AIMS Mathematics, 5(4): 3875-3898.
AIMS Mathematics DOI:10.3934/math.2020251
% Received: 27 December 2019
) Accepted: 14 April 2020
http://www.aimspress.com/journal/Math Published: 23 April 2020

Research article

Adaptation of species as response to climate change: Predator-prey
mathematical model

Yadigar Sekerci*
Department of Mathematics, Arts and Science Faculty, Amasya University, 05189 Amasya, Turkey
* Correspondence: Email: yadigar.firat@amasya.edu.tr.

Abstract: Most of the species currently threatened with extinction seem to be under the pressure of
unsuitable environmental conditions; e.g., climate change, scarce food resource, habitat fragmentation.
One should expect species to have forms of resilience against such extinction. The point here is
to examine the effect of spatial gradients on species survival against increasing temperature arising
from climate change. Therefore, we start with the question of whether, when faced with extinction
stemming from climate change, a spatial gradient and a beachhead have the power to prevent extinction.
This problem is addressed theoretically using a coupled reaction diffusion equation for a predator-prey
system in which the prey experiences an Allee effect. It is demonstrated that there exists a relationship
between the slope of the gradient and the beachhead at which the predator-prey system can stably
survive. The tendency of the system can be defined by a function where the system includes the
threshold point for extinction, that separates the areas of extinction and survival. The findings reveal
that spatial gradient can be used as a precaution, when the species faces to extinction, for species to
create new habitat and sustain its persistence. Therefore, in this paper, it is shown that, in theory, the
recovery of species from unsuitable environmental conditions can be achieved. This can be possible by
taking into account the spatial gradient to slow down the forthcoming ecological extinction, and thus
extend the system a while as an adaptation mechanism.
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1. Introduction

In the case of the species are under the threat of extinction, scientific researches have been focused
on evaluating the possibility on the population of the species will grow back to its previous size. Allee
effect for social mammals was first introduced by [1], but since then the concept has been extended
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to a wide range of organisms. The Allee effect explains a situation in which low numbers of species
are influenced by a positive interaction between population growth rate and size, which raises their
probability of extinction. On this subject, a lot of attention has been paid to the corresponding spatial
dispersal versions of predator-prey systems with strong Allee effect, and the spatiotemporal pattern
formation has been studied in such systems. Under the influence of the Allee effect, the dynamics of
the system can significantly change as chaotic patches or traveling population pulses [2, 3]. Recently,
pattern formation of a diffusive predator-prey model under the effect of strong Allee effect [4], pattern
dynamics in prey-predator system is also focused by [5,6]. Most of the current trend of literature leaves
the issue of the process of prevention when the population experiences extinction. Petrovskii et al. [7]
also studied the Allee effect as a possible lagging mechanism between introduction and establishment.
They found that, for a particular set of parameters, there are three forms of regimes when the invasive
prey affected by the Allee effect. One of them is ‘regimes of anomalous extinction’. As a comparison
to this extinction, it is shown in this study that extinction is delayed by a gradient that contributes to
the linear term of predator mortality.

It can be mentioned in some studies about population dynamics that highlight the possibility of
extinction or invasion of a particular species [8—10] and/or possible changes in the population
structure [11, 12] were established. With the development of the gradient analysis [13, 14], spatial
patterns have been reported in some literature [15-20]. In another study, this issue is considered by
taking the diffusion coefficient as the spatial gradient for the predator-prey system [19]. In particular,
herbivore dynamics are examined under the effect of gradient [20]. Taking the spatial gradient as one
of the system parameters, i.e., the rate of growth of the prey, is described by [21]. However, the
literature covers considerable progress on the issue of the spatial gradient. The effect of the spatial
gradient on the system parameters to avoid an approaching extinction is ignored. Consequently, this
issue remains somewhat unclear when the environmental conditions are not acceptable for sustainable
species. Hence, the species move through space from unsuitable conditions to suitable one to survive.
From this point of view, the increase in temperature caused by climate change and therefore the
habitat becomes inappropriate for the organisms’ survival forces them to migrate and adapt to new
environments. This ecological issue constitutes the main purpose of this study.

Species challenge against to get rid of extinction. For this reason, species prefer to adapt
instinctively or move to a new habitat to improve resistance against extinction due to their survival
instincts. We can safely say that habitat change and beachhead are considered as a response to climate
change. The new discovery by Jonkers et al. [22] has revealed the results of climate change on the
aquamarine life in the oceans. This research has shown that climate change leads to migration of
marine zooplankton communities in consequence of 12 years of research by [23]. However, we can
also give the paper studied by Pecl et al. [24] as an evidence. They suggested that the first response of
species is to shift their location to climate change to the cooler or warmer locations where the species
last their life in a more suitable conditions for preventing extinction.

A large number of theoretical models have been proposed to study the spatial pattern of population
dynamics and interactions [4-6, 25-28].  Although considerable progress has been made in
understanding the spatial distribution of many species, some of the important issues remain obscure.
One of these important issues is the gradient effect on systems’ spatial distributions. There are several
works in the literature on the gradient effect of spatial patterns. The continuous distribution of species
through environmental gradient is described with the development of the gradient analysis [13, 14]. It
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is stated that spatially heterogeneous patterning can be described by the spatial gradient response of
individuals [16—18]. Pascual found the spatial gradient to be taken into account both in terms of prey
and predator diffusion in [19]. At the same rate of diffusion, the distribution of species is concentrated
along the spatial gradient [29]. In particular, Post [20] focuses on the spatial gradient effect on
herbivorous population dynamics. Geographical patterns and ecological speciation processes across
environmental gradients of spatially structured populations are described in [15]. The spatial gradient
of the prey growth rate is studied to demonstrate the stability of the system in [21]. Apart from the
several apparent works, the spatial gradient continues to be literally an issue of vital importance.

The current literature on the gradient impact on system dynamics does not pay enough attention to
the event that species face extinction, while environmental conditions for sustainable species survival
are not sufficient. For this reason, this work revisits the prey-predator model where prey growth is
dampened by the strong Allee effect introduced in [7] with the intention of further establishing the
species persistence/extinction issue. The present paper extends that study to the case in which the
mortality rate of the predator is spatially varying; that is, the mortality rate is given by a spatial function
as a response to climate change.

In particular, the biological relevance here is that if individuals threatened by unsuitable
environmental conditions are foreseen to result in extinction, whether species continue to diffuse
along a spatial gradient in the direction of unsuitable conditions, e.g., more resources, suitable climate
conditions, and less predation, etc. Therefore, the focus of this work about concerning this issue, the
following scenarios are concentrated: whether the extinction of the species can be prevented or at
least postponed to a distant future. In the case of extinction, if it happens, is there any warning before
extinction? Obtained numerical results show that when the system is on the verge of extinction the
pattern of spatio-temporal oscillations becomes completely regular with fixed period and amplitude.
This can serve as an early warning [30-32].

The issues mentioned above are addressed by mathematical modelling. This begins with the
question, even if the decreasing level of predator mortality hampers the growth of prey whether the
spatial gradient has the power to prevent extinction. Therefore, the starting point of the predator
mortality rate is taken where the system has an extinction without gradient case. Importantly, as an
early warning signal, the system produces a regular distribution when the system is near to its
extinction point which is why the obtained results are compatible with our previous climate change
work performed on the oxygen-plankton model system [31,33]. On the other hand, one of the most
important stages of species movement is the ‘beachhead’, i.e., the establishment of an invader as a
self-sustaining community [34]. In this sense, the prey predator system [7] is redefined by expanding
the system with gradient and beachhead, taking this change in the system as a result of rising
temperatures, i.e., climate change.

In brief, in this work a diffusion-reaction model describing predator-prey interactions are studied.
Gradient and beachhead are used as precautions when the species faces extinction by adding a spatial
gradient to the mortality rate of the predator. Based on extensive numerical simulations and analytical
observations, it is revealed that the spatial structure gives some early warning signals, i.e., regular
distribution when the predator mortality rate is closer to the extinction point.

In light of the above, the paper is structured as follows. In Section 2, the predator-prey model system
is revisited, suggesting that the predator mortality rate decreases linearly. In Section 3, the spatial
system is analyzed in one-dimensional and two-dimensional case through comprehensive numerical
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simulations focused on the system parameter space. The obtained numerical results show that species’
extinction is followed by regular pattern formation in the spatial system; see a similar pattern as a
response to climate change in [31, 32, 35]. System persistence/extinction map is given in parameter
plane (x;,w) for different domains correspond to species’ extinction and persistence. In particular,
it is established that for the different choices of initial distributions for prey and predator, the spatial
distribution of the system does not change and retains its extinction point where the entire system is
extinct. The most important observation of this work is that the movement of species as a precaution
to change in climate, i.e., addition of a spatial gradient and beachhead, can not stop the extinction. But
this movement in space slow down the approaching extinction so that the species can continue to exist
for a while. Finally, in the last section, the potential significance of this work is discussed.

2. Mathematical analysis of the model

We consider one dimension predator prey model, studied earlier in [7,36-38]:

ohX,T 0*h

—%ﬁfzz dy 55 + F(h) = f(h. p). 2.1)
op(X, T 0?

%) = dza—XZ + kf(h, p) — up. 2.2)

where 4 is the densities of prey and p the densities of predator at moment 7" and position X [39-42]. d,
and d, are the diffusion coefficients and the value of « is the food utilisation. The functions F'(/#) and
f(h, p) describe prey multiplications and predations, respectively. The last term up describes predator
mortality. Holling type II functional response [7,26,43,44] is used for predator response:

Ahp

fh.p) = = (2.3)

where A is intensity for predation and b is half saturation value. The prey population is assumed to be
damped by the Allee effect and parameterized as follows [45]:

4r

Py = ((k—ho)2

)h(h — ho)(k — h) (2.4)
where k is the carrying capacity, r is the per capita growth rate for the intensity of Allee effect defined
by hy. Systems’ dynamical structure is studied in detail with the stress of Allee effect in [7]. For more
detailed explanations on the system parameter, see [7]. The system (2.1-2.2) is in a dimensional form.
The dimensionless form of parameters is as

h P y—ar x. |4
u=-, v=-—, =al, x= —
k Kk d;

Egs. (2.5 and 2.6) includes five dimensionless parameters instead of nine with the choice
We consider one dimension predator prey model, studied earlier in [7,36,38]:

k P ho 4rbk mu d>
o = -, = —, = —
b [

LS Y
Ax(k — hg)? PR

For more details on system parametrizations and its dimensionless version see [7].
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2.1. Equilibrium analysis

The nonspatial counterpart of the system becomes:

du uy

i —B)1 —u) — 2.

7 yuu =)L —u) = ——. (2.5)

dv uv

— = —ov. 2.6

dt 1 +au ’ 26)

The steady state of the system (2.5-2.6) is a solution of the following equations:

uv

0 = yulu=p)1 1)~ . @7
+ au

uv
= — ov. 2.8
1+ au ’ 28)

One of the states is extinction E; = (0, 0) is always stable for any values of parameters. Other is semi-
trivial equilibrium E, = (5,0), E5 = (1,0), extinction of predator case. Stability of the predator-free
steady state is saddle. For more information on the stability of these boundary states and the phase
plane of the system see [7]. The other steady state of the system is the coexistence one £, = (u, v). The
steady state of the coexistence system is:

B 0
T 1-6a’

v=yu-)(1-u)(l+au), u

Jacobian matrix of the system (2.5-2.6) is as follows:

2 v -
7= (21,{’)/ —3u Y — ’)/IBV+ 2M7ﬁ T (Itua)? _u(1+ua) ) (29)

(1+ua)? (+ua)
The eigenvalues are the solutions for the characteristic equation for each of the steady states:

det(J; — AI) = 0,

where [ is the unit matrix and J; is the matrix (2.9) with the components calculated at the steady
state E;, i = 1,2,3,4. For further details on the stability analysis can be found in [7]. The system
is addressed by numerical simulations with different parameter values and initial conditions, species
extinction thresholds with and without spatial gradient is studied.

2.2. Model in the spatial system

The spatially extended version of the model is as follows:

ou 0u uy

T dl@ +yu(u — B)(1 —u) - 1+ an’ (2.10)
ov 0% uy

— = dy— — ov. 2.11
ot 2 0x2 * 1+ au Y ( )

Here u and v are the densities of prey and predator, respectively, at time ¢ and position x. It should be
emphasized here that the diffusion coefficients are chosen equal, i.e., d;/d, = 1 in order to reduce the
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number of system parameters. However, it should be clarified that this was not a primary restriction and
the specific value d; = d, was chosen. Preliminary numerical simulations for the range of 0.5 — 2 for €
have shown that all the obtained regimes still exist [7]. Arbitrary choice of the initial conditions is not
consistent with the inherent properties of the system [46]. So the choice of the system initial conditions
should, therefore, correspond to its biological equivalents. In this case, the initial distribution of the
species can be represented as a finite support function based on the assumption that foreign species are
attacked by an exotic species. The initial conditions, therefore, can be taken into account [7]:

u(x,0) = ug, for —-A,<x<A,, otherwise u(x,0)=0, (2.12)
v(x,0) =vyg, for —A,<x<A,, otherwise v(x,0)=0 (2.13)

where uy, vy are the initial population densities and A,, A, correspond the initially invaded domain
radius. This type of initial conditions in Eqgs. (2.12 and 2.13) also refers to the biological control
issue [47—-49]. On the other hand to see the response of spatial distribution to different initial conditions,
another type of condition used in our earlier work for the oxygen-plankton system [31,33,35] is taken
into account. For this case, it is assumed that at the beginning of the spread, the domain already contains
both populations at the density level corresponding to stationary state (i, ¥) with the introduction of a
linear disruption to the predator distribution. We therefore have the following constant gradient form,
ie.,

u(x,0) =i, v(x,0) =+ e(x — xp), (2.14)

where i, V are the steady states of the system dynamics, given by Eq. (2.15), with € = 0.001 and
xo = 200, i.e., auxiliary parameters [50].

0
1—as’
To identify the behavior of the system, extensive numerical simulations performed in [7] and the
systems’ parametric dependencies are sketched perfectly. In the light of this work, Egs. (2.10 and
2.11) is set numerically on the 0 < x < L domain by finite difference method using zero—flux
boundary conditions. The steps of the numerical mesh are chosen as Ax = 0.5 and At = 0.01. Since
we are mainly interested in spatial gradient effect on system dynamics, we keep the system

parameters as in [7] (see Figure 5 in [7]) to use the bifurcation diagram of the systems shown for
a=05=028,y=7,A,=5,A,=3,uy=1,vy =1 and L = 400.

¥ = y(1 + ait)(ii — B)(1 — it), . (2.15)

u=

2.3. Gradient & ‘beachhead’ as a precaution to extinction

As it is detailed in the introduction, when the surrounding environmental conditions are not favor of
species and even also these conditions bring the species to the edge of extinction, species propagate in
space to sustain their existence to avoid this environment. In [7], the prey-predator system is addressed
on the basis that prey development is damped by a strong Allee effect, but with no attention to species
persistence/extinction scenario under the effect of a spatial gradient. The rate of zooplankton mortality,
i.e., 0, is quantified differently in this study. The mortality rate is specified as a function of space to
determine the species precautions for potential unsuitable environmental conditions. Suppose that the
species move away to get rid of unsuitable environmental conditions. We then consider 6 = d(x), but
keep the other parameters unchanged.
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Animal movements are affected by some external forces, one of which is the spatial forces, such
as the fragmented habitat [51], slope [52], beachhead [34], etc. One of the important stages of the
invasion is the ‘beachhead’, i.e., the establishment of an invader as a self-sufficient population. At least
these variables should be included in the ‘realistic’ 6(x) function, but it becomes quite complicated.
Since the purpose of this study is to reveal species’ precautions, in this case, it is spatial movement,
we consider the mortality rate to be a linearly decreasing function, assuming that spatial movement
facilitates predator abundance, i.e., mortality rate of predator decrease in space. black The reason
behind choosing predator mortality rate to decrease beyond a critical point threaten the system with
extinction is that this choice increases the predator size to the point that the prey is pushed below the
Allee effect threshold which results in extinction for both prey and predator. Hence the main purpose
here is to show the dynamics become persistence under the influence of the spatial gradient in predator
mortality rate despite the Allee effect. The possible simplest choice of ¢ is given as follows:

0=0; for w=0, 0=0,—w((x-x) for w>0. (2.16)

Here, x; is beachhead, ¢, is predator mortality rate before the spatial movement starts, and the w
quantifies the slope of the spatial gradient. = Here this study aims to understand species’
persistence/extinction rather than species’ migration in detail, the simplest scenario in this context is
to consider spatial gradients considering a decrease in predator mortality in space.

Therefore, we compare two possible approaches. The first is without a spatial gradient scenario,
1.e., (w = 0). Second is with the case of the spatial gradient, 1.e., with the effect of the spatial gradient,
the mortality rate decreases (w > 0), and taking into account the beachhead as well. In particular, for
the initial death rate of the predator, we find w from appropriate range corresponding to the phase plane
structure in (Figure 14 in [7]) and keep the system parameters as in [7] to see the species distributions
under the effect of this new approach. It should be emphasized here that, contrary to [7], ¢ is taken as
a function of space for the system (2.10-2.11).

To analyze the spatial stability of equilibrium points based on the knowledge of temporal system
linearization method is used [53].

Theorem 2.1. The trivial equilibrium E is stable if w(x — x,) < I’dy + ;. The semitrivial equilibrium
E, is stable if d, > d,, where d; = w and with given condition 2.21. The boundary equilibrium E;

is stable if d > d, where d} = y(ﬁl; D and given stability condition 2.22 is satisfied.

Proof. Letu = 1+ M, v = v + N, where M and N are perturbations around an arbitrary equilibrium
point (&, ¥). The linearized form of the system (2.10-2.11) can be given as

oM o*M
— = M +apN +di—, 2.17
ot ar ap 1552 ( )
ON 0’N
— = M + a»N + dr——, 2.18
or az) an 252 ( )
where ap = 2)/& - 3)/1’/12 - )’ﬁ + Zyﬁﬁ - m, app = —ﬁ, ary = m, ajxy = l+ﬁaﬁ — 0. The

Zr) exp(At + ilx) for the wave number / > 0 and the growth rate of perturbation

A > 0, x is the spatial coordinate for reals a,, b,. General uniform steady state of the spatial system
(2.10-2.11) by (M, N), we have the perturbation in the following form,

eigen function is ), (
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(-

N(t, x) N 6

€ are assumed to be small enough and the corresponding amplitudes for i = 1,2. Then the problem is
reduced to eigenvalue problem in the parameter A for the following matrix at (M, N).

J 2uy - 3uy — yB + 2uyﬁ Ty~ d, ~ T
(@9 = 5 12d2

(1+u(y)2 (14ua)

(2.19)

The eigenvalues evaluated at E; are —yS — [>d; < 0 and —6 — [>d,. Since the main point of this work
is to reveal the species extinction and persistence issue by taking predator mortality rate as a linear
dependence in space, the term —(6; — w(x — x;)) — I°d, should be less than zero for stable E,. Hence,
—(0, —w(x—x7)) = Pdy <0

w(x —x1) < Pdy + 6, (2.20)

It means that if the condition 2.20 is satisfied the system will then collapse and the all species extinct.
The eigenvalues evaluated at E; are y8(1 — 8) — I*d, and E_ _5—IPd,. This boundary state is spatially

1+aop
stable if d; > d,, where d, = yﬁ(l » and

B
—x1) < Pdy + 6, - 2.21
w(x — x1) AL e (2.21)
is satisfied. The eigenvalues evaluated at E3 are v — vy — [2d, and — -6 — IPd,. This boundary state
is spatially stable if d; > d, where d} = y(ﬂl D and with the condltlon
2 1
wkx—-x)<ldy+6, — —— (2.22)
1+a
is satisfied. The coexistence steady state characteristic equation is of the form
P+0l+0,=0 (2.23)
where Q) = —ay; + 2(d) +d>), Q) = ay +14(d, +d,) — Pdya,,. The stability of coexistence state and

the sustainability of the species is detailed in numerical simulations. Note that in numerical simulations
taking d; = d, = 1 is a technical consequence of being dimensionless form.

Under the light of above analytical calculations, we start with the response of the systems to different
initial conditions. Figure 1a,b show the spatial distributions of predator and prey for the obtained initial
conditions given by Egs. (2.12 and 2.13) and Eq. (2.14), respectively. There is no important qualitative
difference between distributions provided by Eqs. (2.12 and 2.13) (shown in Figure 1a) and given by
Eq. (2.14) (shown in Figure 1b). It indicates that taking Eqgs. (2.12 and 2.13) as shown in Figure la
and using it as the initial conditions does not allow any qualitative difference to the inherent spatial
structures. The following simulations will, therefore, operate with the initial condition provided by
Egs. (2.12 and 2.13). Red solid lines in all numerical simulations show ¢ value to see the changes of 6
in space. In general, the red line is shown in the first figures for the same parameter choice. O
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Figure 1. Snapshots of the prey (dashed) and predator (solid) distributions over space at
t = 2000 obtained for parameters w = 0.0006, 6, = 0.57 and x; = O for (a) initial condition
given by Egs. (2.12 and 2.13), (b) initial condition given by Eq. (2.14). Red line ¢ value for
given parameter values.

3. Numerical simulations

The purpose of this study is to describe the effect of spatial gradient and beachhead on species
when the species are faced with unsuitable environmental conditions and these conditions lead to
extinction. It is assumed that ¢ can change in space with the help of the gradient. Let us begin with
the case where ¢ is taken from a safe region (i.e., Figure 14 in [7]). Since ¢ is predator mortality a
small quantity of it places a great deal of pressure on its prey. As a consequence, low ¢ leads to the
extinction of species. That’s the point this research has been activated. Therefore, however, the issue
is whether the spatial gradient and the beachhead prevent or postpone the eventual extinction even if
its population is driven by its predator which is inevitable without a gradient case. For this purpose,
the numerical simulations follow the order; first, observing the spatial distribution without a gradient
case with the aim of finding the critical value of extinction. Second, beginning from this extinction
point and introducing gradient and beachhead to the system to detail species persistence/extinction
issue despite the Allee effect. Then some numerical observations on two dimensional space are
performed.

Figure 2 shows the distribution of prey and predator at different times. We note the species invades
the whole domain with irregular spatiotemporal oscillations of fixed values of . System dynamics is
sustainable and extinction is not observed even for longer periods (i.e., t = 20000 equivalent
simulations are not given for brevity reasons). Note that there is no smooth pattern due to lack of
gradient, i.e., w. Figures 2 and 3 are provided to display the correspondence of the results obtained by
a slight decrease in ¢, which is detailed and observed in [7].

Figure 3 shows snapshots of prey and predator spatial distributions obtained at different times for
w = 0.0001, 6; = 0.49 and beachhead x; = 133. For this value of ¢, there may be two somewhat
different scenarios with invasive species with irregular spatiotemporal oscillations and moving patches
(cf. [7] how invasive species can be established and general invasive behavior for the corresponding
domain). The first scenario is shown in Figure 3a. With a slight slope, i.e., w, the distributions of the

AIMS Mathematics Volume 5, Issue 4, 3875-3898.



3884

species in ¢ do not change at different times. Such irregular patterns are connected to the condition
of coexistence (smooth pattern) behind it. The second scenario is shown in Figure 3b, with the same
value as ¢ but for larger time limits the irregular distribution appears like a series of separate patches.
At larger times (# > 5000) the system tends to give way to distinctly divided patches but this scenario
is not seen here for the sake of brevity.

14 T T T T T T T 14

Prey and Predator Densities
Prey and Predator Densities

Figure 2. Snapshot of the prey (dashed) and predator (solid) distributions over space for
given initial conditions as Figure 1a and parameters w = 0, §; = 0.49 and at (a) t = 2000, (b)
t = 5000. Red line shows ¢ for given parameter values.

o
" "‘1‘11

Prey and Predator Densities

Prey and Predator Densities
o
>

0 50 100 150 200 250 300 350 400
Space

(@) (b)

Figure 3. Snapshot of the prey (dashed) and predator (solid) distributions over space for
given initial conditions as Figure 1a and parameters w = 0.0001, 6, = 0.49 and x; = 133 at
(a) t = 2000, (b) t = 5000. Red line shows ¢ for given parameter values.

We now proceed to simulations to obtain an extinction threshold of species without a gradient
case. The extinction value is meager in the phase plane map in [7], to observe that extensive
numerical simulations performed. Note that the obtained numerical simulations indicate that the
pattern of distribution when the system approaches its extinction value is regular, i.e., the spatial
system gives certain early warning signals for potential extinction. Such findings support the regular
patterning of critical transition approaches such as in the oxygen-plankton model [31] and in other
systems [28, 30, 54-58].
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Figure 4a,b show the prey and predator distributions obtained for different values of ¢ and Figure 4c
is for the power spectrum analysis for the prey distribution of Figure 4b. It is observed that species’
extinction happens when the system reaches a critical value of 6., = 0.44. Therefore the ¢ values that
are used for Figure 4a,b bring the system close to its extinction value so the system is invaded by regular
patterning. Contrary to [46], regular oscillations continue for longer periods of time. Figure 4c shows
the analysis of the power spectrum as evidence that the system (2.10-2.11) is capable of developing
regular spatial patterns. The question here is what is called ‘regular spatial distribution’ is actually
regular or irregular. In this case, the analysis of the power spectrum should be taken into account, and
the system is accepted as a regular if the analysis of the power spectrum has some leading frequencies.
For the regular structure see Figure 4b, some of the leading frequencies are readily distinguishable, see
Figure 4c. This regular structure emerges as an early warning signal and says the system is the edge of
extinction, see the earlier work on the early warning signal and the regime shift [31,56,58]. Note that
taking ¢ values from a given range of (0.44, 0.45] always results in regular species spatial distributions.

Since the issue of species extinction/persistence is interested, the gradient and the beachhead have
been taken into account here. This implies that 6., (where the prey and predator species is extinct) is
used as a starting point to see whether the gradient and the beachhead can prevent extinction.

Periodogram Power Spectrum Estimate
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Figure 4. Snapshot of the prey (dashed) and predator (solid) distributions over space for
given initial conditions as Figure 1a and parameters w = 0 for r = 2000, (a) 6, = 0.46, (b)
or = 0.45, (c) Power spectrum analyse of prey densities for §; = 0.45. Red line shows ¢ for
given parameter values.

The above results are demonstrated to show the spatial distribution of the system with and without
w = 0 and x;. The following simulations are considered when the system is affected by the gradient of
space and the beachhead.

Figure 5 shows the population density snapshots. The vertical blue dashed line indicates the
assumed beachhead value. It is important to note here again that, without a spatial gradient, the
species is extinct, but for the given parameter w = 0.001and provided beachhead x; = 100, the species
propagate through traveling pulses with irregular wavemakers (see system Figure 5 in [7]). Traveling
pulses die when the system is closer to the critical value of 6. When the traveling pulse reaches this
critical point in space (importantly this critical value of ¢ is totally different from J.,, when we call a
new settlement of ¢ as J.,+, it is obvious that d.,+ < d.,, the system results in the first extinction of prey
followed by the extinction of predators. Note that, J.« is to be the place along with the space-axis
beyond which neither prey nor predator exists. The system (2.10-2.11) is maintained for a sufficiently
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long time (¢ = 20000) and the population retains its spatial distributions and does not get extinct. With
a decrease in w (i.e., w = 0.0006), in Figure 6 the beachhead stays the same as before (Figure 5, i.e.,
(x; = 100)), the region with a smooth spatial distribution disappears and the area is occupied by
non-stationary pulses.

14 T T

Prey and Predator Densities
Prey and Predator Densities

Prey and Predator Densities
Prey and Predator Densities

Figure 5. Snapshot of the prey (dashed) and predator (solid) distributions over space for
given initial conditions as Figure 1a and parameters w = 0.001, 6, = 0.44 and x; = 100 at (a)
t = 2000, (b) t = 4000, (c) t = 5000, (d) t = 6000. Red line shows ¢ value for given parameter
values. Note that, in the corresponding spatially uniform system, species persistence would
not be possible for the values of ¢ on the right of the vertical blue line, i.e., outside of the
beachhead.

There seems to be a common behavior in all species’ spatial distribution that traveling pulses
disappear where the system reaches 6.+. It may be worth looking at details. It is, therefore,
determined to detect the positions of the traveling pulse when it comes to near extinction, i.e., when
the prey density is sufficiently small (# > € where € = 0.02). The general tendency of predators to
extinction is qualitatively close to prey, therefore, we display only distribution of prey to avoid
repetition. Figure 7a,b show the extinction position of the traveling pulses in space (i.e., xp,) for
Figure 5 and Figure 6 for t = 6000, respectively. As can be easily seen in Figure 7a, the extinction
range can be limited to x,, ~ 180 and x;, = 270. The restriction is clear for w = 0.001, but there are
some lower peaks for w = 0.0006. It implies that, in some situations, the traveling pulses extinct
earlier in space than the general tendency of the system. Interestingly extinction exceeds the value of
the beachhead for both slope values so it happens beyond the vertical blue line, i.e., the beachhead.
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Prey and Predator Densities
Prey and Predator Densities

Prey and Predator Densities
Prey and Predator Densities

Figure 6. Snapshot of the prey (dashed) and predator (solid) distributions over space for
given initial conditions as Figure la and parameters w = 0.0006, 6, = 0.44 and x; = 100
at (a) ¢ = 2000, (b) r = 4000, (c) t = 5000, (d) t = 6000. Red line shows ¢ value for given
parameter values. The vertical blue dashed line shows the assumed value of beachhead. Note
that, in the corresponding the spatially uniform system, species persistence would not be
possible for the values of ¢ on the right of the vertical blue line, i.e., outside of the beachhead.
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Figure 7. The initial distribution is chosen as Figure 1a for given parameters 6; = 0.44 and
x; =100 at t = 6000. (a) w = 0.001, (b) w = 0.0006.
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Figure 8 shows the population density snapshots for the given parameter w = 0.001 and different
beachhead from above, i.e., x; = 150. In Figure 8, traveling pulses are extinct beyond the beachhead
and also the scenario is the same more or less. Figure 9 shows snapshots for w = 0.0006 in the same
manner. Figure 10a,b show the extinction position of traveling pulses in space of different values of
w. Once, extinction exceeds the value of the beachhead for both slope values so extinction happens
beyond the vertical blue line, i.e., the beachhead. This issue will be discussed in the last section.

1.4 T T i

Prey and Predator Densities
Prey and Predator Densities

Prey and Predator Densities
Prey and Predator Densities

Figure 8. Snapshot of the prey (dashed) and predator (solid) distributions over space for
given initial conditions as Figure 1a and parameters w = 0.001, 6, = 0.44 and x; = 150 at
(a) t = 2000, (b) t = 4000, (c) t = 5000, (d) t = 6000. Red line shows ¢ for given parameter
values. The vertical blue dashed line shows the assumed value of beachhead. Note that, in
the corresponding spatially the uniform system, species persistence would not be possible
for the values of ¢ on the right of the vertical blue line, i.e., outside of the beachhead.
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Prey and Predator Densities
Prey and Predator Densities
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Figure 9. Snapshot of the prey (dashed) and predator (solid) distributions over space for
given initial conditions as Figure la and parameters w = 0.0006, 6, = 0.44 and x; = 150
at (a) + = 2000, (b) r = 4000, (c) t = 5000, (d) t = 6000. Note that, in the corresponding
spatially uniform system, species persistence would not be possible for the values of ¢ on the
right of the vertical blue line, i.e., outside of the beachhead.
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Figure 10. The initial distribution is chosen as Figure 1a for given parameters 6; = 0.44 and
x; = 150 at t = 6000. (a) w = 0.001, (b) w = 0.0006.
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Applying a different spatial gradient with the aid of the slope, i.e., w, and the beachhead, i.e., xi,
an important question emerges as to whether there is any relation between the beachhead and the
slope. Figure 11 shows the data point set, where the diamonds represent the extinction position for
the corresponding w collected as a result of numerous numerical simulations. There is therefore a
relationship between the critical point (beachhead) and the spatial gradient defined by simple rational
function, i.e., ﬁ where @ = 1. The dashed line in Figure 11 plays a role as a separator of extinction and
persistence regions. Thus, the area below the dashed line refers to the species extinction, while above it
is the case where the population survives. Therefore, the persistence of the species can be determined
by the simultaneous effect of the gradient slope and beachhead. If the slope rises, the extinction region
of the species will decline. In this case, even if the beachhead is taken big enough, the species is not
extinct.

120

1109

100 Persistence

Critical points
(o]
o
7

70+ A

60

40

Figure 11. The critical points x; with different w. The species induces persistence above
the dashed line, while extinction is below the threshold for ¢ = 2000, 6; = 0.44 and critical
point (beachhead) x; takes the values from corresponding w. Dashed line shows the rational
function is detailed in the text and diamonds show the obtained data points for extinction
from corresponding w and beachhead x;.

Figure 12 is given to provide more details on temporal variations of population. Figure 12a—c
indicate the local dynamics at fixed spatial positions typical for different parameter domains, i.e.,
extinction and persistence. Figure 12d—f show the phase plane of the local population densities
obtained at a fixed position at space x; = 50, i.e., the system below the dashed line in the extinction
region, x; = 94, i.e., the system on the slightly above extinction threshold. As it is observed in spatial
distribution, the temporal distribution at closer to critical point results in regular distribution. Note
that for w = 6 x 1074, the threshold value is x; = 93, see Figure 11 for more detail. x; = 150, i.e., the
system in the persistence region above the dashed line.
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Figure 12. Local dynamics of population densities and corresponding phase plane at a fixed
spatial point for different parameter domains x; = 50, x; = 94 and x; = 150 from left to right
for 6, = 0.44, w = 6 x 10~* and ¢ = 1000.

Now attempts are being made to create the predator-prey system’s spatial dynamics, applied to two
spatial dimensions, which are more realistic than its one spatial dimension counterpart. The
corresponding two-dimensional simulations coincide with its one-dimensional counterparts, the
boundary and the initial conditions are selected accordingly. Therefore, all two dimensional

simulations are performed in a rectangular domain: (x,y) € [0, L] X [0, L,] at the domain boundaries
Neumann boundary conditions are used,

o(u,v)
ox

_ 0(u,v)
=5

The spatial distribution of prey density is given in a two-dimensional system. Predator density
demonstrates qualitatively similar behavior to prey, which is why the distribution of prey is provided
only for the sake of brevity. To observe the distribution of prey, different types of initial conditions
are used. The first one (see Figure 13) given by Eqs. (3.2 and 3.3) defines spatially homogeneous prey

distribution at steady state with constant gradient predator distribution for w = 0.0006, 6, = 0.44 and
x; =100 where uy =vop = 1,6 = ¢ = 3.107.

= 0. 3.1

x=0,Ly

x=0,L,

u(x,y,0) = up, (3.2)
v(x,y,0) = vo—e&(x—200) - ey —200), 3.3)

In the latter case, the system’s initial distribution is as follows:
u(x,y,0) = up—e(x—240)(x —294) — e,(y — 120)(y — 280), (3.4)
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v(x,y,0) = vy — &(x—200) - &(y —200). 3.5

The two-dimensional system dynamics follow more or less the same scenario as the corresponding
one-dimensional system. At an early stage (see Figure 13a), a smooth distribution of prey appears. This
smooth distribution is followed by stripes corresponding to the traveling pulses in one dimension case,
see Figure 13b. Eventually, the stripes are broken and give way to irregular structure in Figure 13c.
The irregular structures swell and produce some circular shape and some broken irregular stripes, see
Figure 13d. Observed that even for a larger time limit the upper part of the domain is not invaded
regardless of the different initial condition, which ensures that the prey distribution stays close to zero.
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Figure 13. Spatial distribution of prey densities obtained for (a) t = 100, (b) t = 300, (c)
t = 550, (d) t = 2000 for w = 0.0006, 6; = 0.44 and x; = 100, &, = & = 3.107>. Other
parameters are the same as above. Red dashed line shows the corresponding beachhead value.
Note that, in the corresponding spatially uniform system, species persistence would not be
possible for the values of ¢ above the horizontal red line, i.e., outside of the beachhead. The
initial conditions are given by Eqgs. (3.2 and 3.3) with uy = vy = 1.

The second one (see Figure 14) given by Egs. (3.4 and 3.5) describes the spatially homogeneous
distribution of prey at its steady state with a constant gradient of predators. w = 0.0006, 6, = 0.44
and x; = 100 withuyg = vo =1, = 2.107, & = 3.107, & = ¢ = 6.10™. Note that the initial
predator mortality rate, i.e., d, = 0.44, is based on its one—dimensional case. The only difference
between Figure 13 and Figure 14 is the choice of the initial distributions. It can be inferred that there
is no qualitative difference between the different initial conditions and the general the tendency of the
spread of species. In both cases, the typical sequence of events is the smooth distribution that produces
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stripes, the stripes are followed by their broken versions and then the domain is invaded by irregular
structures, like circular shapes, parts of broken stripes, etc.

0 i
0 50 100 150 200 250 300 350 400 0 50 100 150 200 250 300 350 400
Space,y Space,y

(a) (b)

0 50 100 150 200 250 300 350 400 0 50 100 150 200 250 300 350 400
Space,y Space,y

© (d)

Figure 14. Spatial distribution of prey densities obtained for (a) t = 100, (b) t = 300, (c)
t = 550, (d) t = 2000 for w = 0.0006, §; = 0.44 and x; = 100, ¢ = 2.1077, & = 3.107°,
€ = ¢ = 6.107°. Red dashed line shows the corresponding beachhead value. Note that, in
the corresponding spatially uniform system, species persistence would not be possible for the
values of § above the horizontal red line, i.e., outside of the beachhead. The initial conditions
are given by Eqs. (3.4 and 3.5) with uy = vy = 1.

It is noticed that the spatial patterns shown in Figures 13 and 14 exist in the parameter range where
the species persistence would not be possible in the corresponding one dimensional case (i.e., for
o = 0.44). It is, therefore, consistently observed that the dynamics of the two-dimensional system is
persistent/sustainable in a broader range [35].

4. Discussion & concluding remarks

In this work a predator-prey reaction diffusion model is studied with an Allee effect on the prey.
The model is based on earlier work Petrovskii et al. [7], in which the conditions under which the
predator-prey system could invade an environment were studied. The present manuscript extends that
study to the case in which the mortality rate of the predator is spatially varying; that is, the mortality
rate is given in Eq. (2.16) by the function 6 = 6, — w(x—x;) where ¢, is a constant, w is the slope, x
is distance along the x-axis, and x; is what is termed the ‘beachhead’ that the invading predator-prey
system can establish. Therefore, in relation to changing climate, the dynamics of the prey-predator
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system is assumed to reflect the spatial gradient of predator mortality rate. The objective of this study
is to determine the joint effect of the slope of the gradient and the ‘beachhead’, that is, the points along
the spatial axis at which the system, despite the Allee effect, can establish a sustainable population as
an adaptation mechanism to new environment.

Some interesting results are observed. One is that there is a simple inverse algebraic relationship
between the slope of the gradient and critical point. This is found by allowing ¢, to take the value
0.44, which is the threshold point for extinction if there is no slope, i.e., w = 0. Another is that, under
circumstances when the system is on the verge of extinction, for example, ¢, slightly above 0.44 and
w = 0, the pattern of spatiotemporal oscillations becomes completely regular with a fixed period and
amplitude. This can serve as an ‘early warning signals’ of changing climate [31] that the system is on
the verge of extinction if §; decreases further.

Gradient and beachhead are used as a precaution as species face extinction by applying a spatial
gradient to the predator mortality rate. This predator prey system has a well-structured parameter
plane is labeled in [7]. The structure of the system’s spatial dynamics with linearly decreasing values
of ¢ in space is described by comprehensive numerical simulations. The difference of this study from
the literature is that the rate of predator mortality changes with space to account for the response to
changing climate. It is observed that despite the Allee effect, the species can establish a sustainable
population. Such spatial structure provides some early warning signals (i.e., regular distribution) when
the rate of predator mortality is closer to the extinction point. As observed in the oxygen-plankton
system [31,33] when the system is close to extinction, transitions from irregular distribution to regular
one which is used for the early warning signal of climate change are also observed for this system.

Note that,the emergence of pulses due to the spatial decrease in ¢ corresponds to its non-gradient
case phase plane map; see Domain 2 and 2* in Figures 13 and 14 [7]. Here, it can be seen that the
traveling pulses die when the system becomes closer to the critical value of predator mortality rate,
1.e., 0. When the traveling pulse reaches the critical point in time, the species are extinct.

It is observed that the persistence of the species can be interpreted by the slope (steepness) of the
spatial gradient and the length of the beachhead. If the slope is raised, the persistence of the system is
expanded. In this case, if the beachhead becomes sufficiently large, the species becomes extinct (see
the systems’ extinction tendency in Figure 11, i.e., a further increase in w results in extinction). On the
other hand, the gradient addition does not prevent extinction but at least postpones it and allows the
species a chance to exist for a while. One of the most interesting results of this work is that the spatial
gradient can not prevent the extinction of species, at least for the spatial gradient on prey mortality but
it has the capacity to slow down the approaching extinction. Interestingly, when the system reaches
its critical value resulting in extinction beyond this value, its spatial distribution becomes regular and
compatible with the structure which was obtained in the oxygen-plankton system [31].

The one dimension to two dimensions spatially explicit extension is considered. Here, it is shown
that the dying traveling pulse in 1-D is represented as broken propagating stripes in 2-D. It should also
be emphasized that different choice of initial distributions for both 1-D and 2-D case, spatial system
patterns remains qualitatively similar.

In conclusion, the most interesting question here is whether the spatial gradient of different slopes
can protect the species from extinction as climate change adversely affects species. This question is
verified in this work with extensive numerical simulations, with the choice of large enough w, and for
specific beachhead values, while leaving certain parameters set for convenience. It is observed that,
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at least for this system (2.10-2.11), a gradient can not stop an inevitable ecological disaster, but has
capability to slow it down, which is why the species has a chance to survive for a while.
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