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1. Introduction

In the paper, we consider the stochastic invariance for the following hybrid stochastic differential
equations (HSDEs)

dX(t) = f (X(t), r(t))dt + g(X(t), r(t))dw(t), t > t0, (1.1)

where r(t) is a Markov chain taking values in M = {1, 2, 3, · · · ,N} with generator Γ = (γi j)N×N

(see [1]). This equation can be regarded as the result of the following equation

dX(t) = f (X(t), i)dt + g(X(t), i)dw(t), 1 6 i 6 N, (1.2)
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switching from one to the others according to the movement of the Markov chain, and the initial
condition

X(0) = ξ ∈ Rd, r(t0) = i0 ∈ M,

where f : Rd ×M → Rd and g : Rd ×M → Rd×d.

Jump system is a hybrid system with state vector that has two components X(t) and r(t). The
first one is in general referred to as the state, and the second one is regarded as the mode. In its
operation, the jump system will switch from one mode to another in a random way, and the switching
between the modes is governed by a Markov process with discrete and finite state space. Due to the
increasing demands from real systems and phenomena in which both continuous dynamics and discrete
events are involved, hybrid models have been increasing considered for decades and have received a
lot of attention, for example: existence and uniqueness of solutions, approximate solutions(see [1, 2]);
stability theory (see [3–7]); almost sure stability (see [8–10]). As, for stochastic invariance, to the
best of our knowledge, there is no paper which investigates the stochastic invariance theory for hybrid
stochastic differential equations. Thus, we will make the first attempt to study the problem on the non-
Lipschitz coefficients condition. Our results are inspired by the one [11] where stochastic invariance
theory for Eq.1.2 with r(t) ≡ 1 has been studied.

Stochastic invariance is a method to study the space state of solutions which people usually consider
it from the view of attractor, for example (see [12, 13]). The first stochastic invariance result can be
found in [14]. After then, there exist already a lot of literatures concerning invariance as well as the
connected notion of viability; characterizations of both have been expressed through stochastic tangent
cones (see [11, 15]), distance function (see [16]), martingale decomposition theory (see [17]) or other
approaches. Although these approaches were different, they had at least one thing in common: they
had to make a choice between the assumptions on smoothness of the domain and the regularity of
the coefficients, which was a restriction for these existing results to apply in practice. To overcome
this difficulty and to analyze the stochastic invariance of solutions for the hybrid stochastic differential
equations with non-Lipschitz coefficients, we adopt the method developed by [11]. The method is
based on the properties of Itô integral and the compactness of solution space, and which require neither
smoothness of the domain nor Lipschitz coefficients condition. In the following Theorem 3.1, we first
check that the solution space of Eq.1.2 is also locally compact (see, Remark 2.3), then we prove the
sufficiency of Theorem 3.1 by the maximum principle, this is the same as Theorem 2.3 in [11] . Under
some additional constraint (martingale measure ũ(dt, dy) = v(dt, dy)−u(dy) is independent of Brownian
motion W) on the jump system, we prove the necessary by twice Itô integral, it is the same process as
one in [11] except for extra

∑N
j=1 γi jφ(x, j) term.

The rest of this paper is organized as follows. In Section 2, we give some definitions and
preliminaries. In Section 3, we state the main results and their proof. In Section 4, we compare the
stochastic invariance with robustness respect to hybrid systems. In Section 5, we provide a numerical
simulation and the most probable phase portrait to illustrate our main results.
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2. Preliminaries

Let Rd be a d-dimensional Euclidean space endowed with the inner product 〈u, v〉 :=
d∑

i=1
uivi

for u, v ∈ Rd and the Euclidean norm |u| := 〈u, u〉
1
2 , for u ∈ Rd. Let Md denote the collect of all d × d

matrices with real entries and Ai j means the entry of the i-th row and the j-th column. Sd stands for the
cone of symmetric d × d matrices. We use the standard notion Id to denote the d × d identity matrix.
Given x = (x1, · · · , xd) ∈ Rd, diag[x] denotes the diagonal matrix whose i-th diagonal component is xi.
If A is a symmetric positive semi-definite matrix, then A

1
2 denotes its symmetric square-root. By a

filtered probability space, we mean a quadruple (Ω,F , {Ft}t>0, P), where {Ft}t>0 is a σ-algebra of F
and satisfies the usual conditions, i.e., (Ω,F , P) is a complete probability space, and F0 contains all
P-null sets of F , for each t > 0,Ft+ :=

⋂
s>t Fs = Ft. Let {Wt}t>0 be an m-dimensional Brownian

motion defined on the filtered probability space (Ω,F , {Ft}t>0, P). Let r(t), t > t0 be a right continuous
Markov chain on the same probability space taking values in a finite state space M = {1, 2, · · · ,N}
with generator Γ = (γi j)m×m given by

P(r(t + δ) = j|r(t) = i) =

γi jδ + o(δ), i , j,

1 + γi jδ + o(δ), i = j,

in which δ > 0 and limδ→0+
o(δ)
δ

= 0. Here γi j > 0 is the transition rate from i to j, if i , j, while

γii = −
∑
i, j

γi j.

We always assume that r(t) is independent of w(t). It is known that almost all sample paths of r(t)
are right-continuous step functions with a finite number of simple jumps in any finite subinterval of
R+

0 . We stress that the Markov chain r(t) can be represented as a stochastic integral with respect to
a Poisson random measure. Indeed, let ∆i j, i , j , be consecutive (with respect to the lexicographic
ordering on M×M), left closed and right open intervals of the real line each having length λi j. Define
a function

η :M× R→ R

by

η(i, y) =

 j − i, i f y ∈ ∆i j,

0, otherwise.

Then

dr(t) =

∫
R

η(r(t−), y)v(dt, dy),

where v(dt, dy) is a Poission random measure with intensity dt × µ(dy), µ(·) is the Lebesgue measure
on R.

Let us consider the following assumptions:
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(H1) f and g satisfy the linear growth condition. That is, there exists a constant K > 0 such that

| f (x, i)|2 ∨ |g(x, i)|2 6 K(1 + |x|2) (2.1)

for all x ∈ Rd and i ∈ M;

(H2) C can be extended to a C1.1
loc(Rd,Sd) function that C = ggT onD;

(H3) Equation 1.2 has an equilibrium at X(t) = 0, i.e. f (0, i) = 0 and g(0, i) = 0, for all i ∈ M.

The first two conditions are the same thing as (H1) and (H2) of Theorem 2.3 in [11]. Because of
the characteristics of the jump system, we increased the condition (H3) to ensure the continuity of the
sample paths of solutions for Eq.1.2.

Definition 2.1. A closed subset D ⊂ Rd is said to be stochastically invariant with respect to Eq.1.2 if,
for all x ∈ D, there exists a weak solution (X,W) of Eq.1.2 starting at X(0) = x such that X(t) ∈ D
almost surely for all t > 0.

Let C∞0 (Rd) denote the space of the real-valued, infinitesimal differentiable functions on Rd with
compact support. For any φ ∈ C∞0 (Rd), we define an operator L:

Definition 2.2. Let L be a semi-elliptic differential operator of the form(see [18], Definition 8.3.2)

Lφ(X(t), i) =
∑

j

f j(X(t), i)
∂φ(X(t), i)

∂xi
+

1
2

∑
j,k

g jk(X(t), i)
∂2φ(X(t), i)
∂x j∂xk

+

N∑
k

γi,kφ(X(t), k). (2.2)

Where i ∈ M and the coefficients [ f j(X(t), i)] = f (X(t), i), [g jk(X(t), i)] = 1
2ggT ((X(t), i)) are locally

bounded Borel measurable functions on Rn. Then we say that a probability measure P̃xon((Rn)[0,∞),B)
solves the martingale problem for L (starting at x) if the process

M(t) = φ(X(t), i) − φ(X(0), i) −
∫ t

0
Lφ(X(s), i)ds (2.3)

is a martingale w.r.t.Mt.

Then

dφ(X(t), i) = Lφ(X(t), i)dt + Dφg(X(t), i)dw(t) +

∫
R

[φ(X(t), i + η(i, y)) − φ(X(t), i)]̃µ(dt, dy).

We assume that ũ is independent of B while µ̃(dt, dy) = v(dt, dy) − µ(dy) is a martingale measure
(see [19]).

Remark 2.1. L is a semi-elliptic differential operator, not a generator of an Itô diffusion X(t) given by
Eq.1.2 (see [18], P145).

Definition 2.3. A probability measure Qξ on (Ω,M) solves the martingale problem associated with f
and C = ggT with initial data ξ if
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1. Qξ(X◦(0) = ξ) = 1.

2. φ(X◦(t)) −
∫ t

0
(Lφ)(X◦(0))ds, t > 0 is a (Mt,Qξ)-martingale for all φ ∈ C∞0 (Rd).

Now we shall state the relation between the martingale problem of Definition 2.3 and its weak
solutions. Firstly, assume that there exists a weak solution of Eq.1.2 with initial data ξ, then there
exists a sextuple (Ω, F , Ft, P, B, X ) such that

Xm(t) = ξm(0) +

∫ t

0
fm(X(s), i)ds +

d∑
j=1

∫ t

0
gm j(X(s), i)dB j(s), m = 1, 2, · · · , d; i ∈ M,

holds a.s, or equivalently

dXm(t) = fm(X(t), i)dt +

d∑
j=1

gm j(X(s), i)dB j(s). (2.4)

Define the probability measure

Qξ(A) = P(X ∈ A), A ∈ M.

Then, Qξ solves the martingale problem of Definition 2.3 for the coefficients f and C = ggT , where
T denotes the transpose. For φ ∈ C∞0 (Rd ×M), applying Itô formula, we have

φ(X(t), i) = φ(X(0), i) +

∫ t

0
Lφ(X(s), i)ds

+

∫ t

0
Dφg(X(s), i)dw(s) +

∫ t

0

∫
R

[φ(X(s), i + η(i, y)) − φ(X(s), i)]̃µ(ds, dy), t > 0.

Then, we obtain that

M(t) = φ(X(t), i) − φ(X(0), i) −
∫ t

0
Lφ(X(s), i)ds

=

∫ t

0
Dφg(X(s), i)dw(s) +

∫ t

0

∫
R

[φ(X(s), i + η(i, y)) − φ(X(s), i)]̃µ(ds, dy)

is a (F B
t , P)-martingale (Let (F B

t )t>0 be a complete filtration generated by Brownian motion B). Since
Itô integrals are martingales, and µ̃(ds, dy) is martingale measure and which is independent of B. Then
by transformation of measures, we get

φ(X◦(t), i) −
∫ t

0
Lφ(X◦(s), i)ds, t > 0

is a (Mt,Qξ)-martingale on the canonical space Ω = C(M × R;Rd). This shows that Qξ (which is a
distribution of the solution process) solves the martingale problem.
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Definition 2.4. Let N1
D

, N2
D

and N1,prox
D

be respectively the first order normal cone, the second order
normal cone and proximal cone at the point x

N1
D = {u ∈ Rd : 〈u, y − x〉 6 o(‖y − x‖), ∀ y ∈ D},

N2
D(x) = {(u, v) ∈ Rd × S d : 〈u, y − x〉 +

1
2
〈v(y − x), y − x〉 6 o(‖y − x‖2),∀ y ∈ D},

N
1,prox
D

(x) = {u ∈ Rd, ‖u‖ = dD(x + u)},

in which dD is the distance function toD.

Remark 2.2. (see [8], Theorem 3.23) Let p > 2 and x0 ∈ Lp
Ft0

(Ω,Rd), Assume that the linear growth
condition (H1) and (H3) hold. Then

E|X(t) − X(s)|p 6 C∗|t − s|
p
2 , t0 6 s < t 6 T, (2.5)

where C∗ = 2p−2(1 + E|X(0)|p)epα(T−t0)(|2(T − t0)|
p
2 + |p(p − 1)|

p
2 ) and α =

√
K +

K(p−1)
2 .

Hence, Kolmogorov’s continuity criterion ensures that the sample paths of X are (locally) ε-Hölder
continuous for any ε ∈ (0, 1

2 ).

Remark 2.3. (see [20], Theorem 2.1) When the diffusion coefficient g is independent of the past history,
we show that the trajectory field has a version whose sample functions are almost all compact.

3. Main results

In this section, we shall give the main results of this paper. First of all, we need to prepare several
lemmas for the latter stochastic invariance analysis.

Lemma 3.1. Assume that C ∈ C1.1
loc(Rd, S d). Let X(0) = x ∈ D and i ∈ M such that the spectral

decomposition of C(x, i) is given by

C(x, i) = Q(x, i)diag[λ1(x, i), · · · , λr(x, i), 0, · · · , 0]QT (x, i),

where λ1(x, i) > λ2(x, i) > · · · > λr(x, i) > 0 and Q(x, i)QT (x, i) = Id, r 6 d.

Then there exists an open (bounded) neighborhood N(x) of x and two Md−valued measurable
functions on Rd

y −→ Q(y, i) = [q1(y, i), · · · , qd(y, i)]

and
y −→ Λ(y, i) = diag[λ1(y, i), · · · , λd(y, i)]

such that

(i) C(y, i) = Q(y, i)Λ(y, i)QT (y, i) and Q(y, i)QT (y, i) = Id, for all y ∈ Rd;
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(ii) λ1(y, i) > λ2(y, i) > · · · > λr(y, i) > max{λ j(x, i), r + 1 6 j 6 d}
∨

0, for all y ∈ N(x, i);

(iii) ḡ : y −→ Q̄(y, i)Λ̄(y, i)
1
2 and ḡ ∈ C1,1(N(x, i),Md), in which Q̄ = [q1, · · · , qr, 0, · · · , 0] and Λ̄ =

diag[λ1, · · · , λr, 0, · · · , 0].

Moreover, we have

〈u,
d∑

j=1

Dḡ j(x, i)ḡ j(x, i)〉 = 〈u,
d∑

j=1

DC j(x, i)(CC+) j(x, i)〉, f or all u ∈ ker C(x, i). (3.1)

Proof. Since u ∈ ker C(x, i) satisfies

uT Q(x, i) = uT g(x, i) = 0.

Since C ∈ C1,1
loc, we can get C = ggT is differentiable at (x, i), combing with Definition 7.4 and 7.6,

and the fact that ggT
= CQQ

T
and Q(x, i)Q

T
(x, i) = C(x, i)C(x, i)+, we have

〈u,
d∑

j=1

Dg j(x, i)g j(x, i)〉 =

d∑
j=1

uT Dg j(x, i)e jg
j(x, i)e j

=

d∑
j=1

uT (eT
j ⊗ Id)Dg j(x, i)g j(x, i)e j

=

d∑
j=1

e j(Id ⊗ uT )Dg j(x, i)g j(x, i)e j

= Tr[(Id ⊗ uT )Dg(x, i)g(x, i)]
= Tr[(Id ⊗ uT )DC(x, i)C(x, i)C(x, i)+]

= 〈u,
d∑

j=1

DC j(x, i)(CC+) j(x, i)〉.

Lemma 3.2. Given g ∈ C1,1
b (Rd,Sd)(i.e. g is differentiable with a bounded and a globally Lipchitz

derivative). Then

C := g2 ∈ C
1,1
loc(Rd,Sd

+),

〈u,
d∑

j=1

Dg j(x, i)g j(x, i)〉 = 〈u,
d∑

j=1

DC j(x, i)(CC+) j(x, i)〉 f or all x ∈ D and u ∈ ker g(x, i).

Proof. Fix (x, i) ∈ D and u ∈ ker g(x, i). Since

C(x, i)C(x, i)+g(x, i) = [QΛQT QΛ+QT ](x, i)g(x, i) = g(x, i),

AIMS Mathematics Volume 5, Issue 4, 3612–3633.



3619

we have

Tr[(Id ⊗ uT )DC(x, i)C(x, i)C(x, i)+]
= Tr(Id ⊗ uT )[(gT (x, i) ⊗ Id)Dg(x, i) + (Id ⊗ g(x, i))Dg(x, i)]C(x, i)C(x, i)+

= Tr[(gT (x, i) ⊗ uT )Dg(x, i)C(x, i)C(x, i)+]
= Tr[(Id ⊗ uT )Dg(x, i)g(x, i)].

Combining with the above equality, we get

〈u,
d∑

j=1

Dg j(x, i)g j(x, i)〉 =

d∑
j=1

uT D(g j(x, i)e j)g j(x, i)e j

=

d∑
j=1

uT [(e j ⊗ Id)D(g j(x, i)) + g(x, i)(Id ⊗ Id))De j]g j(x, i)e j

=

d∑
j=1

uT [(e j ⊗ Id)Dg j(x, i))g j(x, i)e j]

=

d∑
j=1

eT
j (Id ⊗ uT )Dg j(x, i)g j(x, i)e j

= Tr[(Id ⊗ uT )Dg(x, i)g(x, i)]
= Tr[(Id ⊗ uT )DC(x, i)C(x, i)C(x, i)+]

= 〈u,
d∑

j=1

DC j(x, i)(CC+) j(x, i)〉.

Lemma 3.3. Let {Wt}t>0 be a d-dimensional Brownian motion on a filtered probability space
(Ω,F , {Ft}t>0,P). Let α ∈ Rd, {βt}t>0 ∈ R

d, {δt}t>0 ∈ M
d and {θt}t>0 ∈ R satisfy

(1) β is bounded;

(2)
∫ t

0
‖δs‖

2ds < ∞ for all t > 0;

(3) there exists a random variable η > 0, such that∫ t

0
‖δs − δ0‖

2ds = ◦(t1+η);

(4) θ is continuous at 0 a.s..

Suppose that for all t > 0,∫ t

0
θsds +

∫ t

0

(
α +

∫ s

0
βrdr +

∫ s

0
δrdw(r)

)T

dw(s) 6 0. (3.2)
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Then,

(a) α = 0;

(b) −δ0 ∈ S d
+;

(c) θ0 −
1
2Tr(δ0) 6 0.

Proof. Observe that the conditions of Lemma 3.3 are different from the one ( [21], Lemma 2.1), but
both results are the same. So our main aim is to reduce the case ( [21], Lemma 2.1) which holds under
(e.g. Rt = o (t)). Since wi(t) = 2

∫ t

0
wi(s)dwi(s) + t and inequality (3.2), we have

(θ0 −
1
2

Tr(δ0))t +

d∑
i=1

αiwi(t) +

d∑
i=1

δii
0

2
(wi(t))2 +

∑
16i, j6d

δ
i j
0

∫ t

0
wi(s)dw j(s) + Rt 6 0,

where

Rt =

∫ t

0
(θs − θ0)ds +

∫ t

0

(∫ s

0
βrdr

)T

dw(s) +

∫ t

0

(∫ s

0
(δr − δ0)dw(r)

)T

dw(s)

= R1
t + R2

t + R3
t .

Since θ is continuous at 0, we get R1
t = ◦(t) a.s.. Moreover, in view of ( [22], Proposition 3.9),

we have R2
t = ◦(t) a.s., as β is bounded. Define Mi j = δi j − δ

i j
0 and Mi =

∫ ·
0

∑d
j=1 Mi j

r dw j(r) for
i, j ∈ {1, 2, · · · , d}. We can deduce that (s1+η) = ◦〈Mi〉 a.s.. By using the Dambis-Dubins-Schwarz
theorem, we know that Mi

s is a time changed Brownian motion, By the law of iterated logarithm for
Brownian motion (s1+

η
2 ) = ◦(Mi

s)
2 a.s.. We have (t2+

η
2 ) = ◦〈R3

t 〉 a.s.. By applying the Dambis-Dubins-
Schwarz theorem and law of iterated logarithm for Brownian motion again, we get that R3

t = ◦(t) a.s..

Theorem 3.1. (Invariance characterization) LetD be closed. Assume that f , g and C are continuous
and satisfy assumptions (H1)−(H3). Then, the set D is stochastically invariant with respect to the
Eq.1.2 if and only if

C(x, i)u = 0, (3.3)〈
u, f (x, i) −

1
2

d∑
j=1

DC j(CC+) j(x, i)
〉

+

N∑
j=1

γi jφ(x, j) 6 0, (3.4)

for any initial data X(0) = x ∈ D and all u ∈ N1
D

(x, i), i ∈ M.

3.1. Necessary condition

In this subsection, we prove that the conditions of Theorem 3.1 are necessary for D. Our general
strategy is similar to [11]. The main idea consists of using the spectral decomposition of C in the form
QΛQT in which Q is an orthogonal matrix and Λ is diagonal positive semi-definite. Then divide the
proof into 3 cases (I, II, III).
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I. The case of distinct and non-zero eigenvalues

Since C ∈ C1,1
loc(Rd,Sd), C(x) has distinct and non-zero eigenvalues, we can reduce to the case where

Q and Λ
1
2 are smooth enough and Λ has strictly positive entries. The dynamics of X can be written as

dX(t) = f (X(t), i)dt + Q(X(t), i)Λ(X(t), i)
1
2 dBt,

where B =
∫

0
Q(X(s), i)T dw(s) is a Brownian motion. We consider a smooth function φ : Rd →

R such that maxD φ = φ(x, i) for x = X(0) and there exists a constant M1 > 0, such that D2φ(X(t), i) 6
M1 for all t > 0. SinceD is stochastically invariant, φ(X(t), i) 6 φ(x, i), for all t > 0. Further, by using
Itô formula, we get∫ t

0
Lφ(X(s), i)ds +

∫ t

0

∫
R

[φ(X(t), i + η(i, y)) − φ(X(t), i)]̃µ(dt, dy)

+

∫ t

0
Dφg(X(s), i)dw(s) 6 0.

Let (F B
t )t>0 be a complete filtration generated by Brownian motion B, since B and ũ(dt, dy) is

independent, we get ∫ t

0
EF B[Lφ(X(s), i)]ds +

∫ t

0
EF B[Dφg(X(s), i)]dw(s) 6 0.

Applying Itô formula to Dφg(X(s), i), we have∫ t

0
EF B[Lφ(X(s), i)]ds +

∫ t

0

{
EF B[Dφg(X(0), i)] +

∫ s

0
EF B[L(Dφ)g(X(r), i)]dr

+

∫ s

0
EF B[D(Dφg)g(X(r), i)]dw(r)

}
dw(s) 6 0.

First note that EF B[L(Dφ)g(X(s), i)] is bounded, the condition∫ s

0
EF B[D(Dφg)g(X(r), i)]dw(r)

=

∫ s

0
EF B

[
D2φggT (X(r), i)) + (Id ⊗ Dφ)DggT (X(r), i)

]
dw(r) < ∞

holds and Lφ(X(s), i) is continuous at 0, all these follow from (H3) and the fact that smoothness of Q
and Λ, and φ has compact support. Moreover,

F := D(Dφg)g(X(s), i) = D2φggT (X(s), i) + (Id ⊗ Dφ)DggT (X(s), i)

is Lipschitz’s.

Combining these with Remark 2.2 and (H1), we can find constants L′ > 0 and M1 > 0 such that

E[|F(X(s), i) − F(X(r), i)|4] 6 M1E|X(s) − X(r)|4 6 L′|s − r|2.
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Thus, by using Lemma 3.3, we have

Dφg(X(0), i) = DφggT (x, i) = 0

and

Lφ(X(0), i) −
1
2

Tr[D(Dφg)g(X(0), i)]

= Dφ f (X(0), i) −
1
2

(Id ⊗ Dφ)DggT (X(0), i) +

N∑
j=1

γi jφ(X(0), j)

= 〈Dφ, f −
1
2

DggT 〉(x, i) +

N∑
j=1

γi jφ(x, j)

6 0.

Under appropriate regularity conditions, we can choose a suitable test function φ such that Dφ(x, i) =

uT . Further, by using Lemma 3.2 we get (3.3) and (3.4).

II. The case of distinct eigenvalues

Assume that D is stochastically invariant with respect to the Eq.1.2. Let X(0) = x ∈ D and C has
distinct eigenvalues, then (3.3) and (3.4) hold at point x, for all u ∈ N1

D
(x, i). Proof. Let (X,W) denote

a weak solution of Eq.1.2 with the initial data X(0) = x such that X(t) ∈ D, for all t > 0. If x is in
the interior of D, then N1,prox

D
(x) = {0} and (3.3) and (3.4) clearly hold. Therefore, from now on, we

assume that x ∈ ∂D and u ∈ N1,prox
D

(x, i).

Next, divide the rest proof into 4 Steps.

Step 1. There exists a function φ ∈ C∞b (Rd,R) with compact support in N(x) such that maxD φ =

φ(x) = 0 and Dφ(x) = uT (see [23], Chapter 6. E).

Step 2. SinceD is invariant under the point x, φ(X(t), i) 6 φ(x, i), for all t > 0. Applying Itô formula
to φ(X(t), i), we have∫ t

0
Lφ(X(s), i)ds+

∫ t

0
Dφg(X(s), i)dw(s) +

∫ t

0

∫
R

[
φ(X(t), i + η(i, y)) − φ(X(t), i)

]
µ̃(dt, dy)

=

∫ t

0
Lφ(X(s), i)ds +

∫ t

0
Dφ(X(s), i)QΛ

1
2 Q(X(s), i)dw(s)

+

∫ t

0

∫
R

[
φ(X(t), i + η(i, y)) − φ(X(t), i)

]
µ̃(dt, dy)

6 0. (3.5)

Define a Brownian motion B =
∫ .

0
Q(X(s), i)T dw(s). Recall that Q is orthogonal together with
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B = Λ(X(s), i)Λ(X(s), i)+B = (B1, · · · , Br, 0, · · · , 0)T ,

B
⊥

= (Id − Λ(X(s), i))Λ(X(s), i)+)B = (0, · · · , 0, Br+1, · · · , Bd).

Since QΛ
1
2

= QΛ
1
2 , the left-hand side of inequality (3.5) can be written in the form∫ t

0
Lφ(X(s), i)ds+

∫ t

0
Dφg(X(s), i)dBs +

∫ t

0
DφQΛ

1
2 (X(s), i)dBs

⊥

+

∫ t

0

∫
R
[φ(X(s), i + η(i, y)) − φ(X(s), i)]̃µ(ds, dy)

6 0. (3.6)

Let (F B
t )t>0 be a complete filtration generated by B, combining with ( [24], Lemma 14.2) and the

fact that the martingale B is independent of B
⊥

and ũ. Then, we have∫ t

0
E
F B

s
[Lφ(X(s), i)]ds +

∫ t

0
E
F B

s
[Dφg(X(s), i)]dBs 6 0.

Applying Itô formula to Dφg(X(s), i), we get∫ t

0
E
F B

s

[
Lφ(X(s), i)

]
ds+

∫ t

0

{
E
F B

s
[Dφg(X(0), i)] +

∫ s

0
E
F B

s
[LDφg(X(r), i)]dr

+

∫ s

0
E
F B

s
[D(Dφg)g(X(r), i)]dw(r)

}
dBs 6 0.

Step 3. Now we check that we can apply Lemma 3.3. First note that all the above processes are
bounded, because of Lemma 3.1, (H1) and the fact that φ has compact support. In addition, given
T > 0, (H3) and the independence of the increments of B imply that θs = E

F B
s
[Lφ(X(s), i)] for all

s 6 T , due to that θ is continuous at 0 a.s. Similarly, δs = E
F B

s
D(Dφg)g(X(s), i) on [0,T]. Moreover,

assume that
F := D(Dφg)g(X(s), i) = D2φgg(X(s), i) + [Id ⊗ Dφ]Dgg(X(s), i),

since D2φ(X(s), i) and Dφ(X(s), i) are bounded, by using Jensen’s inequality, Remark 2.2 and (H1), we
can derive

E
[
|δs − δr|

4
]
6 E

[
|F(X(s), i) − F(X(r), i)|4

]
6 L′|s − r|2,

for all s, r ∈ [0, 1], where L′ is a positive constant. By Kolmogorov’s continuity criterion, r has ε-
Hölder sample paths for 0 < ε < 1

4 . In particular
∫ t

0
‖δs − δ0‖

2ds = ◦(t1+ε) for 0 < ε < 1
2 .

Step 4. In view of Step 3, by using Lemma 3.3, we have

Dφg(X(0), i) = 0 (3.7)

and
Lφ(X(0), i) −

1
2

Tr[D(Dφg)g(X(0), i)] 6 0. (3.8)
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Applying (3.7), we get

Dφḡ(X(0), i) = Dφḡ(x, i) = uT QΛ
1
2 (x, i) = uT QΛ

1
2 Λ

1
2 QT (x, i) = uTC(x, i) = 0

or equality (3.7) implies that
C(x, i)u = 0,

owing to the symmetry of C(x). In terms of inequality (3.8), Dφ(x, i) = uT and Definition 7.6, we have

Lφ(X(0), i)−
1
2

Tr
[
D2φ(X(0), i)gg(X(0), i) + (Id ⊗ Dφ)Dgg(X(0), i)

]
= Dφ f (x, i) −

1
2

Tr
[
(Id ⊗ uT )Dgg(x, i)

]
+

N∑
j=1

γi jφ(x, j) 6 0.

which is equivalent to (3.4) by using equality (3.1) and Lemma 3.2.

III. The case of the same eigenvalues.

Proposition 3.1. Assume that D is stochastically invariant with respect to the Eq.1.2 and C has the
same eigenvalues. Then conditions (3.3) and (3.4) hold for all x = X(0) ∈ D and u ∈ N1

D
(x, i), i ∈ M.

Proof. Since C has the same eigenvalues, let λ1(x, i) > · · · > λd(x, i), we can perform a change of
variable such that λi(x, i) satisfies the conditions of the case I or II . First, we assume that

Aε = Q(x, i)diag
[√

1 − ε,
√

(1 − ε)2, · · · ,
√

(1 − ε)d
]

QT (x, i),

for 0 < ε < 1. Since D is invariant with respect to X, hence, Dε = AεD is invariant with respect to
Xε := AεX..

Note that
dXε = fε(Xε, i)dt + Cε(Xε, i)

1
2 dw(t), (3.9)

where fε = Aε f ((Aε)−1) and Cε := AεC((Aε)−1)(Aε)T have the same regularity and growth as f and
C. On the one hand, C has nonzero eigenvalue, the positive eigenvalues of Cε are all distinct at xε =

Aεx, as Cε(xε, i) = Q(x, i)diag
[
(1 − ε)λ1(x, i), · · · , (1 − ε)dλd(x, i)

]
Q(x, i)T . Therefore, we can apply

the case I to ((Xε, i),Dε), then we getCε(xε, i)uε = 0,〈
uε, fε(xε, i) − 1

2

∑d
j=1 DC j

ε(xε, i)(CεC+
ε ) j(xε, i)

〉
+

∑N
j=1 γi jφ(x, j) 6 0,

(3.10)

on the other hand, C has zero eigenvalues, the positive eigenvalues of Cε are all distinct at xε = Aεx.
Therefore, we can apply the case II to ((Xε, i),Dε), then we have (3.10). By the Definition 2.3 and
continuity of ε, set ε→ 0 on (3.10), we deriveC(x, i)u = 0,〈

u, f (x, i) − 1
2

∑d
j=1 DC j(x, i)(CC+) j(x, i)

〉
+

∑N
j=1 γi jφ(x, j) 6 0,

for all u ∈ N1
D

(x, i), i ∈ M.
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3.2. Sufficient condition

In this section, we prove that the necessary conditions of Theorem 3.1 are also sufficient.
We will show that (3.3) and (3.4) imply that the generator L of X satisfies the positive maximum
principle (see [25], P165): If φ ∈ C2(Rd,R), x ∈ D, and maxDφ = φ(x) > 0, we have Lφ(x) 6 0.

Proposition 3.2. Assume that (3.3) and (3.4) hold for all X(0) = x ∈ D, and u ∈ N1
D

(x, i). Then the
generator L satisfies the positive maximum principle.
Proof. It is similar to the proof of the Proposition 4.1 in [11]

Tr(D2φC(x, i)) 6 −
〈
Dφ(x, i)T ,

d∑
j=1

DC j(x, i)(CC+) j(x, i)
〉
,

for any smooth function φ such that maxD φ = φ(x, i) > 0.

Utilizing (3.4), We have

Lφ(x, i) = Dφ f (x, i) +
1
2

Tr(D2φggT (x, i)) +

N∑
j=1

γi jφ(x, j)

6 Dφ f (x, i) −
1
2

〈
Dφ(x, i)T ,

d∑
j=1

DC j(x, i)(CC+) j(x, i)
〉

+

N∑
j=1

γi jφ(x, j)

=

〈
Dφ(x, i), f (x, i) −

1
2

d∑
j=1

DC j(x, i)(CC+) j(x, i)
〉

+

N∑
j=1

γi jφ(x, j)

6 0.

Remark 3.1. The linear operator L satisfying the positive maximum principle is dissipative, therefore
theory of dissipative structure can be used to prove Theorem 3.1.

Proposition 3.3. Under the assumptions of Theorem 3.1, assume that condition (3.3) and (3.4) hold
for all x ∈ D and u ∈ N1

D
(x). ThenD is stochastically invariant with respect to the Eq.1.2.

Proof. We know that L satisfies the positive maximum principle and the trajectory field of Eq.1.2 has
a version whose sample functions are almost all compact (see Remark 2.3), then there exists a compact
subset ofDE[0,∞) , where (E, r) denotes a metric space (see [25], p122). Then, ( [25],Theorem 4.5.4)
yields the existence of a solution to the martingale problem associated with L with sample paths in
the space of càdlàg functions with values in D∆ = D

⋃
∆ which is the one-point compactification

of D. Recall Remark 2.2 and ( [25], Proposition 5.3.5), then we get that the solution has a modification
with continuous sample paths in D. Finally, ( [25], Theorem 5.3.3) implies the existence of weak
solution (X,W) such that X(t) ∈ D almost surely for all t > 0.

Remark 3.2. The Theorem 3.1 doesn’t hold if r(t) is dependent of w(t). Since Itô formula doesn’t hold
if r(t) is dependent of w(t).

Remark 3.3. When r(t) ≡ 1, Theorem 3.1 is equivalent to the Theorem 2.3 in [11]. When r(t) ≡ 1,
τ = 0 and G(Xt) = 0 hold, Theorem 3.1 is equivalent to the Theorem 3.1 in [26].
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4. Robustness

Equation 1.2 can be regarded as a stochastically perturbed system of the determined hybrid
differential equation,

d(X(t))
dt

= f (X(t), i). (4.1)

We know that Eq.4.1 is asymptotically stable under the conditions of (H1)−(H2). Then there is a
natural problem: if the system (1.2) is asymptotically stable, how much stochastic perturbation can this
system tolerate without losing the property of asymptotic stability? Such a kind of problems are known
as the problem of robust stability, which has received a great deal of attention, for example [27–30].
Robustness of the ψ-type stability requires that the solution of this Eq.1.2 is almost surely ψ-type stable:
lim supt→∞

ln |x(t)|
lnψ < 0. It is obvious that this ψ-type stability implies the almost surely exponential

stability when ψ(t) = eαt for any α. The almost surely exponential stability for Eq.1.2 requires that
E[2(X(t), i)T f (X(t), i) + |g(X(t), i)|2] 6 −λE|X(t)|2, for any λ > 0. Which implies that

Lφ(X(t), i) = 2(X(t), i)T f (X(t), i) + |g(X(t), i)|2 6 0,

when φ(x) = x2. Therefore, the generator L satisfies the positive maximum principle, then there exists
a weak solution X(t) of Eq.1.2 such that X(t) ∈ D, where D is stochastically invariant with respect to
the Eq.1.2. So robustness can derive stochastic invariance. On the contrary, it is not true, for example
below Eq.5.1.

5. Application

In this section, we will give an example of stochastic invariance which does not support robustness.
Moreover, we give the numerical solution of the example and its most probable phase portraits to
illustrate the contours of the paths of solution. We restrict to a one-dimensional setting for ease of
computation and notation.

Example 5.1. Let w(t) be a scalar Brownian motion. Let r(t) be a right-continuous Markov chain

taking values inM = {1, 2} with generator Γ =

(
−1 1
3 −3

)
.

Assume that w(t) and r(t) are independent. Consider a one-dimensional linear stochastic differential
equation with Markovian switching of the form

dX(t) = α(r(t))X(t)dt + σ(r(t))X(t)dw(t), t > 0, (5.1)

here α(i) = α(r(t)) and σ(i) = σ(r(t)) (i = 1, 2). Let us put

α(1) = 1, α(2) = 2, σ(1) = 2, σ(2) = 8.

We can regard Eq.5.1 as the result of the following two equations

dX(t) = X(t)dt + 2X(t)dw(t) (5.2)
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and
dX(t) = 2X(t)dt + 8X(t)dw(t) (5.3)

switching to each other according to the movement of the Markov chain r(t) with the initial data
x = X(0). Then, with the previous notations,D ⊂ R, define φ : R ×M → R+ by

φ(x, i) = βix
1
4

with β1 = 1 and β2 = 1
2 . Therefore, the first order normal cone given by Definition 2.4 reads

N1
D(x) =

{
1
4
βiz−

3
4 ∈ R : 〈

1
4
βiz

−3
4 , y − x〉 6 o(‖y − x‖), ∀ y ∈ D

}
.

Then, the setD ⊂ R is stochastically invariant with respect to the Eq.5.1 if and only if

 1
4βiσ(i)x

1
4 = 0,

[〈1
4βi, α(i) − 1

2σ
2(i)〉 + (γi1β1 + γi2β2)]x

1
4 6 0.

(5.4)

Proof.

5.1. Sufficient condition

Since
|α(i)X(t)|2 ∨ |σ(i)X(t)|2 6 64(1 + |X(t)|2),

hence, condition (H1) is satisfied. We can derive from (5.4)

x = 0. (5.5)

Choose
max
D

φ(X(t), i) = φ(x, i) = 0,

we have

Lφ(x, 1) = Dφ(x, 1) f (x, 1) +
1
2

Tr(D2φgg(x, 1)T ) +

2∑
j=1

γ1 jφ(x, j)

= [
1
4
β1α(1) +

1
2
×

1
4
× (1 −

1
4

)β1σ
2(1) + (γ11β1 + γ12β2)]x

1
4

= −
5
8

x
1
4

< 0
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and

Lφ(x, 2) = Dφ(x, 2) f (x, 2) +
1
2

Tr(D2φggT (x, 2)) +

2∑
j=1

γ2 jφ(x, j)

= [
1
4
β2α(2) +

1
2
×

1
4
× (1 −

1
4

)β2σ
2(2) + (γ21β1 + γ22β2)]x

1
4

= −
5
4

x
1
4

< 0.

Hence, the generatorL satisfies the positive maximum principle, by using of ( [25], Theorem 5.3.3),
we get that there exists a weak solution (X,W) such that X(t) ∈ D almost surely for all t > 0.

5.2. Necessary condition

Assume that X(0) = x and φ(x, i) = βix
1
4 . Since the set D is stochastically invariant with respect

to Eq.5.1 , there exist
max
D

φ = φ(X(0), i),

φ(X(t), i) < φ(X(0), i) f or t > 0. (5.6)

Applying Itô formula twice to inequality (5.6), we have∫ t

0
EF B

[
Lφ(X(s), i)

]
ds +

∫ t

0

{
EF B

[
Dφg(X(0), i)

]
+

∫ s

0
EF B

[
L(Dφ)g(X(r), i)

]
dr

+

∫ s

0
EF B

[
D(Dφg)g(X(r), i)

]
dw(r)

}
dw(s) 6 0.

where 
EF B[Lφ(X(0), i)] = [ 1

4βiα(i) − 3
32βiσ(i)2 + (γi1 + 1

2γi2)]x
1
4 ,

EF B[Dφg(X(0), i)] = [ 1
4βiσ(i)x

1
4 ]x

1
4 ,

EF B[L(Dφ)g(X(0), i)] = [− 3
16βiα(i)σ(i) + 9

128βiσ(i)3 + 1
4σ(i)(γi1 + 1

2γi2)]x
1
4 ,

EF B[D(Dφg)g(X(0), i)] = [− 3
16βiσ(i)2 + 2(Id ⊗

1
4βi)σ(i)2]x

1
4 .

Combing with Lemma 3.3, we can derive 1
4βiσ(i)x

1
4 = 0,

[〈1
4β(i), α(i) − σ2(i)〉 + γi1β1 + γi2β2]x

1
4 6 0.

5.3. Robustness

Since
|α(i)X(t)|2 ∨ |σ(i)X(t)|2 6 64(1 + |X(t)|2). (5.7)
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By using almost surely asymptotic estimates theory ( [8], Theorem 3.26), for any given initial
data X(0), there exists a solution X(t, ξ) to Eq.5.1 and this solution has the property

lim sup
t→∞

1
t

ln(|X(t)|) 6
√

64 +

√
64
2

a.s.

However, we can not derive

lim sup
t→∞

ln(|X(t)|)
t

< 0 a.s.

Hence, solution of Eq.5.1 is not robust stability (see [28]).

Remark 5.1. For the system (5.1), robustness is a sufficient condition for stochastic invariance, not a
necessary condition.

Remark 5.2. In robustness theory one can get how much perturbation the equation can tolerate; in
stochastic invariance theory one can get the coverage area of all weak solutions to the equation. This
is a balance. In addition, one can still obtain specific initial value in stochastic invariance theory, but
one can not get it in robustness theory.

5.4. Numerical simulation of HSDEs-Euler-Maruyama method

In order to further visualize the solution trajectory of the equation, we will give its numerical
solution and the most probable phase portrait of Eq.5.1. We will apply Euler-Maruyama (EM) method
to the linear HSDE in Eq.5.1 on [0,10] and get 104 discrete paths of X(t), just as Figure 1 shows

0 2 4 6 8 10

0

1

2

3

4

5

6

time t

s
ta

te
 x

(t
),

r(
t)

solution x(t)

 

 

r(t)

x(t)

Figure 1. the solution of Eq.5.1.

The red line notes Markovian switching and the green line notes sample paths of Eq.5.1, we see that
all solutions approach stable as t > 2. We conclude the maximizer at time t respectively from Eq.5.2
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and Eq.5.3 that
X1m(t) = x0 exp(−5t), X2m(t) = x0 exp(−94t)

for every x0 ∈ R. Then, the most probable dynamical system is

ẋ1m = −5x1m ẋ2m = −94x2m,

this is the same as the corresponding deterministic dynamical system ẋ = αx, α < 0. The most
probable phase portraits [31] provide geometric pictures of most probable or maximal likely orbits of
stochastic dynamical systems, the most probable phase portrait for Eq.5.1 is displayed in Figure 2,
the red line notes solutions of Eq.5.2 and the green line notes solutions of Eq.5.3. Analogously to the
deterministic differential equations setting, all solutions tend to the origin, in this case the equilibrium
point is called a sink.
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the most probable phase portrait
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Figure 2. the most probable phase portrait.

6. Conclusions

In this paper, stochastic invariance theory for HSDEs has been studied. The necessary and sufficient
conditions for the Theorem 3.1 have been established. This obtained result improved and generalized
the result in [11]. Moreover, an example is given to illustrate our Theorem.

7. Appendix

For convenience, we collect some definitions and properties of matrix tools intensively used in the
proofs throughout the article in this Appendix.
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Definition 7.1. Fix A ∈ Mm,n. The Moore-Penrose pseudoin-verse of A is the unique n × m matrix A+

satisfying: AA+A = A, A+AA+ = A+, AA+ and A+A are Hermitian.

Definition 7.2. (the decomposition theorem of Hermitian Matrix) If A ∈ Md is a real Hermitian
Matrix, if and only if there exists a real orthogonal matrix Q ∈ Md and a real diagonal matrix
Λ = diag[(λi)i6d] ∈ Md such that A = QΛQT .

Proposition 7.1. If A ∈ Md has the spectral decomposition QΛQT for some orthogonal matrix Q ∈ Md

and a diagonal matrix Λ = diag[(λi)i6d] ∈ Md. Then, A+ = QΛ+QT in which Λ+ = diag[(λ−1
i Iλi,0)i6d]

and AA+ = Qdiag[(Iλi,0)i6d]QT . Moreover, if A is positive semi-definite and B
1
2 , then B+ = Q(Λ+)

1
2 QT .

Definition 7.3. Let A = (ai j) ∈ Mm1,n1 and B ∈ Mm2,n2 . The Kronecker product (A ⊗ B) is defined as the
m1m1 × n1n2 matrix

A ⊗ B =


a11B · · · a1n1 B
...

. . .
...

am11B · · · am1n1 B

 .
Definition 7.4. (see [32], Chapter 9) Let A and B be as in Definition 7.3, C ∈ Mn1,n3 and D ∈ Mn2,n4 .
Then,

(A ⊗ B)(C ⊗ D) = (AC ⊗ BD),
(A ⊗ B) = A(In1 ⊗ B), i f m2 = 1,
(A ⊗ B) = B(A ⊗ In2), i f m1 = 1.

Definition 7.5. ( Jacobian matrix) Let F be a differential map fromMn,q toMm,p. The Jacobian matrix
DF(X) of F at X is defined as the following mp × nq matrix:

DF(X) =
∂vec(F(X))
∂vec(X)T . (7.1)

Definition 7.6. Let F be a differentiable map from Mn,q to Mm,p and H be a differentiable map from
Mn,q toMp,l . Then, D(GH) = (HT ⊗ Im)DG + (Il ⊗G)DH.
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