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1. Introduction

The topic of fractional-order of differential equations has recently evolved as an interesting field of
research. In fact, fractional derivatives types supply a luxurious tool for the description of memory and
hereditary properties of various materials and processes. More investigators have found that fractional-
order differential equations play important roles in many research fields, such as chemical technology,
physics, biotechnology, population dynamics, and economics. On the advanced development of the
fractional differential equations have been caught much attention recently due to exact description
of nonlinear phenomena, for example, an understanding the behavior of a flow and heat transfer at
the nanoscale has been a great interest in recent years, one can find more details in the series of papers
published [1–6]. In recent years, many classes of differential equations involving the Caputo (Riemann-
Liouville, Hilfer, and Hadamard) fractional derivative have been investigated and developed by using
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different tools from the nonlinear analysis. For more details, see the monographs of Kilbas et al. [7],
Malinowska et al. [8], Podlubny [9], and some papers, for instance, [10–12] and the references cited
therein.

Recently, in [13] the author introduced a new fractional integral, which generalizes the Riemann-
Liouville and Hadamard integrals into a single form. For more properties such as expansion formulas,
variational calculus applications, control theoretical applications, convexity, and integral inequalities
and Hermite-Hadamard type inequalities of this new operator and similar operators, can be found
in [14–17]. The corresponding fractional derivatives were introduced in [8, 18, 19] which so-called
Katugampola fractional operators.

The existence and uniqueness results of fractional differential equations involving
Caputo-Katugampola derivative are given in [20], the author used the Peano theorem to obtain the
existence and uniqueness of solution for the following Cauchy type problem

cDα;ρ
0+ x(t) = g(t, x(t)), t ∈ [0,T ], (1.1)

x(k)(0) = x(k)
0 , k = 0, 1, ...,m − 1, m = [α]. (1.2)

In the same context, R. Almeida in [21], proved the uniqueness of solution of the problem (1.1)–
(1.2) involving cDα;ρ

a+ via Gronwall inequality type. On the other hand, Oliveira and de Oliveira in [22],
considered the initial value problem for a nonlinear fractional differential equation including Hilfer-
Katugampola derivative of the form

ρDα,β
a+ x(t) = g(t, x(t)), t ∈ J = [a, b], (1.3)

ρI1−γ
a+ x(a) = c, γ = α + β − αβ. (1.4)

They used the generalized Banach fixed point theorem to investigate the existence and uniqueness
results on the problem (1.3)–(1.4).

The recent development of implicit fractional differential equations and the theoretical analysis can
be seen in [23–26]. Some anti-periodic boundary value problems for fractional differential equations
were also discussed in [27–30]. In order to investigate the different kinds of stability in the Ulam sense
for fractional differential equations, we mention the works [31–34].

To the best of our knowledge, the implicit fractional differential equations with anti-periodic
boundary conditions and Caputo-Katugampola type have not yet been studied widely till the present
day. So, in this paper, we investigate a new class of Caputo-Katugampola type implicit fractional
differential equation, that is

cDα;ρ
a+ x(t) = g(t, x(t),c Dα;ρ

a+ x(t)), t ∈ J = [a,T ]. (1.5)

x(a) + x(T ) = 0, (1.6)

where 0 < α < 1, cDα;ρ
a+ is the fractional derivatives of order α in the Caputo-Katugampola sense, and

g : J × R −→ R is an appropriate function.
The purpose of this paper is to study the existence, uniqueness and Ulam-Hyers stability of solutions

of the given problem (1.5)–(1.6). Our study is based on fixed point theorems due to Banach and
Krasnoselskii [35], and generalized Gronwall inequality [36].
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This is the recent and new work on the boundary value problem for implicit fractional differential
equations with an anti-periodic condition involving Caputo-Katugampola fractional derivative. The
proposed problem is more generalized, and some it in the literature are the special cases of it.
Moreover, our analysis can also be applied to the addressed problems by selecting the with the
convenient parameter of ρ, i.e., The Caputo-Katugampola fractional derivative cDα;ρ

a+ is an interpolator
of the following fractional derivatives: standard Caputo (ρ → 1, a → 0) [37] , Caputo-Hadamard
(ρ→ 0) [38], Liouville (ρ→ 1, a→ 0) [7], and Weyl (ρ→ 1, a→ −∞) [7].

The paper is systematized as follows: In the section 2, we survey briefly the properties of
Katugampola fractional integral and Caputo-Katugampola fractional derivative, and we also introduce
the fundamental tools related to our analysis and proving some axiom lemmas which play a key role
in the sequel. Section 3 and 4 are devoted to the existence, uniqueness and stability results of the
problem (1.5)–(1.6) by applying the Krasnoselskii/Banach fixed point theorem, and generalized
Gronwall inequality. The last section promotes our outcomes to problem (1.5)–(1.6)) by giving
illustrative examples to justify the provided results.

2. Preliminaries

We shall start this section with recall some essential lemmas, basic definitions, lemmas and
preliminary facts related to our results throughout the paper. Let J = [a,T ] (−∞ < a < T < ∞) be a
finite interval of R. Denote C(J,R) be the Banach space of all continuous functions from J into R
endowed with the norm given by

‖z‖C = sup
t∈J
|z(t)| : t ∈ J},

for z ∈ C(J,R). Cn(J,R) (n ∈ N0) denotes the set of mappings having n times continuously
differentiable on J.

For a < T , c ∈ R and 1 ≤ p < ∞, define the function space

Xp
c (a,T ) =

z : J → R : ‖z‖Xp
c

=

(∫ T

a
|tcz(t)|p

dt
t

) 1
p

< ∞

 .
for p = ∞,

‖z‖Xp
c

= ess sup
a≤t≤T

[|tcz(t)|] .

Definition 2.1. [13] Let t > a be two reals, α > 0, ρ > 0, c ∈ R and z ∈ Xp
c (a,T ). The left-sided

Katugampola fractional integral of order α with dependence on a parameter ρ is defined by

Iα;ρ
a+ z(t) =

ρ1−α

Γ(α)

∫ t

a
τρ−1 (tρ − τρ)α−1 z(τ)dτ, (2.1)

where, Γ(.) is a gamma function.

Definition 2.2. [18] Let n − 1 < α < n , (n = [α] + 1), ρ > 0, c ∈ R and z ∈ Xp
c (a,T ). The left-sided

Katugampola fractional derivative of order α with dependence on a parameter ρ is defined as

Dα;ρ
a+ z(t) =

(
t1−ρ d

dt

)n

In−α;ρ
a+ z(t) =

γn ρα−n+1

Γ(n − α)

∫ t

a
τρ−1 (tρ − τρ)n−α−1 z(τ)dτ, t > a, (2.2)
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where γ =
(
t1−ρ d

dt

)
. In particular, if 0 < α < 1, ρ > 0, and z ∈ C1(J,R), we have

Dα;ρ
a+ z(t) =

(
t1−ρ d

dt

)
I1−α;ρ
a+ z(t) =

γρα

Γ(1 − α)

∫ t

a
τρ−1 (tρ − τρ)−α z(τ)dτ, t > a.

Definition 2.3. [18] Let α ≥ 0, n = [α] + 1. If z ∈ Cn(J,R). The left sided Caputo-Katugampola
fractional derivative of order α with a parameter ρ > 0 is defined by

CDα;ρ
a+ z(t) = Dα;ρ

a+

z(t) −
n−1∑
k=0

z(k)
ρ (a)
k!

ρ−k (tρ − aρ)k

 , (2.3)

where z(k)
ρ (t) =

(
t1−ρ d

dt

)k
z(t). In case 0 < α < 1, and z ∈ C1(J,R), we have

CDα;ρ
a+ z(t) = Dα;ρ

a+ [z(t) − z(a)] . (2.4)

From (2.4) and (2.2), we obtain

CDα;ρ
a+ z(t) =

γρα

Γ(1 − α)

∫ t

a
τρ−1 (tρ − τρ)−α [z(τ) − z(a)] dτ, t > a, γ =

(
t1−ρ d

dt

)
Obviously, if α < N0, and z ∈ C1(J,R), then the Caputo-Katugampola fractional derivative exists a.e,
moreover, we have

CDα;ρ
a+ z(t) =

ρα

Γ(1 − α)

∫ t

a
τρ−1 (tρ − τρ)−α z(1)

ρ (τ)dτ, t > a,

= I1−α;ρ
a+ z(1)

ρ (t).

Also, if α ∈ N, then CDα;ρ
a+ z(t) = z(n)

ρ (t). Particularly, CD0;ρ
a+ z(t) = z(0)

ρ (t) = z(t).

Lemma 2.4. [13] Iα;ρ
a+ is bounded on the function space Xp

c (a,T ).

Lemma 2.5. [13] Let α > 0, β > 0, z ∈ Xp
c (a,T ) (1 ≤ p ≤ ∞), ρ, c ∈ R, ρ ≥ c. Then we have

Iα;ρ
a+ Iβ;ρ

a+ z(t) = Iα+β;ρ
a+ z(t), cDα;ρ

a+
ρIαa+z(t) = z(t).

Lemma 2.6. [13,18] Let t > a, α, δ ∈ (0,∞), and Iα;ρ
a+ ,D

α;ρ
a+ and CDα;ρ

a+ are according to (2.1), (2.2) and
(2.3) respectively. Then we have

Iα;ρ
a+ (tρ − aρ)δ−1 =

ρ−α Γ(δ)
Γ(δ + α)

(tρ − aρ)α+δ−1 ,

CDα;ρ
a+ (tρ − aρ)δ−1 =

ρ+α Γ(δ)
Γ(δ − α)

(tρ − aρ)δ−α−1 ,

and
CDα;ρ

a+ (tρ − aρ)k = 0, α ≥ 0, k = 0, 1, ..., n − 1.

Particularly, CDα;ρ
a+ (1) = 0.
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Lemma 2.7. [39] Let α, ρ > 0 and x ∈ C(J,R) ∩C1(J,R). Then

1. The Caputo-Katugampola fractional differential equation

cDα;ρ
a+ x(t) = 0

has a solution

x(t) = c0 + c1

(
tρ − aρ

ρ

)
+ c2

(
tρ − aρ

ρ

)2

+ .... + cn−1

(
tρ − aρ

ρ

)n−1

,

where ci ∈ R, i = 0, 1, 2, ..., n − 1 and n = [α] + 1.
2. If x,C Dα;ρ

a+ x ∈ C(J,R) ∩C1(J,R). Then

Iα;ρ
a+

CDα;ρ
a+ x(t) = x(t) + c0 + c1

(
tρ − aρ

ρ

)
+ c2

(
tρ − aρ

ρ

)2

+ .... + cn−1

(
tρ − aρ

ρ

)n−1

, (2.5)

where ci ∈ R, i = 0, 1, 2, ..., n − 1 and n = [α] + 1.

Lemma 2.8. [36] Let α > 0, v,w be two integrable functions and z a continuous function, with domain
[a,T ]. Assume that v and w are nonnegative; and let z is nonnegative and nondecreasing. If

v(t) ≤ w(t) + z(t)ρ1−α
∫ t

a
τρ−1(tρ − τρ)α−1v(τ)dτ, t ∈ [a,T ],

then

v(t) ≤ w(t) +

∫ t

a

 ∞∑
k=1

ρ1−kα(z(t)Γ(α))k

Γ(kα)
τρ−1(tρ − τρ)kα−1w(τ)

 dτ, t ∈ [a,T ].

Remark 2.9. In particular, if w(t) be a nondecreasing function on J. Then we have

v(t) ≤ w(t)Eα

[
g(t)Γ(α)

(
tρ − aρ

ρ

)α]
, t ∈ [a,T ].

where Eα(·) is the Mittag-Leffler function defined by

Eα(x) =

∞∑
k=0

xk

Γ(αk + 1)
, x ∈ C, Re(α) > 0.

Theorem 2.10. [35] (Banach fixed point theorem) Let (X, d) be a nonempty complete metric space
with Q : X → X is a contraction mapping. Then map Q has a fixed point.

Theorem 2.11. [35] (Krasnoselskii’s fixed point theorem) Let X be a Banach space, let Ω be a bounded
closed convex subset of X and let Q1,Q2 be mapping from Ω into X such that Q1x + Q2y ∈ Ω for every
pair x, y ∈ Ω. If Q1 is contraction and Q2 is completely continuous, then there exists z ∈ Ω such that
Q1z + Q2z = z.
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3. Existence and uniqueness theorems

In this section, our purpose is to discuss the existence and uniqueness of solutions to the fractional
boundary value problem (1.5)–(1.6). The following lemma plays a pivotal role in the forthcoming
analysis.

Lemma 3.1. [39] Let 0 < α < 1, ρ > 0 and w ∈ C(J,R). Then the linear anti-periodic boundary value
problem

cDα;ρ
a+ x(t) = w(t), t ∈ J, (3.1)

x(a) + x(T ) = 0, (3.2)

has a unique solution defined by

x(t) = −
1
2
ρ1−α

Γ(α)

∫ T

a
τρ−1(T ρ − τρ)α−1w(τ)dτ +

ρ1−α

Γ(α)

∫ t

a
τρ−1(tρ − τρ)α−1w(τ)dτ. (3.3)

Lemma 3.2. Assume that g : J × R × R → R is continuous. A function x(t) solves the problem
(1.5)–(1.6) if and only if it is a fixed-point of the operator Q : C(J,R)→ C(J,R) defined by

Qx(t) = −
1
2
ρ1−α

Γ(α)

∫ T

a
τρ−1(T ρ − τρ)α−1g(τ, x(τ),c Dα;ρ

a+ x(τ))dτ

+
ρ1−α

Γ(α)

∫ t

a
τρ−1(tρ − τρ)α−1g(τ, x(τ),c Dα;ρ

a+ x(τ))dτ. (3.4)

Our first result is based on Banach’s fixed point theorem to obtain the existence of a unique solution
of problem (1.5)–(1.6).

Theorem 3.3. Assume that g : J × R × R→ R be a continuous satisfies the following condition:

(H1) There exists a constant 0 < L < 1 such that:

|g(t, x1, x2) − g(t, y1, y2)| ≤ L
[
|x1 − y1| + |x2 − y2|

]
, ∀t ∈ J, xi, yi ∈ R, (i = 1, 2).

If

N =
3
2

Lρ−α

1 − L
(T ρ − aρ)α

Γ(α + 1)
< 1, (3.5)

then the problem (1.5)–(1.6) has a unique solution on J.

Proof. Now, we first show that the operator Q : C(J,R) → C(J,R) defined by (3.4) is well-defined,
i.e., we show that QSr ⊆ Sr where

Sr = {x ∈ C(J,R), ‖x‖ ≤ r}, (3.6)

with choose r ≥ M

1−N , where N < 1 and

M =
3
2
µρ−α

1 − L
(T ρ − aρ)α

Γ(α + 1)
.
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and supt∈J |g(t, 0, 0)| := µ < ∞. Set Gx(t) := g(t, x(t),c Dα;ρ
a+ x(t)). For any x ∈Sr, we obtain by our

hypotheses that

|Qx(t)| ≤ sup
t∈J
|Qx(t)|

≤ sup
t∈J

{
1
2
ρ1−α

Γ(α)

∫ T

a
τρ−1(T ρ − τρ)α−1 |Gx(τ)| dτ

+
ρ1−α

Γ(α)

∫ t

a
τρ−1(tρ − τρ)α−1 |Gx(τ)| dτ

}
.

From (H1), we have

|Gx(τ)| =
∣∣∣g(τ, x(τ),c Dα;ρ

a+ x(τ))
∣∣∣

≤
∣∣∣g(τ, x(τ),c Dα;ρ

a+ x(τ)) − g(τ, 0, 0)
∣∣∣ + |g(τ, 0, 0)|

≤ L |x(τ)| + L
∣∣∣cDα;ρ

a+ x(τ)
∣∣∣ + µ

= Lr + L |Gx(τ)| + µ

which gives

|Gx(τ)| ≤
(Lr + µ)

1 − L
. (3.7)

Therefore,

|Qx(t)| ≤ sup
t∈J

{
1
2

(Lr + µ)
1 − L

ρ1−α

Γ(α)

∫ T

a
τρ−1(T ρ − τρ)α−1dτ

+
(Lr + µ)

1 − L
ρ1−α

Γ(α)

∫ t

a
τρ−1(tρ − τρ)α−1 |Gx(τ)| dτ

}
≤

3
2

(Lr + µ) ρ−α

1 − L
(T ρ − aρ)α

Γ(α + 1)

=
3
2

L ρ−α

1 − L
(T ρ − aρ)α

Γ(α + 1)
r +

3
2
µρ−α

1 − L
(T ρ − aρ)α

Γ(α + 1)
= Nr +M < r,

‖Qx‖ < r,

which implies that Qx ∈ Sr. Moreover, by (3.4), and lammas 2.5, 2.6, we obtain

CDα;ρ
a+ Qx(t) = CDα;ρ

a+ Iα;ρ
a+ Gx(t) = Gx(t).

Since Gx(·) is continuous on J, the operator cDα;ρ
a+ Qx(t) is continuous on J, that is Q Sr ⊆ Sr.

Next, we apply the Banach fixed point theorem to prove that Q has a fixed point. Indeed, it enough
to show that Q is contraction map. Let x1, x2 ∈ C(J,R) and for t ∈ J. Then, we have

|Qx1(t) − Qx2(t)| ≤
1
2
ρ1−α

Γ(α)

∫ T

a
τρ−1(T ρ − τρ)α−1

∣∣∣Gx1(τ) −Gx2(τ)
∣∣∣ dτ

+
ρ1−α

Γ(α)

∫ t

a
τρ−1(tρ − τρ)α−1

∣∣∣Gx1(τ) −Gx2(τ)
∣∣∣ dτ
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by (H1), we get∣∣∣Gx1(τ) −Gx2(τ)
∣∣∣ =

∣∣∣g(τ, x1(τ),c Dα;ρ
a+ x1(τ)) − g(τ, x1(τ),c Dα;ρ

a+ x2(τ))
∣∣∣

≤ L |x1 − x2| + L
∣∣∣cDα;ρ

a+ x1(τ) − cDα;ρ
a+ x2(τ)

∣∣∣
= L |x1 − x2| + L

∣∣∣Gx1(τ) −Gx2(τ)
∣∣∣ ,

which implies ∣∣∣Gx1(τ) −Gx2(τ)
∣∣∣ ≤ L

1 − L
|x1 − x2| . (3.8)

Then

‖Qx1 − Qx2‖ ≤
3
2

L
1 − L

ρ−α

Γ(α + 1)
(T ρ − aρ)α ‖x1 − x2‖ .

Consequently, ‖Qx1 − Qx2‖ ≤ N ‖x1 − x2‖. Since N < 1, the operator Q is contraction mapping.
As a consequence of theorem 2.10, then the problem (1.5)–(1.6) has a unique solution. This complete
the proof. �

Our second existence result for the problem (1.5)–(1.6) is based on the Krasnoselskii
′

s fixed point
theorem.

Theorem 3.4. Assume that (H1) holds. If

Λ :=
3
2

L
1 − L

ρ−α

Γ(α + 1)
(T ρ − aρ)α <

1
2
,

then the problem (1.5)–(1.6) has at least one solution on J.

Proof. Consider the operator Q : C(J,R) −→ C(J,R) defined by (3.4). Define the ball Sr0 := {x ∈
C(J,R) : ‖x‖ ≤ r0}, with r0 ≥ 2µΛ, where µ is defined as in Theorem 3.3. Furthere, we define the
operators Q1 and Q2 on Sr0 by

Q1x(t) = −
1
2
ρ1−α

Γ(α)

∫ T

a
τρ−1(T ρ − τρ)α−1Gx(τ)dτ,

and

Q2x(t) =
ρ1−α

Γ(α)

∫ t

a
τρ−1(tρ − τρ)α−1Gx(τ)dτ.

Taking into account that Q1 and Q2 are defined on Sr0 , and for any x ∈ C(J,R),

Qx(t) = Q1x(t) + Q2x(t), t ∈ J.

The proof will be divided into several claims:
Claim 1: Q1x1 + Q2x2 ∈ Sr0 for every x1, x2 ∈ Sr0 .
For x1 ∈ Sr0 and using the same arguments in (3.7), we get

∣∣∣Gx1(τ)
∣∣∣ ≤ (Lr0 + µ)

1 − L
.
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Similarly, for x2 ∈ Sr0 , we obain ∣∣∣Gx2(τ)
∣∣∣ ≤ (Lr0 + µ)

1 − L
.

Now, for x1, x2 ∈ Sr0 and t ∈ J, we have

|Q1x1(t) + Q2x2(t)| ≤ |Q1x1(t)| + |Q2x2(t)|

≤
1
2
ρ1−α

Γ(α)

∫ T

a
τρ−1(T ρ − τρ)α−1

∣∣∣Gx1(τ)
∣∣∣ dτ

+
ρ1−α

Γ(α)

∫ t

a
τρ−1(tρ − τρ)α−1

∣∣∣Gx2(τ)
∣∣∣ dτ

≤
3
2

ρ−α

Γ(α + 1)
(T ρ − aρ)α

(Lr0 + µ)
1 − L

≤

(
3
2

L
1 − L

ρ−α

Γ(α + 1)
(T ρ − aρ)α

)
r0 +

3
2

µ

1 − L
ρ−α

Γ(α + 1)
(T ρ − aρ)α

which gives
‖Q1x1 + Q2x2‖ ≤ r0. (3.9)

This proves that Q1x1 + Q2x2 ∈ Sr0 for every x1, x2 ∈ Sr0 .
Claim 2 Q1 is a contration mapping on Sr0 .
Since Q is contraction mapping as in Theorem 3.3, then Q1 is a contraction map too.
Claim 3. The operator Q2 is completely continuous on Sr0 .
First, from the continuity of Gx(·), we conclude that the operator Q2 is continuous.
Next, It is easy to verify that

‖Q2x‖ ≤
(Lr0 + µ)

1 − L
ρ−α

Γ(α + 1)
(T ρ − aρ)α < r0,

due to definitions of Λ and r0. This proves that Q2 is uniformly bounded on Sr0

Finally, we prove that Q2 maps bounded sets into equicontinuous sets of C(J,R), i.e.,
(
QSr0

)
is

equicontinuous. We estimate the derivative of Q2x(t)

∣∣∣(Q2x)′ (t)
∣∣∣ =

∣∣∣∣∣∣ ρ1−α

Γ(α − 1)

∫ t

a
τρ−1(tρ − τρ)α−2Gx(τ)dτ

∣∣∣∣∣∣
≤

ρ1−α

Γ(α − 1)

∫ t

a
τρ−1(tρ − τρ)α−2 |Gx(τ)| dτ

≤
(Lr0 + µ)

1 − L
ρ−α

Γ(α)
(T ρ − aρ)α−1 := K

Now, Let t1, t2 ∈ J, with t1 < t2 and for any x ∈Sr0 . Then we have

|Q2x(t1) − Q2x(t2)| =
∫ t2

t1

∣∣∣(Q2x)′ (τ)
∣∣∣ dτ ≤ K(t2 − t1).

As t1 −→ t2 the right-hand side of the above inequality is not dependent on x and tends to zero.
Consequently,

|Q2x(t1) − Q2x(t2)| → 0, ∀ |t2 − t1| → 0, x ∈ Sr0 .
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This proves that Q2 is equicontinuous on Sr0 . According to Arzela-Ascoli Theorem, it follows that
Q2 is relatively compact on Sr0 . Hence all the hypotheses of Theorem 2.11 are satisfied. Therefore, we
conclude that the problem (1.5)–(1.6) has at least one solution on J. �

4. Ulam-Hyers stability

In this section, we discuss the Ulam-Hyers and generalized Ulam-Hyers stability of
Caputo-Katugampola-type for the problem (1.5)–(1.6). The following observations are taken
from [33, 37].

Definition 4.1. The problem (1.5)–(1.6) is Ulam-Hyers stable, if there exists a real number K f > 0,
such that for each ε > 0 and for each solution x̃ ∈ C(J,R) of the inequality∣∣∣cDα;ρ

a+ x̃(t) − g(t, x̃(t),c Dα;ρ
a+ x̃(t))

∣∣∣ ≤ ε, t ∈ J, (4.1)

there exists a solution x ∈ C(J,R) for the problem (1.5)–(1.6) such that

|x̃(t) − x(t)| ≤ K fε, t ∈ J.

Definition 4.2. The problem (1.5)–(1.6) is generalized Ulam-Hyers stable if there exists
Ψ ∈ C([0,∞), [0,∞)) with Ψ(0) = 0, such that for each solution x̃ ∈ C(J,R) of the inequality∣∣∣cDα;ρ

a+ x̃(t) − g(t, x̃(t),c Dα;ρ
a+ x̃(t))

∣∣∣ ≤ ε, t ∈ J, (4.2)

there exists a solution x ∈ C(J,R) for the problem (1.5)–(1.6) such that

|x̃(t) − x(t)| ≤ Ψ(ε), t ∈ J.

Remark 4.3. Let α, ρ > 0. A function x̃ ∈ C(J,R) is a solution of the inequality (4.1) if and only if
there exist a function hx̃ ∈ C(J,R) such that

1. |hx̃(t)| ≤ ε for all t ∈ J,
2. Dα;ρ

a+ x̃(t) = g(t, x̃(t),c Dα;ρ
a+ x̃(t)) + hx̃(t), t ∈ J.

Lemma 4.4. Let x̃ ∈ C(J,R) is a solution of the inequality (4.1). Then x̃ is a solution of the following
integral inequality: ∣∣∣∣∣∣x̃(t) − Zx̃ −

ρ1−α

Γ(α)

∫ t

a
τρ−1 (tρ − aρ)α−1 g(τ, x̃(τ),c Dα;ρ

a+ x̃(τ))dτ

∣∣∣∣∣∣
≤

3
2

ερ−α

Γ(α + 1)
(T ρ − aρ)α ,

where

Zx̃ =
1
2
ρ1−α

Γ(α)

∫ T

a
τρ−1 (T ρ − aρ)α−1 g(τ, x̃(τ),c Dα;ρ

a+ x̃(τ))dτ. (4.3)
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Proof. In view of Remark 4.3, and Theorem 3.3, we obtain

x̃(t) = −
1
2
ρ1−α

Γ(α)

∫ T

a
τρ−1 (T ρ − aρ)α−1

[
g(τ, x̃(τ),c Dα;ρ

a+ x̃(τ)) + hx̃(τ))
]

dτ

+
ρ1−α

Γ(α)

∫ t

a
τρ−1 (tρ − aρ)α−1

[
g(τ, x̃(τ),c Dα;ρ

a+ x̃(τ)) + hx̃(τ)
]

dτ. (4.4)

It follows that ∣∣∣∣∣∣x̃(t) − Zx̃ −
ρ1−α

Γ(α)

∫ t

a
τρ−1 (tρ − aρ)α−1 g(τ, x̃(τ),c Dα;ρ

a+ x̃(τ))dτ

∣∣∣∣∣∣
≤

1
2
ρ1−α

Γ(α)

∫ T

a
τρ−1 (T ρ − aρ)α−1

|hx̃(t)| dτ

+
ρ1−α

Γ(α)

∫ t

a
τρ−1 (tρ − aρ)α−1

|hx̃(t)| dτ

≤
ε

2
ρ1−α

Γ(α)

∫ T

a
τρ−1 (T ρ − aρ)α−1 dτ

+ε
ρ1−α

Γ(α)

∫ t

a
τρ−1 (tρ − aρ)α−1 dτ

≤
3
2

ερ−α

Γ(α + 1)
(T ρ − aρ)α .

�

Theorem 4.5. Assume that the hypotheses of Theorem 3.3 are satisfied. Then the problem (1.5)–(1.6)
is Ulam-Hyers stable.

Proof. Let ε > 0, and x̃ ∈ C(J,R) be a function which satisfies the inequality (4.1), and let x ∈ C(J,R)
be the unique solution of the following Caputo-Katugampola fractional differential equation

cDα;ρ
a+ x(t) = g(t, x(t),c Dα;ρ

a+ x(t)), t ∈ J, (4.5)

with
x(a) = x̃(a), x(T ) = x̃(T ), (4.6)

where 0 < α < 1. Using Lemma 3.1, It is easily seen that x(·) satisfies the integral equation

x(t) = Zx +
ρ1−α

Γ(α)

∫ t

a
τρ−1(tρ − τρ)α−1g(τ, x(τ),c Dα;ρ

a+ x(τ))dτ,

where

Zx = −
1
2
ρ1−α

Γ(α)

∫ T

a
τρ−1(T ρ − τρ)α−1g(τ, x(τ),c Dα;ρ

a+ x(τ))dτ.

Applying Lemma 4.4, we obtain∣∣∣∣∣∣x̃(t) − Zx̃ −
ρ1−α

Γ(α)

∫ t

a
τρ−1(tρ − τρ)α−1g(τ, x(τ),c Dα;ρ

a+ x(τ))dτ

∣∣∣∣∣∣ ≤ Vε, (4.7)
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where
V :=

3
2

ρ−α

Γ(α + 1)
(T ρ − aρ)α .

From (4.6) we can easily get that |Zx̃ − Zx| → 0. Indeed, from (H1) and (4.6), we obtain that

|Zx̃ − Zx| =

∣∣∣∣∣∣12 ρ1−α

Γ(α)

∫ T

a
τρ−1(T ρ − τρ)α−1g(τ, x̃(τ),c Dα;ρ

a+ x̃(τ))dτ

−
1
2
ρ1−α

Γ(α)

∫ T

a
τρ−1(T ρ − τρ)α−1g(τ, x(τ),c Dα;ρ

a+ x(τ))dτ

∣∣∣∣∣∣
≤

1
2

Iα;ρ
a+

∣∣∣g(T, x̃(T ),c Dα;ρ
a+ x̃(T )) − g(T, x(T ),c Dα;ρ

a+ x(T ))
∣∣∣ .

Since, ∣∣∣g(T, x̃(T ),c Dα;ρ
a+ x̃(T )) − g(T, x(T ),c Dα;ρ

a+ x(T ))
∣∣∣

≤ L |x̃(T ) − x(T )| + L
∣∣∣cDα;ρ

a+ x̃(T ) −c Dα;ρ
a+ x(T )

∣∣∣
≤

L
1 − L

|x̃(T ) − x(T )| (4.8)

which implies

|Zx̃ − Zx| ≤
L

2(1 − L)
Iα;ρ
a+ |x̃(T ) − x(T )| → 0.

Hence,

x(t) = Zx̃ +
ρ1−α

Γ(α)

∫ t

a
τρ−1(tρ − τρ)α−1g(τ, x(τ),c Dα;ρ

a+ x(τ))dτ.

According to (4.7), (H1) and (4.8), we obtain

|x̃(t) − x(t)| ≤

∣∣∣∣∣∣x̃(t) − Zx̃ −
ρ1−α

Γ(α)

∫ t

a
τρ−1(tρ − τρ)α−1g(τ, x̃(τ),c Dα;ρ

a+ x̃(τ))dτ

∣∣∣∣∣∣
+
ρ1−α

Γ(α)

∫ t

a
τρ−1(tρ − τρ)α−1

∣∣∣g(τ, x̃(τ),c Dα;ρ
a+ x̃(τ)) − g(τ, x(τ),c Dα;ρ

a+ x(τ))
∣∣∣ dτ

≤ Vε +
L

1 − L
ρ1−α

Γ(α)

∫ t

a
τρ−1(tρ − τρ)α−1 |x̃(τ) − x(τ)| dτ.

Applying Lemma 2.8, and Remark 2.9, it follows that

|x̃(t) − x(t)| ≤ Vε +

∫ t

a

 ∞∑
k=1

ρ1−kα
(

L
1−Lρ

1−α
)k

Γ(kα)
τρ−1(tρ − τρ)kα−1Vε

 dτ

≤
3
2

ερ−α

Γ(α + 1)
(T ρ − aρ)α Eα

(
L

1 − L

(
tρ − aρ

ρ

)α)
≤

3
2

ερ−α

Γ(α + 1)
(T ρ − aρ)α Eα

(
L

1 − L

(
T ρ − aρ

ρ

)α)
.
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For K f = 3
2

ρ−α

Γ(α+1) (T ρ − aρ)α Eα

(
L

1−L

(
T ρ−aρ
ρ

)α)
, we get

|x̃(t) − x(t)| ≤ K fε. (4.9)

Therefore the problem (1.5)–(1.6) is Ulam-Hyers stable. �

Corollary 4.6. Under assumptions of Theorem 4.5, Assume that Ψ : R+ → R+ such that Ψ(0) = 0.
Then tne problem (3.1)–(3.2) is generalized Ulam-Hyers stable.

Proof. One can repeat the same processes in Theorem 4.5 with putting K fε = Ψ(ε), and Ψ(0) = 0, we
conclude that

|x̃(t) − x(t)| ≤ Ψ(ε).

�

5. Examples

Example 5.1. Consider the following problem of implicit fractional differential equations involving
Caputo Katugampola type and anti-period condition:

CKD
1
2 ; 1

2
0+ x(t) =


1

3e
√

t+1 +
2+|x(t)|+

∣∣∣∣∣∣D 1
2 ; 1

2
0+ x(t)

∣∣∣∣∣∣
8e2−t

(
1+|x(t)|+

∣∣∣∣∣∣D 1
2 ; 1

2
0+ x(t)

∣∣∣∣∣∣
)
 , t ∈ [0, 1],

x(0) + x(1) = 0,

. (5.1)

Set:

g(t, u, v) =

[
1
3

e
√

t+1 +
2 + u + v

8e2−t (1 + u + v)

]
, t ∈ [0, 1], u, v ∈ R+,

with α = 1
2 and ρ = 1

2 . Clearly, the function g ∈ C([0, 1]). For each u, v, u∗, v∗ ∈ R+ and t ∈ [0, 1]

|g(t, u, v) − g(t, u∗, v∗)| =

∣∣∣∣∣ 2 + u + v
8e2−t (1 + u + v)

−
2 + u∗ + v∗

8e2−t (1 + u∗ + v∗)

∣∣∣∣∣
≤

1
8e2−t

(|u − u∗| + |v − v∗|)

≤
1
8e

(|u − u∗| + |v − v∗|) .

Hence, the condition (H1) is satisfied with L = 1
8e . It is easy to verify thatN = 3

4(1− 1
8e )e
√

2π
< 1. Since

all the assumptions of Theorem 3.3 are fulfilled, therefore problem (5.1) has a unique solution.

Example 5.2. Consider the following problem of implicit fractional differential equations involving
Caputo Katugampola type and anti-period condition: CKD

1
3 ; 3

2
0+ x(t) =

|x(t)|+cos

∣∣∣∣∣∣CK D
3
2 ;1

0+ x(t)

∣∣∣∣∣∣
30(t+2)(1+|x(t)|) , t ∈ [0, 1]

x(0) = −x(1),
(5.2)
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Set:
g(t, u, v) =

u + cos v
30(t + 2)(1 + u)

, t ∈ [0, 1], u, v ∈ R+,

with α = 1
3 , ρ = 3

2 and T = 1. Now, for each u, v, u∗, v∗ ∈ R+ and t ∈ [0, 1]

|g(t, u, v) − g(t, u∗, v∗)| =

∣∣∣∣∣ u + cos v
30(t + 2)(1 + u)

−
u∗ + cos v∗

30(t + 2)(1 + u∗)

∣∣∣∣∣
≤

1
30

(|u − u∗| + |v − v∗|) .

Hence, the condition (H1) is satisfied with L = 1
30 . It is easy to check that N ≈ 0.05 < 1. It follows

from Theorem 3.3 that problem (5.2) has a unique solution.
We see that all the required conditions of Theorem 4.5 are satisfied. Hence, the proposed problem

(5.1) is Ulam-Hyers, generalized Ulam-Hyers stable.
According to Theorem 4.5, for ε > 0, any solution x̃ ∈ C([0, 1],R) satisfies the inequality∣∣∣∣∣∣∣∣∣∣CKD

1
2 ; 1

2
0+ x̃(t) −

1
3

e
√

t+1 +
2 + |x̃(t)| +

∣∣∣∣D 1
2 ; 1

2
0+ x̃(t)

∣∣∣∣
8e2−t

(
1 + |x̃(t)| +

∣∣∣∣D 1
2 ; 1

2
0+ x̃(t)

∣∣∣∣)

∣∣∣∣∣∣∣∣∣∣ ≤ ε, t ∈ [0, 1],

there exists a solution x ∈ C([0, 1],R) for the problem (5.1) such that

|x̃(t) − x(t)| ≤ K fε, t ∈ [0, 1],

where K f =

√
6
π
E 1

2

( √
2

8e−1

)
. Moreover, if we set K fε = Ψ(ε), and Ψ(0) = 0, then

|x̃(t) − x(t)| ≤ Ψ(ε), t ∈ [0, 1].

6. Conclusions

In this paper we studied a class of a nonlinear implicit fractional differential equation with the
anti-periodic boundary condition involving the Caputo-Katugampola fractional derivative. The
existence and uniqueness and Ulam-Hyers stability results are established by applying some fixed
point theorems and generalized Gronwall inequality. In future work, it is worth investigating the
existence and Ulam-Hyers-Rassias stability of solutions for the proposed problem (1.5)–(1.6)
involving generalized fractional derivative with respect to another function.

As a result of our work, We trust the reported results here will have a positive impact on the
development of further applications in engineering and applied sciences.
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