 , 0 and µ = 0 in (4.9), we obtain some traveling wave solutions.
Case 4.1 when δ < 0, we have

u12(ξ) = a0 +
b2δ
√
−δ√

A2
1δ

(
21
22

tanh(
√
−δξ) − tanh3(

√
−δξ)

)
+

b2δ

A1

(
5
11
− tanh2(

√
−δξ)

)
sech(

√
−δξ),

(4.26)
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where ξ = c(x − a0a
α

tα), b = − 19b2aδ

660c
√

A2
1δ
, k = ab2

60c3
√

A2
1δ
.

Case 4.2 when δ > 0, we have

u13(ξ) = a0 −
b2δ

A1

(
21
22

tan(
√
δξ) + tan3(

√
δξ) −

(
5

11
+ tan2(

√
δξ)

)
sec(
√
δξ)

)
, (A1 > 0), (4.27)

where ξ = c(x − a0a
α

tα), b = − 19b2aδ
660A1c

√
δ
, k = ab2

60c3A1
√
δ
.

u14(ξ) = a0 +
b2δ

A1

(
21
22

tan(
√
δξ) + tan3(

√
δξ) +

(
5

11
+ tan2(

√
δξ)

)
sec(
√
δξ)

)
, (A1 < 0), (4.28)

where ξ = c(x − a0a
α

tα), b = 19b2aδ
660A1c

√
δ
, k = − ab2

60c3A1
√
δ
.

4.2. (3+1)-dimensional time-fractional KdV-Zakharov-Kuznetsov (KdV-ZK) equation

Consider the (3+1)-dimensional time-fractional KdV-Zakharov-Kuznetsov (KdV-ZK) equation
[24,25]:

Dα
t u + auux + uxxx + b(uxyy + uxzz) = 0, (4.29)

where 0 < α ≤ 1 and a, b are arbitrary constants.
It is well known that the Korteweg-de Vries (KdV) equation arises as an model for

one-dimensional long wavelength surface waves propagating in weakly nonlinear dispersive media, as
well as the evolution of weakly nonlinear ion acoustic waves in plasmas. The ZK equation is one of
two well-studied canonical two-dimensional extensions of the Korteweg-de Vries equation. In recent,
S. Shoo et al. [25] found some new exact traveling wave solutions of Eq. (4.29) by the simplest
equation method.

To solve (4.29), we use the wave transformations:

u = u(ξ), ξ = c(x + y + z −
υtα

α
), (4.30)

then (4.29) is reduced into a nonlinear ODE in the form

− cυu′(ξ) + acu(ξ)u′(ξ) + c3(1 + 2b)u′′′(ξ) = 0. (4.31)

By reducing (4.31), we get

− υu′(ξ) + au(ξ)u′(ξ) + c2(1 + 2b)u′′′(ξ) = 0. (4.32)

Further by integrating (4.32) with respect to ξ, we get

− υu(ξ) +
a
2

u2(ξ) + c2(1 + 2b)u′′(ξ) = 0. (4.33)

By balancing the highest order derivative term u′′ and nonlinear term u2 in (4.33), the value of n can
be determined, which is n = 2 in this problem. Therefore, by equation (3.4), we have the following
ansatz:

u(ξ) = a0 + a1

(
φ′

φ

)
+ a2

(
φ′

φ

)2

+ b0
1
φ

+ b1

(
φ′

φ

)
1
φ
, (4.34)
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where a0, a1, a2, b0 and b1 are constants to be determined later, and function φ(ξ) satisfies (3.5).
By substituting (4.34) into (4.33) and using the second order linear ODE (3.5) and (3.7), collecting

all terms with the same order of 1
φi and 1

φi
φ′

φ
together, the left-hand side of (4.33) is converted into

another polynomial in 1
φi and 1

φi
φ′

φ
. Equating each coefficient of this different power terms to zero yields

a set of algebraic equations for a0, a1, a2, b0, b1, δ, µ, a, b, c and υ. Solving this system of algebraic
equations, with the aid of Maple, we obtain

1.a0 = ±
b1δ
√

Ξi
, a1 = 0, a2 = ±

b1
√

Ξi
, b0 = ∓

b1µ
√

Ξi
, b = −

6c2√Ξi ± ab1

12c2
√

Ξi
, υ = ±

δab1

6
√

Ξi
. (4.35)

2.a0 = ±
2b1δ

3
√

Ξi
, a1 = 0, a2 = ±

b1
√

Ξi
, b0 = ∓

b1µ
√

Ξi
, b = −

6c2√Ξi ± ab1

12c2
√

Ξi
, υ = ∓

δab1

6
√

Ξi
. (4.36)

Substituting (4.35) and (4.36) and the general solutions (3.6) of Eq. (3.5) into (4.34), we obtain
more exact solutions of (4.29):

u1i(ξ) = ±
b1δ
√

Ξi
±

b1
√

Ξi
Φ2

i + b1Ψi(∓
µ
√

Ξi
+ Φi), (4.37)

where ξ = c(x + y + z ∓ δab1
6
√

Ξiα
tα), b = −

6c2 √Ξi±ab1

12c2
√

Ξi
.

u2i(ξ) = ±
2b1δ

3
√

Ξi
±

b1
√

Ξi
Φ2

i + b1Ψi(∓
µ
√

Ξi
+ Φi), (4.38)

where ξ = c(x + y + z ± δab1
6
√

Ξiα
tα), b = −

6c2 √Ξi±ab1

12c2
√

Ξi
, in which i = 1 for δ < 0, i = 2 for δ > 0,i = 3 for

δ = 0, and Φi,Ψi,Ξi, (i = 1, 2, 3) see (4.10)-(4.14).
Here A1 and A2 are arbitrary constants. Therefore, one can freely select their values. If we choose

A1 = 0, A2 , 0, µ = 0 and δ > 0 in (4.37), we obtain some traveling wave solutions.

u1(ξ) =
b1
√
δ

A2

(
csc2(

√
δξ) + cot(

√
δξ) csc(

√
δξ)

)
, (A2 > 0), (4.39)

where ξ = c(x + y + z − δab1

6A2α
√
δ
tα), b = −6c2A2

√
δ+ab1

12c2A2
√
δ
.

u2(ξ) = −
b1
√
δ

A2

(
csc2(

√
δξ) − cot(

√
δξ) csc(

√
δξ)

)
, (A2 < 0), (4.40)

where ξ = c(x + y + z + δab1

6A2α
√
δ
tα), b = −6c2A2

√
δ+ab1

12c2A2
√
δ
.

If we choose A1 = 0, A2 , 0, µ = 0 and δ < 0 in (4.38), we obtain some other traveling wave
solutions.

u3(ξ) = −
b1
√
−δ

A2

(
2
3
− coth2(

√
−δξ) − coth(

√
−δξ)csch(

√
−δξ)

)
, (A2 > 0), (4.41)

where ξ = c(x + y + z + δab1

6A2α
√
−δ

tα), b = −6c2A2
√
−δ+ab1

12c2A2
√
−δ

.

u4(ξ) =
b1
√
−δ

A2

(
2
3
− coth2(

√
−δξ) + coth(

√
−δξ)csch(

√
−δξ)

)
, (A2 < 0), (4.42)
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where ξ = c(x + y + z − δab1

6A2α
√
−δ

tα), b = −6c2A2
√
−δ+ab1

12c2A2
√
−δ

.

If we choose A1 = 0, A2 , 0, µ = 0 and δ > 0 in (4.38), we obtain some traveling wave solutions.

u5(ξ) =
b1
√
δ

A2

(
2
3

+ cot2(
√
δξ) + cot(

√
δξ) csc(

√
δξ)

)
, (A2 > 0), (4.43)

where ξ = c(x + y + z + δab1

6A2α
√
δ
tα), b = −6c2A2

√
δ+ab1

12c2A2
√
δ
.

u6(ξ) = −
b1
√
δ

A2

(
2
3

+ cot2(
√
δξ) − cot(

√
δξ) csc(

√
δξ)

)
, (A2 > 0), (4.44)

where ξ = c(x + y + z − δab1

6A2α
√
δ
tα), b = −6c2A2

√
δ+ab1

12c2A2
√
δ
.

Similarly, we can write down the other families of exact solutions of Eq. (4.29) which are omitted
for convenience.

4.3. Time-fractional Sharma-Tasso-Olver (FSTO) equation

Consider the time-fractional Sharma-Tasso-Olver (FSTO) equation [26,27]:

Dα
t u + 3au2

x + 3au2ux + 3auuxx + auxxx = 0, (4.45)

where a is an arbitrary constant and 0 < α ≤ 1. The function u(x, t) is assumed to be a causal function
of time. i.e. vanishing for t < 0. The general response expression contains a parameter describing
the order of the fractional derivative that can be varied to obtain various responses. In the case of
α = 1, Eq. (4.45) reduces to the classical nonlinear STO equation. L. Song [26] found a rational
approximation solution of Eq. (4.45) by the variational iteration method, the Adomian decomposition
method and the homotopy perturbation method.

To solve (4.45), we use the wave transformations:

u = u(ξ), ξ = c(x −
υtα

α
), (4.46)

then (4.45) is reduced into a nonlinear ODE in the form

− cυu′(ξ) + 3ac2u′2(ξ) + 3acu2(ξ)u′(ξ) + 3ac2u(ξ)u′′(ξ) + ac3u′′′(ξ) = 0. (4.47)

By reducing (4.47), we get

− υu′(ξ) + 3acu′2(ξ) + 3au2(ξ)u′(ξ) + 3acu(ξ)u′′(ξ) + ac2u′′′(ξ) = 0. (4.48)

Further by integrating (4.48) with respect to ξ, we get

− υu(ξ) + 3acu(ξ)u′(ξ) + au3(ξ) + ac2u′′(ξ) = 0. (4.49)

By balancing the highest order derivative term u′′ and nonlinear term u3 in (4.49), the value of n can
be determined, which is n = 1 in this problem. Therefore, by Eq. (3.4), we have the following ansatz:

u(ξ) = a0 + a1

(
φ′

φ

)
+ b0

1
φ
, (4.50)
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where a0, a1 and b0 are constants to be determined later, and function φ(ξ) satisfies (3.5).
By substituting (4.50) into (4.49) and using the second order linear ODE (3.5) and (3.7), collecting

all terms with the same order of 1
φi and 1

φi
φ′

φ
together, the left-hand side of (4.49) is converted into

another polynomial in 1
φi and 1

φi
φ′

φ
. Equating each coefficient of this different power terms to zero yields

a set of algebraic equations for a0, a1, b0, δ, µ, a, c and υ. Solving this system of algebraic equations,
with the aid of Maple, we obtain

1.a0 = 0, a1 = c, b0 = ±
√

Ξic, υ = −ac2δ. (4.51)

2.a0 = 0, a1 = ±
b0
√

Ξi
, c = ±

2b0
√

Ξi
, υ = −

b2
0aδ
Ξi

. (4.52)

3.a0 = ±

√
−
δ

Ξi
b0, a1 =

b0
√

Ξi
, c =

2b0
√

Ξi
, υ = −

4b2
0aδ
Ξi

. (4.53)

4.a0 = ±

√
−
δ

Ξi
b0, a1 = −

b0
√

Ξi
, c = −

2b0
√

Ξi
, υ = −

4b2
0aδ
Ξi

. (4.54)

Substituting (4.51)-(4.54) and the general solutions (3.6) of Eq. (3.5) into (4.50), we obtain more
exact solutions of (4.45):

u1i(ξ) = cΦi ±
√

ΞicΨi, (4.55)

where ξ = c(x + ac2δtα
α

).

u2i(ξ) = ±
b0
√

Ξi
Φi + b0Ψi, (4.56)

where ξ = ± 2b0√
Ξi

(x +
b2

0aδtα

Ξiα
).

u3i(ξ) = ±

√
−
δ

Ξi
b0 +

b0
√

Ξi
Φi + b0Ψi, (4.57)

where ξ = 2b0√
Ξi

(x +
4b2

0aδtα

Ξiα
).

u4i(ξ) = ±

√
−
δ

Ξi
b0 −

b0
√

Ξi
Φi + b0Ψi, (4.58)

where ξ = − 2b0√
Ξi

(x +
4b2

0aδtα

Ξiα
), in which i = 1 for δ < 0, i = 2 for δ > 0,i = 3 for δ = 0, and

Φi,Ψi,Ξi, (i = 1, 2, 3) see (4.10)-(4.14).
Here A1 and A2 are arbitrary constants. Therefore, one can freely select their values. If we choose

A1 = 0, A2 , 0, µ = 0 and δ < 0 in (4.55), we the traveling wave solution:

u1(ξ) = c
√
−δ

(
coth(

√
−δξ) ± csch(

√
−δξ)

)
. (4.59)

If we choose A1 = 0, A2 , 0, µ = 0 and δ > 0 in (4.55), we obtain the traveling wave solution:

u2(ξ) = c
√
δ
(
cot(
√
δξ) ± csc(

√
δξ)

)
. (4.60)

If we choose A2 = 0, A1 , 0, µ = 0 and δ > 0 in (4.55), we obtain the traveling wave solution:

u3(ξ) = −c
√
δ
(
tan(
√
δξ) ± sec(

√
δξ)

)
. (4.61)
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where ξ = c(x + ac2δ
α

tα).

Similarly, we can write down the other families of exact solutions of Eq. (4.45) which are omitted
for convenience.

5. Figures of some exact solutions

In this section, some typical wave figures are given as follows (Figure 1–3):

(a) α=0.25; t=0.5 (b) α=0.75,t=0.5

Figure 1. (a) 2D figure of solution u11(ξ) in (4.8) with A1 = 1, µ = 1, δ = −1, A2 = 1, c =

0.5, a0 = 2, a = 1, b2 = 1, (b) 2D figure of solution u12(ξ) in (4.8) with A1 = 1, µ = 1, δ =

1, A2 = 1, c = 0.5, a0 = 2, a = 1, b2 = 1.

(a) α=0.25; t=0.5 (b) α=0.75,t=0.5

Figure 2. (a) 2D figure of solution u11(ξ) in (4.37) with A1 = 1, µ = 2, δ = −1, A2 = 1, c =

1, a = 1, b1 = 1, y = 1, z = 1, (b) 2D figure of solution u12(ξ) in (4.37) with A1 = 1, µ = 1, δ =

1, A2 = 1, c = 1, a = 1, b1 = 1, y = 1, z = 1.
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(a) α=0.75; t=0.5 (b) α=0.5,t=0.5

Figure 3. (a) 2D figure of solution u11(ξ) in (4.55) with A1 = 1, µ = 2, δ = −1, A2 = 1, c =

1, a = 1, (b) 2D figure of solution u12(ξ) in (4.55) with A1 = 1, µ = 1, δ = 1, A2 = 1, c =

1, a = 1.

6. Results and discussion

The basic idea of the two variable (φ′/φ, 1/φ)-expansion method is to research the new exact
traveling wave solutions of the mentioned Eqs. (4.1), (4.29) and Eq. (4.45). The Eqs. (4.1), (4.29) and
(4.29) have been studied using various techniques, among them, Authors obtained some new
solutions, but the researches considered the Jumaries modified Riemann-Liouville derivative sense for
their solution techniques. Nonetheless, the existing analytical solutions reported in [23, 24, 27] are
not correct because the utilized definitions of fractional derivative have some shortcomings that could
not be overlooked [21]. Chen et al. [25] found some new solutions of Eq. (4.29) expressed by tanh,
coth, tan and cot form. In our case, first time we considered the conformable fractional derivative
sense and two variable (φ′/φ, 1/φ)-expansion method for the Eqs. (4.1), (4.29) and (4.45), we found
some new solutions expressed by tanh, coth, sech, csch, tan, cot, sec and csc form. To our knowledge,
the solutions obtained have not been reported in former literature. So, all the solutions are new in this
article.

7. Conclusion

In this study, the two variable (φ′/φ, 1/φ)-expansion method with the help of conformable wave
transformation has been applied to find out exact traveling wave solutions of time-fractional
differential equations. We have obtained some new and further general solitary wave solutions to
three nonlinear time fractional differential equation, namely, time-fractional K-S equation,
(3+1)-dimensional KdV-ZK equation and FSTO equation in terms of hyperbolic, trigonometric and
rational function solution involving parameters. These solutions have important physical implications,
for example, these solutions forces are convenient to characterize the hydromagnetic waves in cold
plasma, acoustic waves in inharmonic crystals and acoustic-gravity waves incompressible fluids. The
obtained results show that the two variable (φ′/φ, 1/φ)-expansion method is direct, consistent,
reliable, very much attractive and an effective powerful mathematical tool for obtaining the exact
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solutions of other time fractional differential equations, and it can be generalized to nonlinear
space-time fractional differential equations and space fractional differential equations. Finally, our
results in this article have been checked using the Maple by putting them back into the original
equation.
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