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1. Preliminaries

A function f is said to be completely monotonic on an interval I if f has derivatives of all orders
on I and 0 ≤ (−1)k−1 f (k−1)(x) < ∞ for x ∈ I and k ∈ N, where f (0)(x) means f (x) and N is the set
of all positive integers. See [1–3]. Theorem 12b in [3] states that a necessary and sufficient condition
for a function f to be completely monotonic on the infinite interval (0,∞) is that the integral f (t) =∫ ∞

0
e−ts d τ(s) converges for s ∈ (0,∞), where τ(s) is nondecreasing on (0,∞). In other words, a

function is completely monotonic on (0,∞) if and only if it is a Laplace transform of a nonnegative
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measure. This is one of many reasons why many mathematicians have been investigating completely
monotonic functions for many decades.

Definition 1.1 ( [4–9]). Let f (x) be a completely monotonic function on (0,∞) and denote f (∞) =

limx→∞ f (x). If for some r ∈ R the function xr[ f (x) − f (∞)] is completely monotonic on (0,∞) but
xr+ε[ f (x) − f (∞)] is not for any positive number ε > 0, then we say that the number r is completely
monotonic degree of f (x) with respect to x ∈ (0,∞); if for all r ∈ R each and every xr[ f (x) − f (∞)] is
completely monotonic on (0,∞), then we say that completely monotonic degree of f (x) with respect to
x ∈ (0,∞) is∞.

The notation deg x
cm[ f (x)] has been designed in [4] to denote completely monotonic degree r of f (x)

with respect to x ∈ (0,∞). It is clear that completely monotonic degree deg x
cm[ f (x)] of any completely

monotonic function f (x) with respect to x ∈ (0,∞) is at leat 0. It was proved in [6] that completely
monotonic degree deg x

cm[ f (x)] equals ∞ if and only if f (x) is nonnegative and identically constant.
This definition slightly modifies the corresponding one stated in [4] and related references therein. For
simplicity, in what follows, we sometimes just say that deg x

cm[ f (x)] is completely monotonic degree
of f (x).

Why do we compute completely monotonic degrees? One can find simple but significant reasons in
the second paragraph of [7] or in the papers [10–13] and closely related references therein. Completely
monotonic degree is a new notion introduced in very recent years. See [4,6,9,11,12,14–22] and closely
related references. This new notion can be used to more accurately measure and differentiate complete
monotonicity. For example, the functions 1

xα and 1
xβ for α, β > 0 and α , β are both completely

monotonic on (0,∞), but they are different completely monotonic functions. How to quantitatively
measure their differences? How to quantitatively differentiate them from each other? The notion of
completely monotonic degrees can be put to good use: The completely monotonic degrees of 1

xα and
1
xβ with respect to x ∈ (0,∞) for α, β > 0 and α , β are α and β respectively.

The classical Euler’s gamma function Γ(x) can be defined for x > 0 by Γ(x) =
∫ ∞

0
tx−1e−t d t. The

logarithmic derivative of Γ(x), denoted by ψ(x) =
Γ′(x)
Γ(x) , is called the psi or digamma function, the

derivatives ψ′(x) and ψ′′(x) are respectively called the tri- and tetragamma functions. As a whole, the
derivatives ψ(k)(x) for k ≥ 0 are called polygamma functions. For new results on Γ(z) and ψ(k)(x) in
recent years, please refer to [7, 11, 23–29] and closely related references therein.

Why do we still study the gamma and polygamma functions Γ(z) and ψ(k)(z) for k ≥ 0 nowadays?
Because this kind of functions are not elementary and are the most applicable functions in almost all
aspects of mathematics and mathematical sciences.

2. Backgrounds and motivations

Let
Ψ(x) = [ψ′(x)]2 + ψ′′(x), x ∈ (0,∞). (2.1)

In [30], it was established that the inequality

Ψ(x) >
p(x)

900x4(x + 1)10 (2.2)
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holds for x > 0, where

p(x) = 75x10 + 900x9 + 4840x8 + 15370x7 + 31865x6 + 45050x5

+ 44101x4 + 29700x3 + 13290x2 + 3600x + 450.

It is clear that the inequality
Ψ(x) > 0 (2.3)

for x > 0 is a weakened version of the inequality (2.2). This inequality was deduced and recovered
in [31, 32]. The inequality (2.3) was also employed in [31–34]. This inequality has been generalized
in [33,35–37]. For more information about the history and background of this topic, please refer to the
expository and survey articles [11, 38–41] and plenty of references therein.

In the paper [42], it was proved that, among all functions
[
ψ(m)(x)

]2
+ ψ(n)(x) for m, n ∈ N, only the

function Ψ(x) is nontrivially completely monotonic on (0,∞).
In [43, 44], the functions

x + 12
12x4(x + 1)

− Ψ(x), Ψ(x) −
x2 + 12

12x4(x + 1)2 , Ψ(x) −
p(x)

900x4(x + 1)10

were proved to be completely monotonic on (0,∞). From this, we obtain

max
{

x2 + 12
12x4(x + 1)2 ,

p(x)
900x4(x + 1)10

}
< Ψ(x) <

x + 12
12x4(x + 1)

(2.4)

for x > 0. In [45], the function

hλ(x) = Ψ(x) −
x2 + λx + 12
12x4(x + 1)2 (2.5)

was proved to be completely monotonic on (0,∞) if and only if λ ≤ 0, and so is −hλ(x) if and only if
λ ≥ 4; Consequently, the double inequality

x2 + µx + 12
12x4(x + 1)2 < Ψ(x) <

x2 + νx + 12
12x4(x + 1)2 (2.6)

holds on (0,∞) if and only if µ ≤ 0 and ν ≥ 4. The inequality (2.6) refines and sharpens the right-hand
side inequality in (2.4).

It was remarked in [40] that a divided difference version of the inequality (2.3) has been implicitly
obtained in [46]. The divided difference form of the function Ψ(x) and related functions have been
investigated in the papers [47–51] and closely related references therein. There is a much complete list
of references in [52].

In [14,16], among other things, it was deduced that the functions x2Ψ(x) and x3Ψ(x) are completely
monotonic on (0,∞). Equivalently,

deg x
cm[Ψ(x)] ≥ 2 and deg x

cm[Ψ(x)] ≥ 3. (2.7)

Motivated by these results, we naturally pose the following two questions:

1. is the function x4Ψ(x) completely monotonic on (0,∞)?
2. is α ≤ 4 the necessary and sufficient condition for the function xαΨ(x) to be completely monotonic

on (0,∞)?

In other words, is the constant 4 completely monotonic degree of Ψ(x) with respect to x ∈ (0,∞)?
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3. Five lemmas

In order to affirmatively and smoothly answer the above questions, we need five lemmas below.

Lemma 3.1 ( [29]). For n ∈ N and x > 0,

ψ(n)(x) = (−1)n+1
∫ ∞

0

tn

1 − e−t e
−xt d t. (3.1)

Lemma 3.2 ( [3,29]). Let fi(t) for i = 1, 2 be piecewise continuous in arbitrary finite intervals included
in (0,∞) and suppose that there exist some constants Mi > 0 and ci ≥ 0 such that | fi(t)| ≤ Miecit for
i = 1, 2. Then ∫ ∞

0

[∫ t

0
f1(u) f2(t − u) d u

]
e−st d t =

∫ ∞

0
f1(u)e−su d u

∫ ∞

0
f2(v)e−sv d v. (3.2)

Lemma 3.3 ( [53]). Let f (x, t) is differentiable in t and continuous for (x, t) ∈ R2. Then

d
d t

∫ t

x0

f (x, t) d x = f (t, t) +

∫ t

x0

∂ f (x, t)
∂t

d x.

Lemma 3.4 ( [54–56]). If fi for 1 ≤ i ≤ n are nonnegative Lebesgue square integrable functions on
[0, a) for all a > 0, then

f1 ∗ · · · ∗ fn(x) ≥
xn−1

(n − 1)!
exp

[
n − 1
xn−1

∫ x

0
(x − u)n−2

n∑
j=1

ln f j(u) d u
]

(3.3)

for all n ≥ 2 and x ≥ 0, where fi ∗ f j(x) denotes the convolution
∫ x

0
fi(t) f j(x − t) d t.

Lemma 3.5 ( [29]). As z→ ∞ in | arg z| < π,

ψ′(z) ∼
1
z

+
1

2z2 +
1

6z3 −
1

30z5 +
1

42z7 −
1

30z9 + · · · ,

ψ′′(z) ∼ −
1
z2 −

1
z3 −

1
2z4 +

1
6z6 −

1
6z8 +

3
10z10 −

5
6z12 + · · · ,

ψ(3)(z) ∼
2
z3 +

3
z4 +

2
z5 −

1
z7 +

4
3z9 −

3
z11 +

10
z13 − · · · .

The formulas listed in Lemma 3.5 are special cases of [29].

4. Completely monotonic degree of Ψ(x) with respect to x ∈ (0,∞) is 4

Now we are in a position to compute completely monotonic degree of the function Ψ(x).

Theorem 4.1. Completely monotonic degree of Ψ(x) defined by (2.1) with respect to x ∈ (0,∞) is 4. In
other words,

deg x
cm[Ψ(x)] = 4. (4.1)
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Proof. Using the integral representation (3.1) and the formula (3.2) gives

Ψ(x) =

[∫ ∞

0

t
1 − e−t e

−xt d t
]2

−

∫ ∞

0

t2

1 − e−t e
−xt d t

=

∫ ∞

0

[∫ t

0

s(t − s)
(1 − e−s)

[
1 − e−(t−s)] d s −

t2

1 − e−t

]
e−xt d t

=

∫ ∞

0
q(t)e−xt d t,

where

q(t) =

∫ t

0
σ(s)σ(t − s) d s − tσ(t) and σ(s) =


s

1 − e−s , s , 0

1, s = 0.
(4.2)

Direct calculations reveal

σ′(s) = 1 +
1 − s
es − 1

−
s

(es − 1)2 ,

σ′′(s) =
s − 2
es − 1

+
3s − 2

(es − 1)2 +
2s

(es − 1)3 ,

σ(3)(s) =
3 − s
es − 1

+
9 − 7s

(es − 1)2 −
6(2s − 1)
(es − 1)3 −

6s
(es − 1)4 ,

σ(4)(s) =
s − 4
es − 1

+
15s − 28
(es − 1)2 +

2(25s − 24)
(es − 1)3 +

12(5s − 2)
(es − 1)4 +

24s
(es − 1)5 ,

σ(5)(s) =
5 − s
es − 1

+
75 − 31s
(es − 1)2 −

10(18s − 25)
(es − 1)3 −

30(13s − 10)
(es − 1)4 −

120(3s − 1)
(es − 1)5 −

120s
(es − 1)6 ,

σ(6)(s) =
s − 6
es − 1

+
3(21s − 62)

(es − 1)2 +
2(301s − 540)

(es − 1)3 +
60(35s − 39)

(es − 1)4

+
240(14s − 9)

(es − 1)5 +
360(7s − 2)

(es − 1)6 +
720s

(es − 1)7 ,

and

σ(0) = 1, σ′(0) =
1
2
, σ′′(0) =

1
6
, σ(3)(0) = 0,

σ(4)(0) = −
1

30
, σ(5)(0) = 0, σ(6)(0) =

1
42
.

Further differentiating consecutively brings out

[lnσ′′(s)]′ = −
(s − 3)e2s + 4ses + s + 3

[(s − 2)es + s + 2](es − 1)
,

[lnσ′′(s)]′′ = −
e4s − 4(s2 − 3s + 4)e3s − (4s2 − 30)e2s − 4(s2 + 3s + 4)es + 1

(es − 1)2[(s − 2)es + s + 2]2

, −
h1(s)

(es − 1)2[(s − 2)es + s + 2]2 ,

h′1(s) = 4[e3s − (3s2 − 7s + 9)e2s − (2s2 + 2s − 15)es − s2 − 5s − 7]es
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, 4h2(s)es,

h′2(s) = 3e3s − (6s2 − 8s + 11)e2s − (2s2 + 6s − 13)es − 2s − 5,
h′′2 (s) = 9e3s − 2(6s2 − 2s + 7)e2s − (2s2 + 10s − 7)es − 2,

h(3)
2 (s) = [27e2s − 8es(3s2 + 2s + 3) − 2s2 − 14s − 3]es

, h3(s)es,

h′3(s) = 54e2s − 8(3s2 + 8s + 5)es − 2(2s + 7),
h′′3 (s) = 4[27e2s − 2(3s2 + 14s + 13)es − 1],

h(3)
3 (s) = 8(27es − 3s2 − 20s − 27)es

> 0

for s ∈ (0,∞), and

h′′3 (0) = h′3(0) = h3(0) = h(3)
2 (0) = h′′2 (0) = h′2(0) = h2(0) = h′1(0) = h1(0) = 0.

This means that

h′′3 (s) > 0, h′3(s) > 0, h3(s) > 0, h(3)
2 (s) > 0,

h′′2 (s) > 0, h′2(s) > 0, h2(s) > 0, h′1(s) > 0, h1(s) > 0

for s ∈ (0,∞). Therefore, the derivative [lnσ′′(s)]′′ is negative, that is, the function σ′′(s) is
logarithmically concave, on (0,∞). Hence, for any given number t > 0,

1. the function σ′′(s)σ′′(t − s) is also logarithmically concave with respect to s ∈ (0, t);
2. the function σ′′(s) is decreasing and σ(s) is not concave on (0,∞).

By Lemma 3.3 and integration-by-part, straightforward computations yield

q′(t) =

∫ t

0
σ(s)σ′(t − s) d s + σ(0)σ(t) − [tσ′(t) + σ(t)]

=

∫ t

0
σ(s)σ′(t − s) d s − tσ′(t),

q′′(t) =

∫ t

0
σ(s)σ′′(t − s) d s + σ(t)σ′(0) − [σ′(t) + tσ′′(t)]

= −

∫ t

0
σ(s)

dσ′(t − s)
d s

d s + σ(t)σ′(0) − [σ′(t) + tσ′′(t)]

=

∫ t

0
σ′(s)σ′(t − s) d s − tσ′′(t),

q(3)(t) =

∫ t

0
σ′(s)σ′′(t − s) d s +

1
2
σ′(t) − σ′′(t) − tσ(3)(t),

q(4)(t) =

∫ t

0
σ′(s)σ(3)(t − s) d s +

1
6
σ′(t) +

1
2
σ′′(t) − 2σ(3)(t) − tσ(4)(t)

= −

∫ t

0
σ′(s)

dσ′′(t − s)
d s

d s +
1
6
σ′(t) +

1
2
σ′′(t) − 2σ(3)(t) − tσ(4)(t)
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=

∫ t

0
σ′′(s)σ′′(t − s) d s + σ′′(t) − 2σ(3)(t) − tσ(4)(t)

= 2
∫ t/2

0
σ′′(s)σ′′(t − s) d s + σ′′(t) − 2σ(3)(t) − tσ(4)(t),

and
q(0) = q′(0) = q′′(0) = 0, q(3)(0) =

1
12
, q(4)(0) =

1
6
.

Applying Lemma 3.4 to f1 = f2 = σ′′ and n = 2 leads to∫ t

0
σ′′(s)σ′′(t − s) d s ≥ t exp

[2
t

∫ t

0
lnσ′′(u) d u

]
.

Hence, the validity of the inequality

t exp
[2

t

∫ t

0
lnσ′′(u) d u

]
+ σ′′(t) − 2σ(3)(t) − tσ(4)(t) > 0 (4.3)

implies the positivity of q(4)(t) on (0,∞).
When tσ(4)(t) + 2σ(3)(t) − σ′′(t) ≤ 0, the inequality (4.3) is clearly valid.
When tσ(4)(t) + 2σ(3)(t) − σ′′(t) > 0, the inequality (4.3) can be rearranged as∫ t

0
lnσ′′(u) d u >

t
2

ln
tσ(4)(t) + 2σ(3)(t) − σ′′(t)

t
.

Let

F(t) =

∫ t

0
lnσ′′(u) d u −

t
2

ln
tσ(4)(t) + 2σ(3)(t) − σ′′(t)

t
.

Differentiating twice produces

F′(t) = lnσ′′(t) −
1
2

ln
tσ(4)(t) + 2σ(3)(t) − σ′′(t)

t
−

t2σ(5)(t) + 2tσ(4)(t) − (t + 2)σ(3)(t) + σ′′(t)
2[tσ(4)(t) + 2σ(3)(t) − σ′′(t)]

and

F′′(t) =
σ(3)(t)
σ′′(t)

−
t2σ(5)(t) + 2tσ(4)(t) − (t + 2)σ(3)(t) + σ′′(t)

2t[tσ(4)(t) + 2σ(3)(t) − σ′′(t)]

−
1

2[tσ(4)(t) + 2σ(3)(t) − σ′′(t)]2


[
t2σ(6)(t) + 4tσ(5)(t) − tσ(4)(t)

][
tσ(4)(t)

+2σ(3)(t) − σ′′(t)
]
−

[
t2σ(5)(t)

+2tσ(4)(t) − (t + 2)σ(3)(t) + σ′′(t)
]

×
[
tσ(5)(t) + 3σ(4)(t) − σ(3)(t)

]


,
Q(t)

2tσ′′(t)[tσ(4)(t) + 2σ(3)(t) − σ′′(t)]2 ,

where

Q(t) = 2tσ(3)(t)
[
tσ(4)(t) + 2σ(3)(t) − σ′′(t)

]2
− σ′′(t)

[
tσ(4)(t) + 2σ(3)(t) − σ′′(t)

][
t2σ(5)(t) + 2tσ(4)(t)
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− (t + 2)σ(3)(t) + σ′′(t)
]
− tσ′′(t)

{[
t2σ(6)(t) + 4tσ(5)(t) − tσ(4)(t)

][
tσ(4)(t) + 2σ(3)(t) − σ′′(t)

]
−

[
t2σ(5)(t) + 2tσ(4)(t) − (t + 2)σ(3)(t) + σ′′(t)

][
tσ(5)(t) + 3σ(4)(t) − σ(3)(t)

]}
,

e3tR(t)
(et − 1)15

and

R(t) = e9t(t5 − 12t4 + 70t3 − 160t2 + 192t − 128
)
− e8t(16t7 − 220t6 + 1219t5 − 3220t4

+ 4490t3 − 3248t2 + 1152t − 768
)
− 4e7t(37t7 − 423t6 + 1397t5 − 1409t4

− 1020t3 + 2632t2 − 732t + 456
)
− 4e6t(225t7 − 1281t6 + 1213t5 + 3127t4

− 4372t3 − 2648t2 + 1020t − 504
)
− 2e5t(908t7 − 1514t6 − 6493t5 + 8710t4

+ 12754t3 − 1216t2 − 1656t + 336
)
− 2e4t(908t7 + 1710t6 − 5489t5 − 12370t4

+ 594t3 + 4880t2 + 696t + 336
)
− 4e3t(225t7 + 1263t6 + 1771t5 − 887t4 − 3208t3

− 728t2 + 12t − 168
)
− 4e2t(37t7 + 353t6 + 1099t5 + 1337t4 + 272t3 − 632t2

− 108t + 24
)
− et(16t7 + 180t6 + 827t5 + 1864t4 + 2226t3 + 1312t2 + 240t + 96

)
+ t5 + 8t4 + 30t3 + 48t2 + 48t + 32.

Differentiating and taking the limit t → 0 about 76 times respectively by the same approach as
either the proof of the positivity of θ(t) in [43], or proofs of the absolute monotonicity of the functions
f1, f2, f3 and h1, h2, h3, h4 in [57], or the proof of the positivity of h1(s) on page 3396 in this paper, we
can verify the positivity of R(t) on (0,∞). In [58], a stronger conclusion than the positivity of R(t) on
(0,∞) was proved in details. This means that Q(t) > 0 on (0,∞) and F′′(t) > 0. Accordingly, the
derivative F′(t) is strictly increasing. Because

F′(8) = 4 +
3(6e32 + 729e24 + 2825e16 + 1483e8 + 77)

8e32 + 270e24 + 150e16 − 374e8 − 54

+
1
2

ln
8(5 + 3e8)

(e8 − 1)(27 + 214e8 + 139e16 + 4e24)
= −0.24428 . . .

and

F′(10) = 5 +
72e40 + 4715e30 + 16563e20 + 8241e10 + 409

19e40 + 440e30 + 186e20 − 568e10 − 77

+
1
2

ln
80(3 + 2e10)2

(e10 − 1)(77 + 645e10 + 459e20 + 19e30)
= 0.20823 . . . ,

which are numerically calculated with the help of the software Mathematica, the unique zero of F′(t)
locates on the open interval (8, 10). Consequently, the unique minimum of the function F(t) attains on
the interval (8, 10). Since

F(t) = F(t0) + (t − t0)F′(t0) +
(t − t0)2

2
F′′(ξ) > F(t0) + (t − t0)F′(t0)
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for t, t0 ∈ [8, 10], where ξ locates between t0 and t, numerically calculating with the help of the software
Mathematica gains

2F(t) > [F(8) + (t − 8)F′(8)] + [F(10) + (t − 10)F′(10)]
= F(8) + F(10) − [8F′(8) + 10F′(10)] + [F′(8) + F′(10)]t

>

∫ 8

0
lnσ′′(u) d u − 4 ln

e8(27 + 214e8 + 139e16 + 4e24)
2(e8 − 1)5 +

∫ 10

0
lnσ′′(u) d u

− 5 ln
e10(77 + 645e10 + 459e20 + 19e30)

5(e10 − 1)5 − 0.1281 − 0.0361t

>

∫ 8

0
lnσ′′(u) d u +

∫ 10

0
lnσ′′(u) d u + 72.492 − 0.1281 − 0.361

>

∫ 8

0
lnσ′′(u) d u +

∫ 10

0
lnσ′′(u) d u + 72

>
1
3

[ 24∑
k=1

lnσ′′
(k
3

)
+

30∑
k=1

lnσ′′
(k
3

)]
+ 72

> −29 − 43 + 72
= 0

on the interval [8, 10]. In conclusion, the inequality (4.3) is valid and the fourth derivative q(4)(t) is
positive on (0,∞).

Integrating by parts successively results in

x4Ψ(x) = x4
∫ ∞

0
q(t)e−xt d t = −x3

∫ ∞

0
q(t)

d e−xt

d t
d t = −x3

[
q(t)e−xt

∣∣∣t=∞
t=0
−

∫ ∞

0
q′(t)e−xt d t

]
= x3

∫ ∞

0
q′(t)e−xt d t = x2

∫ ∞

0
q′′(t)e−xt d t = x

∫ ∞

0
q(3)(t)e−xt d t = −

∫ ∞

0
q(3)(t)

d e−xt

d t
d t

= −

[
q(3)(t)e−xt

∣∣∣t=∞
t=0
−

∫ ∞

0
q(4)(t)

d e−xt

d t
d t

]
=

1
12

+

∫ ∞

0
q(4)(t)e−xt d t.

From the positivity of q(4)(t) on (0,∞), it follows that the function x4Ψ(x) is completely monotonic
on (0,∞). In other words,

deg x
cm[Ψ(x)] ≥ 4. (4.4)

Suppose that the function
fα(x) = xαΨ(x)

is completely monotonic on (0,∞). Then

f ′α(x) = xα−1{αΨ(x) + x
[
2ψ′(x)ψ′′(x) + ψ(3)(x)

]}
≤ 0

on (0,∞), that is,

α ≤ −
x
[
2ψ′(x)ψ′′(x) + ψ(3)(x)

]
Ψ

(x) , φ(x), x > 0.
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From Lemma 3.5, it follows

lim
x→∞

φ(x) = − lim
x→∞

{
x[ 1

x + 1
2x2 + O

( 1
x2

)]2
+

[
− 1

x2 −
1
x3 + O

( 1
x3

)]
×

[
2
(1

x
+

1
2x2 + O

( 1
x2

))(
−

1
x2 −

1
x3 + O

( 1
x3

))
+

( 2
x3 +

3
x4 + O

( 1
x4

))]}
= 4.

As a result, we have
deg x

cm[Ψ(x)] ≤ 4. (4.5)

Combining (4.4) with (4.5) yields (4.1). The proof of Theorem 4.1 is complete. �

5. Strongly completely monotonic functions and completely monotonic degree

Recall from [59] that a function f is said to be strongly completely monotonic on (0,∞) if it has
derivatives of all orders and (−1)nxn+1 f (n)(x) is nonnegative and decreasing on (0,∞) for all n ≥ 0.

Theorem 5.1 ( [18]). A function f (x) is strongly completely monotonic on (0,∞) if and only if the
function x f (x) is completely monotonic on (0,∞).

This theorem implies that the set of completely monotonic functions whose completely monotonic
degrees are not less than 1 with respect to x ∈ (0,∞) coincides with the set of strongly completely
monotonic functions on (0,∞).

Because not finding a proof for [18] anywhere, we now provide a proof for Theorem 5.1 as follows.

Proof of Theorem 5.1. If x f (x) is completely monotonic on (0,∞), then

(−1)k[x f (x)](k) = (−1)k[x f (k)(x) + k f (k−1)(x)
]

=
(−1)kxk+1 f (k)(x) − k[(−1)k−1xk f (k−1)(x)]

xk ≥ 0

on (0,∞) for all integers k ≥ 0. From this and by induction, we obtain

(−1)kxk+1 f (k)(x) ≥ k[(−1)k−1xk f (k−1)(x)] ≥ k(k − 1)[(−1)k−2xk−1 f (k−2)(x)] ≥ · · ·
≥ [k(k − 1) · · · 4 · 3]x3 f ′′(x) ≥ [k(k − 1) · · · 4 · 3 · 2]x2 f ′(x) ≥ k!x f (x) ≥ 0

on (0,∞) for all integers k ≥ 0. So, the function f (x) is strongly completely monotonic on (0,∞).
Conversely, if f (x) is a strongly completely monotonic function on (0,∞), then

(−1)kxk+1 f (k)(x) ≥ 0

and [
(−1)kxk+1 f (k)(x)

]′
=

(k + 1)
[
(−1)kxk+1 f (k)(x)

]
− (−1)k+1xk+2 f (k+1)(x)

x
≤ 0

hold on (0,∞) for all integers k ≥ 0. Hence, it follows that x f (x) ≥ 0 and (−1)k+1[x f (x)](k+1) on (0,∞)
for all integers k ≥ 0. As a result, the function x f (x) is completely monotonic on (0,∞). The proof of
Theorem 5.1 is complete. �
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6. A property of logarithmically concave functions

Now we prove a property of logarithmically concave functions.

Theorem 6.1. If f (x) is differentiable and logarithmically concave (or logarithmically convex,
respectively) on (−∞,∞), then the product f (x) f (λ − x) for any fixed number λ ∈ R is increasing (or
decreasing, respectively) with respect to x ∈

(
−∞, λ2

)
and decreasing (or increasing, respectively) with

respect to x ∈
(λ

2 ,∞
)
.

Proof. Taking the logarithm of f (x) f (λ − x) and differentiating give

{ln[ f (x) f (λ − x)]}′ =
f ′(x)
f (x)

−
f ′(λ − x)
f (λ − x)

.

In virtue of the logarithmic concavity of f (x), it follows that the function f ′(x)
f (x) is decreasing and

f ′(λ−x)
f (λ−x) is increasing on (−∞,∞). From the obvious fact that {ln[ f (x) f (λ − x)]}′|x=λ/2 = 0, it is deduced

that {ln[ f (x) f (λ − x)]}′ < 0 for x > λ
2 and {ln[ f (x) f (λ − x)]}′ > 0 for x < λ

2 . Hence, the function
f (x) f (λ − x) is decreasing for x > λ

2 and increasing for x < λ
2 .

For the case of f (x) being logarithmically convex, it can be proved similarly. �

7. Remarks and two open problems

In this section, we list several remarks on our main results and pose two open prblems.
Remark 7.1. The function σ(s) defined in (4.2) is a special case of the function

ga,b(s) =


s

bs − as , s , 0,

1
ln b − ln a

, s = 0,

where a, b are positive numbers and a , b. Some special cases of the function ga,b(s) and their
reciprocals have been investigated and applied in many papers such as [6, 8, 60–75]. This subject was
also surveyed in [76]. Recently, it was discovered that the derivatives of the function σ(s)

s = 1
1−e−s have

something to do with the Stirling numbers of the first and second kinds in combinatorics and number
theory. For detailed and more information, please refer to [77–89].

By Theorem 6.1, it can be deduced that the function σ′′(s)σ′′(t − s) is increasing with respect to
s ∈

(
0, t

2

)
and decreasing with respect to s ∈

( t
2 , t

)
, where σ is defined in (4.2).

The techniques used in the proof of Theorem 6.1 was ever utilized in the papers [70, 90–92] and
closely related references therein.
Remark 7.2. The result obtained in Theorem 4.1 in this paper affirmatively answers those questions
asked on page 3393 at the end of Section 2. Therefore, the result in Theorem 4.1 strengthens, improves,
and sharpens those results in (2.7). This implies that other results established in [14, 16] can also be
further improved, developed, or amended.
Remark 7.3 (First open problem). Motivated by Lemma 3.4, the proof of Theorem 4.1, and
Theorem 6.1, we pose the following open problem: when fi for 1 ≤ i ≤ n are all logarithmically
concave on [0, a) for all a > 0, can one find a stronger lower bound than the one in (3.3) for the
convolution f1 ∗ f2 ∗ · · · ∗ fn(x)?
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Remark 7.4 (Second open problem). We conjecture that the completely monotonic degrees with respect
to x ∈ (0,∞) of the functions hλ(x) and −hµ(x) defined by (2.5) are 4 if and only if λ ≤ 0 and µ ≥ 4. In
other words,

deg x
cm[hλ(x)] = deg x

cm[−hµ(x)] = 4

if and only if λ ≤ 0 and µ ≥ 4.

Remark 7.5. This paper is a revised and shortened version of the preprint [93].

8. Conclusions

In ths paper, the author proved that the completely monotonic degree of the function [ψ′(x)]2 +ψ′′(x)
with respect to x ∈ (0,∞) is 4, verified that the set of all strongly completely monotonic functions on
(0,∞) coincides with the set of functions whose completely monotonic degrees are greater than or
equal to 1 on (0,∞), presented a property of logarithmically concave functions, and posed two open
problems on a stronger lower bound of the convolution of finite many functions and on completely
monotonic degree of a kind of completely monotonic functions on (0,∞).
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