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1. Introduction

Differential equations with various types of fractional derivatives such as Caputo fractional
derivative, Riemann-Liouville fractional derivative, are intensively studied theoretically and applied
to varies models in the last decades. For example, they are successfully applied to study various types
of neural networks (see, for example, [1-3]). Fractional differential equations with delays are rapidly
developed. One of the main studied qualitative questions about fractional delay differential equation is
the one about stability. In 1961, Dorato [4] introduced a concept of finite time stability (FTS). FTS is
different from asymptotic stability. However, it is regarded as one of the core problems in delay
systems from practical considerations. Later this type of stability has been applied to different types
of differential equations. Recently, it is applied for Caputo delta fractional difference equations [5, 6],
for Caputo fractional differential equations [7] for -Hilfer fractional differential equation [8].

The investigations of the properties of the solutions of Riemann-Liouville (RL) fractional
differential equations with delays are still at his initial stage. The asymptotic stability of the zero
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solution of the linear homogeneous differential system with Riemann-Liouville fractional derivative is
studied in [9]. Li and Wang introduced the concept of a delayed Mittag-Leffler type matrix function,
and then they presented the finite-time stability results by virtue of a delayed Mittag-Leffler type
matrix in [10-12]. In connection with the presence of the bounded delay the initial condition is given
on a whole finite interval called initial interval. In the above mentioned papers ( [10—12]) the authors
study the case when the lower limit of the RL fractional derivative coincides with the left side end of
the initial interval. It changes the meaning of the initial condition in differential equations. In
connection with this in the paper we set up an initial condition satisfying two main properties: first, it
is similar to the initial condition in differential equations with ordinary derivatives and, second, the
RL fractional condition is defined at the right side end of the initial interval which is connected with
the presence of RL fractional derivative.

In this paper we study initial value problems for scalar nonlinear RL fractional differential equations
with constant delays. Similarly to the case of ordinary derivative, the differential equation is given to
the right of the initial time interval. It requires the lower bound of the RL fractional derivative to
coincides with the right side end of the initial time interval. We present an integral representation of
of the studied initial value problem. By the help of fractional generalization of Gronwall inequality
we study the existence, continuous dependence and finite time stability of the scalar nonlinear RL
fractional differential equations.

The main contributions of the current paper include:

(1) An appropriate initial value problem for nonlinear RL fractional differential equations is set up
based on the idea of the initial time interval for delay differential equations with ordinary
derivatives.

(i1) A mild solution of the considered initial value problem is defined based on an appropriate integral
representation of the solution.

(iii)) The existence, continuous dependence and finite time stability of the scalar nonlinear RL
fractional differential equations is studied by the help of fractional generalization of Gronwall
inequality.

The rest of this paper is organized as follows. In Section 2, some notations and preliminary lemmas
are presented. In Section 3, main results are obtained. In Section 3.1. mild solution of the studied
initial value problem is defined and some sufficient conditions by Banach contraction principle are
obtained. In Section 3.2. continuous dependence on the initial functions is investigated based on the
fractional extension of Gronwall inequality. In Section 3.3. some sufficient conditions for finite time
stability are given.

2. Preliminary notes

LetJ = [-7,T], I = [0,T] where T > O is a constant, 7 < oo . Without loss of generality we can
assume there exists a natural number N such that T = (N + 1)7. Let LZIOC(I , R) be the linear space of all
locally Lebesgue integrable functions m : I — R, PC(J) = C([-1,0),R) U C((0, T], R).

Let x € PC(J,R). Denote ||x||; = sup,, |[x(?)|.

In this paper we will use the following definitions for fractional derivatives and integrals:
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- Riemann - Liouville fractional integral of order g € (0,1) ([13,14])

[ m(s)

q —
O g ) T
0

ds, tel,

where I'(.) is the Gamma function.
- Riemann - Liouville fractional derivative of order g € (0, 1) ([13,14])

t

d _ 1 d _
SEDIm(t) = E( OI,] Tm(t)) = F(l——q)a f(t - ) "m(s)ds, tel.
0

We will give fractional integrals and RL fractional derivatives of some elementary functions which
will be used later:

Proposition 1. The following equalities are true:

(1 +B) o @) .,
RLI B _ P, Jirafl = 7 4B
1 +8-¢q) ° T(1+B-q)

of " =T(g),  §DI =0.

b

The definitions of the initial condition for fractional differential equations with RL-derivatives are
based on the following result:

Proposition 2. (Lemma 3.2 [15]). Let g € (0, 1), and m € L’l""([O, T],R).

(a) If there exists a.e. a limit lim,_, [t 'm(t)] = c, then there also exists a limit

of,“‘m(D)l—o = lim o} 'm(1) = ().
(b) If there exists a.e. a limit oltl_qm(t)ltzo = b and if there exists the limit lim,_o.[t'~9m(t)] then

b
. l_q —
Im [ m(®)] Q)
We will use the Mittag - Lefller functions with one and with two parameters, respectively, (see, for
example, [14]) given by E,(z) = Zj 0 F(Jp+1) and £, ,(z) = ZJ 0 F(J;q)
Proposition 3. [16] (Gronwall fractional inequality) Suppose a(t) is a nonnegative function locally
integrable on [0,T) (some T < oo) and b(t) is a nonnegative, nondecreasing continuous function
defined on [0,T), b(t) < M (constant), and suppose u(t) is nonnegative and locally integrable on [0, T)
with

u(t) < a(t) + b(r) f (t — ) u(s)ds, te[0,T).
0
Then

u(t) < a(t) + f Z (b(;)(i(c;))” s)”q_la(s))ds, te€[0,7).
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Recently, in [17] the non-homogeneous scalar linear Riemann-Liouville fractional differential
equations with a constant delay :

gLDfx(t) = Ax(t) + Bx(t — 1) + f(¢) fort > 0. 2.1

with the initial conditions
x(t) = g(t), tel-1,0], (2.2)
lim (£177x(1) = f_ EO; (2.3)

where f € C(R,,R), g € C([-7,0], R) was studied. It was proved the solution is given by the function

8() 1€ (-7,0]
8O)E, (A1 + [1(t = 5T Eg (At — 5)7)(Bg(s — ) + f(9))ds 1€ (0,7]
S(O)E, q(Atq)tq‘ + [t = 9T Eg (Al = $)) f(s)ds
By [ (’”)T( — TE, (At — $)DA(s — T)ds
+B fn T(z — $)I7E, (At — $)T)A,(s — T)ds
for re(nt,(n+ D1],n=1,2,...

A (t) = (2.4)

o'} 1

where E, ,(z) = zf":O s and Eg(2) = 22 r<lq’+1) are Mittag-Leffler functions with two and one
parameter , respectively.
Now, we will study the following nonlinear fractional delay differential equations

SEDIX(t) = Ax(t) + Bx(t — ) + f(t, x(¢)) for t € I. (2.5)

with the initial conditions (2.2), (2.3) where A, B € R are given constants, f : I X R — R.

Remark 1. Note that in the case of the linear equation (2.1) we have formula (2.4) for the explicit
solution since in the case of nonlinear equation (2.5) we are not able to obtain an explicit formula, we
could provide only an integral presentation of the solution (see Example 1 and Example 2).

Example 1. Consider the special case of (2.1):

XD x(t) = x(t — 1) + tfort > 0

x()y=1t, te][-1,0], (2.6)
: 0.5 —
lim (" x(n) =0
Then applying E,,(0) = 5 we obtain the solution of (2.6):
t, te(-1,0]
L= 970(s=1+s)ds=2LE-1),  1€01]
1
x(1) = { == [[(t = 9 sds + = [ (¢ = 9)73(s = Dds + = [[(t = 9)7x(s — Dds 2.7)
=55t W(r = DI+ o = 1.5) + 11 = 1) + 575 2F1[0.5,1.5,2.5, 7]
,F1[0.5,2.5, 35 1, te(1,2].

15\f
O
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3. Main result

3.1. Existence of mild solutions of the IVP (2.5), (2.2), (2.3)

In connection with Remark 1 we will define a mild solution:

Definition 1. A function x € PC(J,R) is called a mild solution of the IVP (2.5), (2.2), (2.3) if it satisfies
the following integral equation

g(t) for tel-t1,0],
g(O)Eq,q(Atq)tq‘1 +B fol(t - s)"‘lEq,q(A(t —85)Ng(s —1)ds
+ fot(t - s)‘f‘lEq,q(A(t - )N f(s,x(s)ds for te(0,t],
x(1) = S g(O)E, (At + fot(t — $)TE, (At — $)1) f (s, x(5))ds
B [ - 81y (AG - $))x(s - T)ds
+B [ (t = $)17 E, o (A(t = 5))x(s — T)ds
for te(nt,(n+ rl,n=12,...,N

Example 2. Consider the partial case of (2.5) (compare with (2.6):

RLDY5x(t) = x(t — 1) + sin(x(?)) for t > 0

x(t) =t te[-1,0], (3.1)
lim ("°x(r)) = 0.

Now similarly to Example 1 we are not able to obtain the exact solution of (2.6). But using
Definition 1 we can consider the mild solution x(¢) of the IVP (3.1) satisfying:

t,  te(=1,0]
S [y = $)703(s = Dds + L= [ = )03 sin(x(s))ds
= 2Gi- D+ F [ -9 sin(x(s)ds, 1€ (0,1]
Vi fot(t = 8707 sin(x(s))ds + < fol(t =) (s = Dds + frt(f - 5)"x(s — Dds
= \/L; fot(t_ $)7%3 sin(x(s))ds — #(t— 'S + # Vit — 1.5)
+L [ - 905x(s - Dds, 1€ (1,20,

x(t) =

(3.2)

Examples 1 and 2 show the main difference between the linear RL fractional differential equations
and the nonlinear RL fractional differential equations with a linear part.

O
We will introduce the following conditions:

(A1). The function f € C([0, T] xR, R) and there exists a function w € C(I, R,) such that | f(z, x)| <
w(t) forallr € I, x € R.

(A2). The function f € C([0, T]xXR, R) and there exists a constant L > 0 such that | f(z, x)— f(z,y)| <
Lix —y|lforall t € I, x,y € R. First, we will consider the case of Lipschitz nonlinear function.

Theorem 1. Let A # O, the condition (A2) be satisfied and
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1. The function g € C([1,0], R and |g(0)| < co.

2. p= % < 1 where hy = MmaXero,7] |Eq(Atq) =1l

n—1
b= max { max (IE(AGt—nn)") =11+ > Bt = jO)) = Eg(A( = (j + D))

n=0,1,2,....N te(nt,(n+1)7] -
J=0

Then the the IVP (2.5), (2.2), (2.3) has a unique mild solution x € PC(J, R).

P r o o f: Existence. Define the operator Z : PC(J,R) — PC(J, R) by the equality

g(1) t€[-7,0]
g(O)Eq,q(At”’)t”"1 +B fot(t — s)‘HEM(A(t —85)g(s —1)ds
+ fot(t - s)‘f‘lEq,q(A(t - )N f(s,x(s)ds for te(0,7],
E(x(1)) = {g(0)E, ,(Ar)r1™! + fot(t — ) E, J(A(t — $)1)f (s, x(5))ds
+BY [ = 1V, (A - $Y)x(s - T)ds
+B [ (t = )7 E, (At = $)Dx(s — T)ds
for te(nr,(n+ Dr],n=1,2,...,N

Let z,y € PC(J,R). We will prove that

1=(z(1) = 2(GM)I

o (EAN Z 11 B0 IEAG = D0 = EfAC - G+ DD
< A] (3-3)
+ |B| 1B, (AC _lA’TT)q) — 1|)IIZ —y|l; for temr,(n+ 1], n=0,1,2,...,N

Let ¢ € (0, 7]. Then applying Definition 1 and the equality

t_ -1 - _DOA—i t_(i+1)—1
fo (t— 5)7"E, (At s)q)ds_;r((i+1)q) j; (t — 5)he g

> Al E (A7) - 1 34)
_ (i+1)g _ q
‘Zou+i)qr«i+1)q>’ =g e
we obtain
12(z(1) = EQ)| < | fo (t = )T E (At = ) f (5, 2(5)) — f(s,(5)lds]
<1 f (t— ) 'E, (At — 5)D)lz(s) — y(s)Ids]
0 ) (3.5)
< Lllz = yllyl fo (t— ) 'E, (At — 5)!)ds|
_ B A -1]
—L—|A| llz = ylly
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Let ¢ € (7, 27]. Then according to Definition 1 and the equality

d s Ai t .
(1= Y7 EyyAlt - s)Yds = Y —— f (¢ — )01 g
f o ;r«m)q) .

E (A(t—1)7) -1

_ A\G+Dg _
(t=7) —

Z i+ z)qr«z 1) Fe (2,

we have

12(z(0) = EG)| < | j; (1 = )7 Eg (At = $)DIf (5,2(5)) = f(s, 1(s))ldls|
+|Bl | fo (t = )1 Eg g (A(t = 5))|z(s = 7) = y(s = 7)lds]

+|Bl | f(t — )T Egg(A(t = 5)D)|z(s = 7) = y(s — 7)lds]
|Eq(Ar?) — 1]

< (LT + B | f (t— )T E, (At - s)q)dsl)llz = lls

( |Eq(Ar?) — 1] 1B |E(A(t — 1)) - 1]
Al Al

IA

Iz = -

Let ¢t € (27,37]. Then according to Definition 1 and the equalities

L(r — )1 E, J(A(t = 5)T)ds = Z 1“((?-—11)41) 2 (t — 5)0 D1 g
’ i=0 T
\ - E (A(t-21)1) -1
_ \+hg _ T4
ZO“ (1+ l)qr((l + 1)q)( T) = ) , te1,37),

and

2 © Al 27 .
(1= )T Eyg(Alt - sfds = 3 — 2 f (1 — )09 g
. e ;F((z+l)q) i

(o)

= Y A’ _N\(i+Dg _ A ST
= ; (1 + Hgl'((i + 1)gq) (t—1)"" ; 9 G+ D) (t — 27)*ha
_ E At — 1)) - E(A(t - 27))
= . ’

(3.6)

(3.7)

(3.8)

(3.9)
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we have
|Z(z(1) — E(y())] < | fo (t = )T Ey (At = 9)DIf (s, 2(5)) — f(s,1(s))lds]

+1B| | fo (t = )1 Eg (At = 5)D)|z(s = ) = y(s = 7)lds]

27
+Bl| | (1= 9T Egg(Alt = $)Dlz(s = T) = y(s — 7)lds]

T

+1B| | f2 (t = )1 Eg g (A(t = 5)")|z(s = ) = y(s = 7)lds]

|E4(A17) — 1] . 0
< (LT +1Bl | (1= 9T E, (At - 5)Tds|

(3.10)

+|Bl | i (1 = )7 Eqq(Alr — S)q)dSI)IIZ =y
< (LIEq(Atq) — 1 |Eq(A(r = 7)7) = Eo(A(r = 27)7)]

+1B]
Al 4]
|E (At = 20)7) - 1]

+1B——1 Iz = .

Following the induction process and the definition of p we obtain that ||Z(z(1))-Z(y())ll; < pllz=Yll,.
Therefore, the operator = : PC(J,R) — PC(J, R) is a contraction.

Uniqueness. Let z(7), y(¢) be two mild solutions of the IVP (2.5), (2.2), (2.3). Applying induction
process w.r.t. the intervals and from condition 2 we obtain that ||z — Yl|r.k+1)e1 < PNZ = Yllgr,k+1)r fOr
k=0,1,..., N which proves the uniqueness.

O

Remark 2. It is obvious that the condition A # 0 in Theorem 1 is not a restriction because the nonzero
term Ax could be added to the nonlinear part without losing the Lipschitz property.

Example 3. Consider the IVP (3.1) In this case A = 0.1, f(¢, x) = sin(x) — 0.1x, B = 1. Then the
condition (A2) is satisfied with L = 1.1 but the condition 2 of Theorem 1 is not satisfied.
Now, we change the equation in the IVP (3.1) to gLD?'S x() = 0.1x(z—1)+0.01 sin(x(?)). In this case
A =0.1, f(t,x) = 0.01 sin(x) = 0.1x, B = 0.1, by = h, = 0.43581 and p = L0048 < ] According
to Theorem the IVP (3.1) has unique mild solution which is satisfying the integral presentation given
in Definition 1.
O

In the case of a bounded nonlinear function we have the following result:
Theorem 2. Let the condition (Al) be satisfied and

1. The function g € C([1,0], R and |g(0)| < oo.

2.p= W < 1 where hy and h, are defined in Theorem 1.
Then the the IVP (2.5), (2.2), (2.3) has a unique solution x € PC(J, R).

The proof of Theorem 2 is similar to the one of Theorem 1 and we omit it.
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3.2. Continuous dependence on the initial functions

We will study the continuous dependence of mild solutions of the IVP (2.5), (2.2), (2.3) on the
initial functions.
Consider IVP (2.5), (2.2), (2.3) and the RL fractional equation (2.5) with initial conditions

x(t) = p(t), te[-1,0], G.11)
lim (#'~7x(1)) = ? E ; 3.12)

Theorem 3. Let the following conditions be satisfied:

1. The functions g, p € C([-7,0], R, [g(0)] < oo, |p(0)| < oo.
2. The function f € C([0,T] X R, R) and it is Lipschitz with a constant L > 0 on [0,T] X R.

Then for any number 6 > O there exist numbers K, C, > 0, k = 0,1,2,..., N such that the inequality
llg = plli—roy < & implies

x(r) = y(0)| < 6(Ki(t = kr)*™ + Cp) for t € (kr,(k+ D], k=0,1,2,....N (3.13)
where x(t), y(t) are mild solutions of the IVPs (2.5), (2.2), (2.3) and (2.5), (3.11), (3.12) respectively.

P ro o f: We will use the induction w.r.t. the intervals to prove the claim.
Let M = sup,; |E, ,(At7)|.
Let ¢t € (0, 7]. Then from Definition 1 and Eq. (3.4) we get
t
Ix(£) — y(t)] < SM1T™" + IBIMéf(t — 5)ds
0

+ LMf (t = ) x(s) = y(s)lds

|B (3.14)
< oM — )77 x(s) = y(s)lds
< M1 + 6Py + LM f (t - s)q_llx(s) —y(s)lds
0
where Pp = M %.
According to Proposition 3, the inequality fot(t — sy lsilds = W we obtain
_ (t - 1
|x(t) — y(£)] < SMtT™" + 6P + 6P, f MLI(g )
0 0 Z “Tug) p
(I _ S)nq 1 ;
+ oM f MLI (g ) ——s%ds
Z I'(ng) (3.15)

n [ -
< 6P, HZ:(;(MLF(Q)) Foo Ty oM 1r(q)nz(; (MLI(9))' Tt )

= 8(Kot'™' + Cp), t€(0,7]
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where Ko = MI(q)E,((MLT(q)t%), Co = M2 E,(MLI(q)7).

Let ¢ € (t,27]. Then applying Definition 1, (3.15), the inequalities fOT(T — 5) st ds = %fqﬁnq),

a(q)

Tog = 2 we get

Ix(t) = y(©)| < Mt + LM f (t — $)7 Y x(s) — y(s)lds + |BloM f T(t — 5) ds
0 0

Tt
+|BIM f (t — )7 Y 6Ky(s — 1) + 6Cp)ds

t — )22 27)
< sMet + LMok, =D VD s, B
['(29) q
q t—1)%Ir? t—1)
FIBISM + SIBIMK, Tr) . @D, spmc, =
7 2q) 1 (3.16)
+ LM f (t — )7 x(s) — y(s)lds
q q q
< Mt + 25(L + |B))MKy(t — T)q—lﬂ + SIBIMCy = + |B|5MQ
q q q
2q—ll'* r !
+oLMK, LD f (t = )7 x(s) = y(s)lds
I'(2q9) .

q t
< 26|B|MKOT—(I -0 4 6P, + LMf (t — )T x(s) — y(s)lds
q T

2g-1
where Py = Mr?™! + [BIMCyS + |BIMZ + LMK =812

According to Proposition 3 we obtain

q
(1) = ()] < 2ABIMKy—(t = )" + P+
q

X Yl(l _ S)nq—l 4 .
+ f [ > (ML (q)) TCD(2|B|MKO;(S—T)[I + P ds

q
< 2IBIMKy—(t — 1) + P\E,(MLT(g)(t — 7)7)
q

n

& n(t — 7)1+ (g) (3.17)
2|BIMKy— MLT
+ 218 % ;( (q)) [(ng + q)

q
< PE,MLI(q)(t — 7)) + 2|BIM Kor(q)T—(t — 1) E, (MLT(g)(t — 7)7)
q
q
< P\E,(MLI(q)t7) + 2|B|MK0F(q)T—(t - T)q_lEq,q(MLF(q)Tq)
q
= 5(1(1(: — )4 cl), t € (1,27]
where K; = 2|BIM*I*(q)E2 (MLI(q)t)< and C; = P, E,(MLI(q)7%).
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Let ¢ € (27,37]. Then applying Definition 1 and (3.6) we get

Ix(t) = y(t)| < SMtT™" + LM§ f (t = )T (KosT" + Cy)ds
0

27

+ LMS§ (t— )" YK (s — )T+ C)ds

+ LMf (t — )T x(s) — y(s)lds
2t

21

+|BIM§ f (t— ) 'ds + |BIM6 (t — ) Y (Ko(s — )" + Cp)ds
0

T

+|BIM§ f (t— ) YK (s = 20)7 " + C))ds
2t
@07

< SMQT) ! + SLMKy(37)* ' Beta[1/3, q, q] + SLMC,
(2g)

+ LMK, (27)* "' Beta[1/2, q, q] + SLMC,

+ LM | (=) x(s) — y(s)lds
27

+ |B|M5u + |BIMSKy(21)* ' Beta[1/2, q, q] + |BIMSC,
q

(27)
q

q12 q
o BME, D opyl 4 siBMC,
I'2q) q
7% (q) '
5|B|MK1 g —— (=20 + 6P, + LMf (t — )T x(s) — y(s)lds
27

where Betalx, g, q] is the incomplete beta function.
According to Proposition 3 we obtain

! (&)

TqFZ(q) ~ n(t— S)m]_1
() — ()| < SIBIMK, o (= 200" + 6P, + 6P, fz T[Z(MLF(C])) Tod |ds

n=1

g (1% w =yt
+ 8|BIMK, ZT[;(MLF(q)) (s = 20)"|ds

I'(2q9) ['(ng)
N n (1 —21)"
SO (=20
+ 6|BIMK (t—271)! MLI(q)) ————
'TQq) ZO( )r<q+nq>
%
= 0|BIMK, ; (2((;)1) 1 (MLL(q)(t = 27)7)(t = 27)77" + SPL,E,(MLI(g)(t — 27)7)

=Kyt =270)' + Cy, te(21,37],

where K, = 6§|BIMK, TF(FZ(‘)”E J(MLT(g)(t — 27)7) and C; = §P,E,(MLT(g)(7)).

Continue the induction process we prove the claim.
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Corollary 1. Let the conditions of Theorem 3 be satisfied and g > 0.5.
Then for any positive numbers 6, : € < T there exists a number K, C > 0 such that the inequality

llg — plli—roy < & implies

|x(?) — y(¢)] < 0K for t € (g,T], (3.18)
where x(t), y(t) are mild solutions of the IVPs (2.5), (2.2), (2.3) and (2.5), (3.11), (3.12) respectively.
P r o o f: The proof is similar to the one of Theorem 3 applying the inequality (SRR %’ for
te kr,(k+ 1], k=0,1,...,N.
O

3.3. Finite time stability

In this section we will define and study the finite time stability of mild solutions of the IVP for
Riemann-Liouville (2.5), (2.2), (2.3).

Note that because of the singularity of 77! at 0, we could prove the FTS on an interval which does
not contain 0.

Theorem 4. Let the function g € C([1,0], R, |g(0)| < oo, ¢ > 0.5 and the condition (Al) be satisfied.

Then for any real positive numbers 6,& : € < T there exists a number K depending on 6 and € such
that the inequality ||g|lj--0; < 0 implies |x(t)] < K for t € (g,T] where x(t) is the mild solution of the
IVP (2.5), (2.2), (2.3).

Proof: Let||glli--o; < ¢ and M = sup,, |E, ,(At7)|.
Let ¢ € (0, 7]. Then according to Definition 1 we have

!
lx(2)] < 6Eq,q(Atq)tq_l + IBléf (t—- s)q_lEq,q(A(t —s5)D\ds
0

+ f(t— )T E4(A(t = $YDIf (s, x(s))lds
0

! t (3.19)
< SM17! + |BIMS f (t — ) 'ds + M|wl|; f (t — 5)7'ds
0 0
T4
< oMt + M(IBI6 + |Iwll)—, 1€ (0,1].
q
From (3.19) it follows that
q
Ix(1)] < sMe?™" + M(|B|6 + ||w||,)T—, t e (e, 1) (3.20)
q

Let ¢ € (1,27]. Then we have
!
[x()| < M7 + M f (t = )T f(s, x(s5))|ds
0

T !
+ |BIMéS f (t— )" 'ds + |BIM f (t— ) 'x(s — 1)ds
0 T

27)4 2g-1
< M+ M((Iwll; + 8162 4 IBIM(5M il
q 2g -1

q
+ M(Iwll; + |B|6><%)2)

:Kl.
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Let ¢t € (27,371]. Then we have

Ix(t)] < SMQT)" + M f (t = )T f(s, x(s))lds + |B|IM& f T(r— $)7ds
0 0

27 q !
+|BIM (t— )" (M(s — 1) + M(|BI6 + ||w||1)T—)ds +|BIMK, | (t-s)"'ds
. q

37) 7241 74 T
< O™+ Ml + B0 + BIMGM 5 + MBI + Il ) + Ki )

= Kz.

Let ¢t € (37,47]. Then we have

41)¢ 2q-1
@, |BIM(5M ‘
q 2

q
x(0)] < SMGBT)"" + |M(wll; + BI6) -+ M(BIS + ||w||,><%>2)

+ |B|M§](K1 +Ky) = K.

Following the induction process we prove the claim with K = M(N7)?™! + |M(jwl|; + W&@ +
72071 T T
IBIM(5ME + M(BI6 + Iwll(5)?) + IBIME Y, Ki.

In the case the nonlinear Lipschitz functions we obtain the following result:

Theorem 5. Let the function g € C([1,0], R, |g(0)| < oo, ¢ > 0.5 and the condition (A2) be satisfied.

Then for any real positive numbers 6,& : € < T there exists a number K depending on 6 and & such
that the inequality ||g|lj--0; < 0 implies |x(t)| < K for t € (g,T] where x(t) is the mild solution of the
IVP (2.5), (2.2), (2.3).

P r oo f: According to Theorem 1 the the IVP (2.5), (2.2), (2.3) has a unique solution x € PC(J,R).
Let llgll o) < 6 and M = sup,.; |Eq (A1),

Let ¢ € (&, 7]. Then according to Definition 1 we have

!
|X(0)| < OE, (A1)t +|B|S f (t— )7 E, ,(A(t — 5)7)ds
0
!
+L f (t — ) E, ,(A(t = 5)D)|x(s)lds (3.21)

0

74 !

< Mt + |BIMS— + LM f (t — )T x(s)|ds.
q 0
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From (3.21) and Proposition 3 it follows that

w01 < v+ 8o+ [ Z(LMF DL syt ioms + s )i

['(ng)
(LMF((]))” (LMT(q))", .,
< oMt + |B|M6; + Mt 'T(q )Z —+) +|B |M6—Z oy A (pym
(3.22)
| o | (LMF(q))” o (LMTQ)"
< SM1" +|B|M6q +6Me1'T(q )Z )t”q+|B|M6q Z:; Ta s D (1)
< M1 'T(q)E, (LM (q))9) + |B|M6;Eq(LMF(q))t‘1).
Therefore, ,
x(1) < 5(Me'T(g) + |B|M%)Eq(LMF(q))'rq) = 6Ky, 1€ (7. (3.23)

Let t € (1, 27]. Then from (3.23) we have
x(t)] < oMt + ML fo t(t — )7 x(s)lds
+ |B|Mo f;a - ) 'ds + |BIM ft(t — )7 ' x(s — 7)ds
< SM1T !+ |BIMS(1 + KO)%q + ML fo [(t — )7 x(s)|ds.

From (3.24) and Proposition 3 it follows that

M LF(Q))"
I'(ng)

< SM'T(q)E .o (LMT (q))t") + |BIM5(1 + Ko);]Eq(LMF(q))tq).

q q
X(1)] < SME~" + [BIMS(1 + Ky) & + f Z ( — ) (M + |BIMS(1 + KO)T—))ds
q q

(3.24)
Therefore,
lx(?)| < 6(qu_1F(q) + |B|M(1 + KO)%q)Eq(LMF(q))T") = 0K, te(1,21] (3.25)
Following the induction process we obtain
lx(1)] < 5(Ms"‘1F(q) +|BIM(1 + Kk_l)%:)Eq(LMF(q))Tq) = 0Ky, te (kt,(k+ 1)7],
where K = (M&'~'T(q) + |BIM(1 + Ki-1)Z)E,(LMT(g)t), k =1,2,...,N.
Example 4. Consider the IVP (3.1) with RL fractional equatiolrjl

RLDY x(r) = 0.1x(r — 1) + 0.01 sin(x(z)). According to Example 3 it has unique mild solution x(r)
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which is satisfying the integral presentation given in Definition 1. Also, according to Theorem 5 for
06 = I, € = 0.001 the inequality |x(#)) < K holds for ¢ € [0.001,3]
where M = sup[0,3]Eo,5,0_5(0.1t0'5) = 0.7772,
Ky = (0.7772 + 0.001°371T°(0.5) + 0.1 = 0.7772()%5)Eq(0.11 x 0.7772I'(0.5)) = 52.321, K; = 62.0518
and K = K, = 63.8615.

4. Conclusions

We study scalar nonlinear RL fractional differential equations with constant delays. An
appropriate initial value problem for studd equations is set up based on the idea of the initial time
interval for delay differential equations with ordinary derivatives. A mild solution is defined based on
an appropriate integral representation of the solution. The existence, continuous dependence and
finite time stability of the scalar nonlinear RL fractional differential equations is studied by the help of
fractional generalization of Gronwall inequality. The obtained integral representations could be
successfully applied to study many qualitative investigation of the properties of the solutions of
nonlinear RL fractional differential equations.

Acknowledgments
Research was partially supported by Fund Scientific Research MU19-FMI-009, Plovdiv University.
Conflict of interest

All authors declare no conflicts of interest in this paper.

References

1. H.Zhang, R. Ye, S. Liu, et al. LMI-based approach to stability analysis for fractional-order neural
networks with discrete and distributed delays, Int. J. Syst. Sci., 49 (2018), 537-545.

2. W. Zhang, J. Cao, R. Wu, et al. Lag projective synchronization of fractional-order delayed chaotic
systems, J. Franklin Institute, 356 (2019), 1522—-1534.

3. W. Zhang, H. Zhang, J. Cao, et al. Synchronization in uncertain fractional-order memristive
complex-valued neural networks with multiple time delays, Neural Networks, 110 (2019), 186—
198.

4. P. Dorato, Short time stability in linear time-varying systems, Proc. IRE Int. Convention Record,
4 (1961), 83-87.

5. D.F Luo, Z. G. Luo, Uniqueness and novel finite-time stability of solutions for a class of nonlinear
fractional delay difference systems, Discr. Dynam, Nature Soc., 2018 (2018), 1-7.

6. G. C. Wu, D. Baleanu, S. D. Zeng, Finite-time stability of discrete fractional delay systems:
Gronwall inequality and stability criterion, Commun. Nonl. Sci. Numer. Simul., 57 (2018), 299—
308.

AIMS Mathematics Volume 5, Issue 4, 3809-3824.



3824

7. V. N. Phat, N. T. Thanh, New criteria for finite-time stability of nonlinear fractional-order delay
systems: A Gronwall inequality approach, Appl. Math. Lett., 83 (2018), 169-175.

8. D. F Luo, Z. G. Luo, Existence and finite-time stability of solutions for a class of nonlinear
fractional differential equations with time-varying delays and non-instantaneous impulses, Adv.
Diff. Eq., 155, 2019.

9. D. Qian , C. Li, R. P. Agarwal, et al. Stability analysis of fractional differential system with
Riemann-Liouville derivative, Math. Comput. Modell., 52 (2010), 862-874.

10. M. Li, J. Wang, Finite time stability of fractional delay differential equations, Appl. Math. Lett.,
64 (2017), 170-176.

11. M. Li, J. R. Wang, Exploring delayed Mittag-Leffler type matrix functions to study finite time
stability of fractional delay differential equations, Appl. Math. Comput., 324 (2018), 254-265.

12. M. Li, J. R. Wang, Finite time stability and relative controllability of Riemann-Liouville fractional
delay differential equations, Math. Meth. Appl. Sci., 2019 (2019), 1-17.

13. K. Diethelm, The Analysis of Fractional Differential Equations, Springer-Verlag, Berlin,
Heidelberg, 2010.

14. 1. Podlubny, Fractional Differential Equations, Academic Press: San Diego, 1999.

15. A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential
Equations, Elsevier, Amsterdam, 2006.

16. H. Ye, J. Gao, Y. Ding, A generalized Gronwall inequality and its application to a fracnal
differential equation, J. Math. Anal. Appl., 328 (2007), 1075-1081.

17. R. Agarwal, S. Hristova, D. O’Regan, Explicit solutions of initial value problems for linear scalar
Riemann-Liouville fractional differential equations with a constant delay, Mathematics, 8 (2020),
1-14.

©2020 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

@ AIMS Press

AIMS Mathematics Volume 5, Issue 4, 3809-3824.


http://creativecommons.org/licenses/by/4.0

	Introduction
	Preliminary notes
	Main result
	Existence of mild solutions of the IVP (2.5), (2.2), (2.3)
	Continuous dependence on the initial functions
	Finite time stability

	Conclusions

