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1. Introduction

In the recent decades, fractional differential equation has received extensive attention in
mathematical theory and application research, see [1–5] and the references therein. A great deal of
research results have been obtained in the theory and application of fractional differential equations,
see [6–18] and the references therein. Meanwhile, the differential equations with left and right
fractional derivatives are also playing an important role in many different applications. For example,
in [19, 20], this type of differential equations is used to describe the temperature distribution of
building walls while in [21], it is used to simulate the movement of particulate matter in the process of
silo emptying. The theoretical research of this kind of problem has also attracted lots of attention,
see [22–31].

In this paper, we study the following fractional systems which involve both left and right fractional

http://www.aimspress.com/journal/Math
http://dx.doi.org/10.3934/math.2020214


3332

derivatives C
0 Dα

t u1(t) = f1(t, u1(t), u2(t)), t ∈ (0, 1) ,
C
t Dβ

1u2(t) = f2(t, u1(t), u2(t)), t ∈ (0, 1) ,
(1.1)

with the nonlocal boundary conditionsu1(0) = ru2(1), u2(0) =
∫ 1

0
ω(t)u1(t)dt,

u′1(0) = 0, u′2(1) = 0,
(1.2)

where 1 < α, β ≤ 2, C
0 Dα

t and C
t Dβ

1 represent the left and right Caputo fractional derivative operator,
respectively. fi ∈ C([0, 1] × R2,R) may be nonlinear functions, and ω ∈ C([0, 1], [0,+∞)) is a given
function, r is a real.

The purpose of this paper is to obtain the existence results for solutions of boundary value problem
(1.1) and (1.2) under the resonant condition

r
∫ 1

0
ω(t)dt = 1. (1.3)

As an application of our results, we deal with the existence result of the solution to fractional
differential equation under the resonant conditions which involves both left and right fractional
derivatives

C
t Dβ

1

(
C
0 Dα

t u(t)
)

= g(t, u(t), C
0 Dα

t u(t)), t ∈ (0, 1) , (1.4)

which satisfies certain nonlocal boundary conditions.

2. Preliminaries

In this section, we show some basic definitions for the fractional calculus and related lemmas which
are used to establish the main results.

Definition 2.1. (See [1, 3]) Suppose γ > 0, then the order γ Riemann-Liouville left fractional integral
and Caputo left fractional derivative of function y : [0, 1]→ R are defined by

0Iγt y(t) =
1

Γ(γ)

∫ t

0
(t − s)γ−1y(s)ds, and C

0 Dγ
t y(t) = 0In−γ

t (
d
dt

)ny(t),

respectively, provided the right sides exist. And the order γ Riemann-Liouville right fractional integral
and Caputo right fractional derivative of y are given by

tI
γ
1 y(t) =

1
Γ(γ)

∫ 1

t
(s − t)γ−1y(s)ds, and C

t Dγ
1y(t) = (−1)n

tI
n−γ
1 (

d
dt

)ny(t),

respectively, provided the right-side integral converges, where n is an integer with n − 1 < γ < n.

Lemma 2.1. (See [1,3]) For n−1 < γ < n, n is a positive integer, then the general solution of fractional
differential equation C

0 Dγ
t y(t) = 0 is given by

y(t) = c0 + c1t + · · · + cn−1tn−1,
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and the general solution of fractional differential equation C
t Dγ

1y(t) = 0 is given by

y(t) = d0 + d1(1 − t) + · · · + dn−1(1 − t)n−1,

where c j, d j ∈ R, j = 0, 1, · · · , n.

Definition 2.2. (see [32], P39) Let X, Y be normed vector spaces, L : Dom L ⊂ X → Y a linear
mapping. The mapping L will be called a Fredholm mapping of index zero if
(a) dim Ker L = codim ImL < +∞;
(b) ImL is closed in Y.

Lemma 2.2. (Generalized Krasnosel’skii theorem, see [32], P32) Let X and Y be Banach spaces. Let
L : dom L ⊂ X → Y be a Fredholm mapping of index zero, N : X → Y be an L-compact mapping in
Ω with Ω open, bounded, symmetric with respect to the origin and containing it. If

(L − N)x , λ(L − N)(−x)

for every x ∈ Dom L ∩ ∂Ω and every λ ∈ [0, 1], where ∂Ω is the boundary of Ω with respect to X, then
equation Lx = Nx has at least one solution in Ω.

3. The existence of solutions for the systems

In this section, we present the existence results of the solutions of boundary value problem (1.1)
and (1.2).

Let
X = Y = {u = (u1, u2)T : ui ∈ C[0, 1], i = 1, 2}

be endowed with the norm

‖u‖ = ‖(u1, u2)T ‖ = max{max
t∈[0,1]

|u1(t)|, max
t∈[0,1]

|u2(t)|}.

Then (X, ‖ · ‖) and (Y, ‖ · ‖) are Banach spaces.
Denote vector functions

u(t) =

(
u1(t)
u2(t)

)
, f(t,u(t)) =

(
f1(t, u1(t), u2(t))
f2(t, u1(t), u2(t))

)
,

and an operator

L =

( C
0 Dα

t 0
0 C

t Dβ
1

)
.

Let L : Dom L ⊆ X → Y by

Lu(t) = L(u1, u2)T =

( C
0 Dα

t 0
0 C

t Dβ
1

) (
u1(t)
u2(t)

)
=

( C
0 Dα

t u1(t)
C
t Dβ

1u2(t)

)
, (3.1)

where

Dom L =
{
u =

(
u1

u2

)
∈ X :

( C
0 Dα

t u1(t)
C
t Dβ

1u2(t)

)
∈ Y, u1(t), u2(t) satisfy boundary conditions (1.2)

}
.
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Define N : X → Y by

Nu(t) = f(t,u(t)) =

(
f1(t, u1(t), u2(t))
f2(t, u1(t), u2(t))

)
.

It is clear that boundary value problem (1.1) and (1.2) is equivalent to the following operator
equation

Lu = Nu.

Lemma 3.1. Let L be defined by (3.1). Then L is a Fredholm operator of index zero.

Proof. Obviously L is a linear operator. Next, we consider the kernel of the linear operator L.

KerL = {u ∈ Dom L ⊆ X| Lu = 0},

which implies that

Lu(t) = L(u1, u2)T =

( C
0 Dα

t u1(t)
C
t Dβ

1u2(t)

)
=

(
0
0

)
= 0, for any u ∈ KerL. (3.2)

Then

u(t) =

(
u1(t)
u2(t)

)
=

(
c0 + c1t

d0 + d1(1 − t)

)
. (3.3)

Take the boundary conditions u′1(0) = 0 and u′2(1) = 0 into account, and we can get c1 = d1 = 0.
In view of u1(0) = ru2(1) and u2(0) =

∫ 1

0
ω(t)u1(t)dt and the resonant condition r

∫ 1

0
ω(t)dt = 1, we

can show that c0 = rd0. Therefore,

KerL = {u ∈ Dom L ⊆ X : u(t) = d
(

r
1

)
, d ∈ R},

which implies that dimKerL = 1.
Following, we denote

ρ(s) :=
∫ 1

s
ω(τ)(τ − s)α−1dτ, Λ(s) :=

 1
Γ(α)ρ(s)
− 1

Γ(β) sβ−1

 . (3.4)

And for y =

(
y1(t)
y2(t)

)
∈ Y, we denote

〈Λ, y〉 :=
∫ 1

0
ΛT(s)y(s)ds =

1
Γ(α)

∫ 1

0
ρ(s)y1(s)ds −

1
Γ(β)

∫ 1

0
sβ−1y2(s)ds. (3.5)

We prove that

ImL =
{
y =

(
y1(t)
y2(t)

)
∈ Y : 〈Λ, y〉 = 0

}
. (3.6)

Since

ImL =
{
y =

(
y1(t)
y2(t)

)
∈ Y : there exists u =

(
u1(t)
u2(t)

)
∈ DomL such that Lu = y

}
,
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for any y =

(
y1(t)
y2(t)

)
∈ ImL, there exists u =

(
u1(t)
u2(t)

)
∈ DomL such that

Lu(t) = L(u1, u2)T =

( C
0 Dα

t u1(t)
C
t Dβ

1u2(t)

)
=

(
y1(t)
y2(t)

)
. (3.7)

Then

u1(t) =
1

Γ(α)

∫ t

0
(t − s)α−1y1(s)ds + c0 + c1t,

u2(t) =
1

Γ(β)

∫ 1

t
(s − t)β−1y2(s)ds + d0 + d1(1 − t).

And

u′1(t) =
1

Γ(α − 1)

∫ t

0
(t − s)α−2y1(s)ds + c1,

u′2(t) = −
1

Γ(β − 1)

∫ 1

t
(s − t)β−2y2(s)ds + d1.

By the boundary conditions u′1(0) = u′2(1) = 0, we get c1 = d1 = 0. And by u1(0) = ru2(1),
u2(0) =

∫ 1

0
ω(t)u1(t)dt, we have

c0 = rd0 (3.8)

and
1

Γ(β)

∫ 1

0
sβ−1y2(s)ds + d0 =

1
Γ(α)

∫ 1

0
ω(s)

( ∫ s

0
(τ − s)α−1y1(τ)dτ + c0

)
ds. (3.9)

Then

1
Γ(β)

∫ 1

0
sβ−1y2(s)ds + d0 =

1
Γ(α)

∫ 1

0

( ∫ 1

s
(τ − s)α−1ω(τ)dτ

)
y1(s)ds + rd0

∫ 1

0
ω(s)ds.

It follows
1

Γ(α)

∫ 1

0

( ∫ 1

s
(τ − s)α−1ω(τ)dτ

)
y1(s)ds −

1
Γ(β)

∫ 1

0
sβ−1y2(s)ds = 0 (3.10)

from the resonant condition r
∫ 1

0
ω(s)ds = 1. That is

1
Γ(α)

∫ 1

0
ρ(s)y1(s)ds −

1
Γ(β)

∫ 1

0
sβ−1y2(s)ds = 0. (3.11)

Then, Eq. (3.11) is equivalent to

〈Λ, y〉 =

∫ 1

0
ΛT(s)y(s)ds = 0 (3.12)

and

ImL ⊆
{
y =

(
y1(t)
y2(t)

)
∈ Y : 〈Λ, y〉 = 0

}
.
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On the other hand, for every y =

(
y1(t)
y2(t)

)
∈

{
y ∈ Y : 〈Λ, y〉 = 0

}
, let

u =

(
u1(t)
u2(t)

)
=

 1
Γ(α)

∫ t

0
(t − s)α−1y1(s)ds

1
Γ(β)

∫ 1

t
(s − t)β−1y2(s)ds

 ,
then u ∈ DomL and Lu = y. So

{
y =

(
y1(t)
y2(t)

)
∈ Y : 〈Λ, y〉 = 0

}
⊆ ImL.

Hence (3.6) holds.
Following we prove that ImL is closed.

Assume that yk =

(
yk,1(t)
yk,2(t)

)
∈ ImL, and lim

k→∞
yk = y0 =

(
y0,1(t)
y0,2(t)

)
.

Since lim
k→∞
‖yk − y0‖ = 0, then lim

k→∞
|yk,i − y0,i| = 0 for i = 1, 2.

Because yk ∈ ImL which implies yk,i ∈ C[0, 1] for k = 1, 2, · · · and i = 1, 2, then y0,i ∈ C[0, 1] for
i = 1, 2, which implies y0 ∈ Y.

By (3.6), we can get that

〈Λ, yk〉 =
1

Γ(α)

∫ 1

0
ρ(s)yk,1(s)ds −

1
Γ(β)

∫ 1

0
sβ−1yk,2(s)ds = 0.

Then

〈Λ, y0〉 =
1

Γ(α)

∫ 1

0
ρ(s)y0,1(s)ds −

1
Γ(β)

∫ 1

0
sβ−1y0,2(s)ds = 0,

which implies that y0 ∈ ImL and ImL is a closed in Y.
Because Λ is a fixed vector function, then 〈Λ, y〉 ∈ R, for any y ∈ Y, which implies dim(Y/ImL) =

1.
So

codim(ImL) = dim(Y/ImL) = 1 = dimKerL.

Therefore, we get that the linear operator L is a Fredholm operator with index zero. For the
definition of Fredholm operator with index zero, see Definition 2.2.

�
Define P : X → X by

Pu = P
(

u1(t)
u2(t)

)
=

u1(0) + ru2(1)
2r

(
r
1

)
.

Then P is a linear continuous projector operator. We can easily check that ImP = KerL and X =

KerP ⊕ KerL.
So the operator L|Dom L∩KerP : Dom L ∩ KerP −→ ImL is reversible.
For every y ∈ ImL, there exists u ∈ Dom L ∩ KerP such that

Lu(t) =

( C
0 Dα

t u1(t)
C
t Dβ

1u2(t)

)
=

(
y1(t)
y2(t)

)
= y ∈ Y.

AIMS Mathematics Volume 5, Issue 4, 3331–3345.



3337

Then

u1(t) =
1

Γ(α)

∫ t

0
(t − s)α−1y1(s)ds + c0 + c1t,

u2(t) =
1

Γ(β)

∫ 1

t
(s − t)β−1y2(s)ds + d0 + d1(1 − t).

Combining the boundary conditions and noticing u ∈ Dom L ∩ KerP, and we can get that c0 = c1 =

d0 = d1 = 0. Then

u(t) =

(
u1(t)
u2(t)

)
=

 1
Γ(α)

∫ t

0
(t − s)α−1y1(s)ds

1
Γ(β)

∫ 1

t
(s − t)β−1y2(s)ds

 = L−1
P y(t), (3.13)

where L−1
P is the inverse of L|Dom L∩KerP.

Define the operator Q : Y → Y/ImL by

Qy = Q
(

y1(t)
y2(t)

)
= −Γ(β + 1) 〈Λ, y〉

(
0
1

)
. (3.14)

Let y0 =

(
0
1

)
, then

〈Λ, y0〉 = −
1

Γ(β)

∫ 1

0
sβ−1ds = −

1
Γ(β + 1)

,

and Q2 = Q. That is, Q is a linear continuous projector operator.
We can easily see that KerQ = ImL and Y = ImL ⊕ ImQ.
Since f is continuous, it follows that Lemma 3.2 holds from (3.13) and (3.14).

Lemma 3.2. N : X → Y is an L-compact operator.

Denote
(H1) The functions fi ∈ C([0, 1] × R2,R), there exist constants σi ≥ 0 and functions ai, bi ∈

C([0, 1], [0, +∞)), i = 1, 2, such that

| fi(t, x2, y2) − fi(t, x1, y1)| ≤ ai(t)|x1 − x2|
σ + bi(t)|y1 − y2|

σ, i = 1, 2,

for any t ∈ [0, 1], x j, y j ∈ R, j = 1, 2.
(H2) The functions fi ∈ C([0, 1] × R2,R) and

lim sup
|x|+|y|→∞

sup
t∈[0,1]

| fi(t, x, y)|
|x| + |y|

< Ri, i = 1, 2,

where R1 =
Γ(α+1)

2 and R2 =
Γ(β+1)

2 .
For convenience, let

m0 = max{
1

Γ(α)

∫ 1

0
(1 − s)α−1(a1(s) + a2(s))ds,

1
Γ(β)

∫ 1

0
sβ−1(b1(s) + b2(s))ds}, (3.15)

and
f0 = max{

1
Γ(α + 1)

max
t∈[0,1]

| f1(t, 0, 0)|,
1

Γ(β + 1)
max
t∈[0,1]

| f2(t, 0, 0)|}. (3.16)
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Theorem 3.1. Suppose (H1) holds and 0 ≤ σ < 1. Then boundary value problem (1.1) and (1.2) has
at least one solution.

Proof. If u ∈ DomL ∩ KerP satisfies the following equation

(L − N)(u) = λ(L − N)(−u), λ ∈ [0, 1], (3.17)

then
L(u) =

1
1 + λ

(N(u) − λN(−u)), λ ∈ [0, 1] (3.18)

and

u =

(
u1(t)
u2(t)

)
= L−1

P (
1

1 + λ
(N(u) − λN(−u))).

We can get

|u1(t)| =|
1

1 + λ
·

1
Γ(α)

∫ t

0
(t − s)α−1( f1(s, u1(s), u2(s)) − λ f1(s,−u1(s),−u2(s)))ds|

≤
1

Γ(α)(1 + λ)

∫ t

0
(t − s)α−1| f1(s, u1(s), u2(s)) − λ f1(s,−u1(s),−u2(s))|ds

≤
1

Γ(α)(1 + λ)

∫ 1

0
(1 − s)α−1|( f1(s, u1(s), u2(s)) − λ f1(s,−u1(s),−u2(s)))|ds

≤
1

Γ(α)(1 + λ)

∫ 1

0
(1 − s)α−1(| f1(s, u1(s), u2(s)) − f1(s, 0, 0)|

+ λ| f1(s,−u1(s),−u2(s)) − f1(s, 0, 0)| + (1 + λ)| f1(s, 0, 0)|)ds

≤
1

Γ(α)

∫ 1

0
(1 − s)α−1[(a1(s)|u1(s)|σ + a2(s)|u2(s)|σ) + | f1(s, 0, 0)|]ds

≤
1

Γ(α)

∫ 1

0
(1 − s)α−1[(a1(s) + a2(s))‖u‖σ + | f1(s, 0, 0)|]ds

≤
1

Γ(α)

∫ 1

0
(1 − s)α−1(a1(s) + a2(s))ds‖u‖σ + f0

and
max
t∈[0,1]

|u1(t)| ≤ m0‖u‖σ + f0, (3.19)

where m0 and f0 are given by (3.15) and (3.16).
Similarly, we can show

max
t∈[0,1]

|u2(t)| ≤ m0‖u‖σ + f0. (3.20)

As a result,

‖u‖ ≤ m0‖u‖σ + f0. (3.21)

Since 0 ≤ σ < 1, we take M ≥ max{(2m0)
1

1−σ , 2 f0} + 1 and

Ω = {u ∈ X ∩ KerP : ‖u‖ < M}.
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Then Ω is open, bounded, symmetric with respect to the origin and containing it.
If u ∈ Dom L ∩ ∂Ω and satisfies (3.17), by (3.21), we can show that

M = ‖u‖ ≤ m0Mσ + f0 <
M1−σ

2
· Mσ +

M
2

= M,

which is a contradiction.
Therefore, we can obtain that

(L − N)u , λ(L − N)(−u), u ∈ Dom L ∩ ∂Ω and λ ∈ [0, 1].

By Lemma 3.2, N is an L-compact operator.
According to Lemma 2.2, we have the equation Lu = Nu has at least one solution on Dom L ∩ Ω.

Namely, boundary value problem (1.1) and (1.2) has at least one solution.
�

Theorem 3.2. Suppose (H1) holds. If σ = 1 and m0 < 1, then boundary value problem (1.1) and (1.2)
has at least one solution.

Proof. Since m0 < 1, we take M > f0
1−m0

and

Ω = {u ∈ X ∩ KerP : ‖u‖ < M}.

Then Ω is open, bounded, symmetric with respect to the origin and containing it.
If u ∈ DomL ∩ KerP satisfies equation (3.17), similar to the proof of the theorem 3.1, we can get

that
‖u‖ ≤ m0‖u‖ + f0. (3.22)

It follows
‖u‖ < m0M + (1 − m0)M = M, u ∈ Dom L ∩ ∂Ω

from (3.22). We can show that

(L − N)u , λ(L − N)(−u), u ∈ Dom L ∩ ∂Ω and λ ∈ [0, 1].

By Lemma 3.2, N : X → Y is an L-compact operator.
According to Lemma 2.2, we have the equation Lu = Nu has at least one solution on Dom L ∩ Ω.

Namely, boundary value problem (1.1) and (1.2) has at least one solution.
�

Theorem 3.3. Suppose (H2) holds, then boundary value problem (1.1) and (1.2) has at least one
solution.

Proof. For i = 1, 2, let εi = 1
2

(
Ri − lim sup

|x|+|y|→∞
supt∈[0,1]

| fi(t,x,y)|
|x|+|y|

)
> 0. By (H2), there exist constants Mi such

that
| fi(t, x, y)| ≤ (Ri − εi)(|x| + |y|), for |x| + |y| > Mi, i = 1, 2.

Since fi are continuous, there exist constants R0i such that

R0i = max{ fi(t, x, y) : t ∈ [0, 1] and |x| + |y| ≤ Mi}, i = 1, 2.
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We have
| fi(t, x, y)| ≤ R0i + Ri(|x| + |y|), for x, y ∈ R. (3.23)

Let M > max{ R01
Γ(α+1)−2(R1−ε1) ,

R02
Γ(β+1)−2(R2−ε1) } and

Ω = {u ∈ X ∩ KerP : ‖u‖ < M}.

Then Ω is open, bounded, symmetric with respect to the origin and containing it.
If u ∈ DomL ∩ KerP satisfies Eq. (3.17), we can get that

|u1(t)| =|
1

1 + λ
·

1
Γ(α)

∫ t

0
(t − s)α−1( f1(s, u1(s), u2(s)) − λ f1(s,−u1(s),−u2(s)))ds|

≤
1

Γ(α)(1 + λ)

∫ t

0
(t − s)α−1| f1(s, u1(s), u2(s)) − λ f1(s,−u1(s),−u2(s))|ds

≤
1

Γ(α)(1 + λ)

∫ 1

0
(1 − s)α−1(|( f1(s, u1(s), u2(s))| + λ| f1(s,−u1(s),−u2(s)))|

)
ds

≤
1

Γ(α)(1 + λ)

∫ 1

0
(1 − s)α−1(1 + λ)

(
R01 + (R1 − ε1)(|u1(s)| + |u2(s)|)

)
ds

≤
1

Γ(α)

∫ 1

0
(1 − s)α−1(R01 + 2(R1 − ε1)‖u‖)ds

=
1

Γ(α + 1)
· (R01 + 2(R1 − ε1)‖u‖).

Hence, if u ∈ Dom L ∩ ∂Ω and λ ∈ [0, 1], then

max
t∈[0,1]

|u1(t)| ≤
1

Γ(α + 1)
· (R01 + 2(R1 − ε1)‖u‖)

<
1

Γ(α + 1)
·
(
Γ(α + 1) − 2(R1 − ε1))M + 2(R1 − ε1)M

)
=M. (3.24)

Similarly, we can show

max
t∈[0,1]

|u2(t)| < M, u ∈ Dom L ∩ ∂Ω and λ ∈ [0, 1]. (3.25)

It follows
M = ‖u‖ < M, u ∈ Dom L ∩ ∂Ω and λ ∈ [0, 1]

from (3.24) and (3.25), which is a contradiction. We show that

(L − N)u , λ(L − N)(−u), u ∈ Dom L ∩ ∂Ω and λ ∈ [0, 1].

By Lemma 3.2, N is an L-compact operator.
According to Lemma 2.2, we have that the equation Lu = Nu has at least one solution on Dom L∩Ω.

That is, boundary value problem (1.1) and (1.2) has at least one solution.
�
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4. The existence of solutions for the fractional equations

As an application of Theorem 3.2, in this section, we consider the existence of solutions for the
following fractional differential equation which involves the left and right derivatives

C
t Dβ

1

(
C
0 Dα

t u(t)
)

= g(t, u(t), C
0 Dα

t u(t)), t ∈ (0, 1) (4.1)

with the following nonlocal boundary conditionsu(0) = rC
0 Dα

t u(1), C
0 Dα

t u(0) =
∫ 1

0
ω(t)u(t)dt,

u′(0) = 0, (C
0 Dα

t u(t))′|t=1 = 0,
(4.2)

under the resonant condition r
∫ 1

0
ω(s)ds = 1.

Theorem 4.1. Assume r
∫ 1

0
ω(s)ds = 1, there exist p, q ∈ C([0, 1], [0,+∞)) such that

|g(t, x2, y2) − g(t, x1, y1)| ≤ p(t)|x2 − x1| + q(t)|y2 − y1|,

for any t ∈ [0, 1], x j, y j ∈ R, j = 1, 2. If

m0 := max
{ 1
Γ(α)

∫ 1

0
(1 − s)α−1 p(s)ds,

1
Γ(β)

∫ 1

0
sβ−1(1 + q(s))ds

}
< 1,

then boundary value problem (4.1) and (4.2) has at least one solution.

Proof. Let u1(t) = u(t), u2(t) = C
0 Dα

t u(t), f1(t, x, y) = y and f2(t, x, y) = g(t, x, y). Then Eq. (4.1) is
equivalent to the following the systemC

0 Dα
t u1(t) = u2(t) := f1(t, u1(t), u2(t)),

C
t Dβ

1u2(t) = g(t, u(t), C
0 Dα

t u(t)) := f2(t, u1(t), u2(t)),
(4.3)

and boundary conditions (4.2) is equivalent to (1.2).
We can easily check that all conditions in Theorem 3.2 are satisfied for the Eq. (4.1) with the

boundary conditions (4.2).
By Theorem 3.2, we can get that the conclusion of Theorem 4.1 holds.

�

5. Examples

In this section, we give out some examples to illustrate our main results.
Example 5.1 We consider the following fractional integral boundary value problems of the

nonlinear fractional differential system

C
0 D

3
2
t u1(t) = 1

3 arctan
(
2(1 − t)

1
2 u1(t) + 3t

1
4 u2(t)

)
+ et, t ∈ (0, 1) ,

C
t D

5
4
1 u2(t) = 1

4 arctan
(
3(1 − t)

1
2 u1(t) + 2t

1
4 u2(t)

)
+ e−t, t ∈ (0, 1) ,

u1(0) =
3
√
π

4 u2(1), u2(0) = 0I
3
2
t u1(1),

u′1(0) = 0, u′2(1) = 0,

(5.1)
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where α = 3
2 , β = 5

4 , r =
3
√
π

4 . And the condition u2(0) = 0I
3
2
t u1(1) is equivalent to

u2(0) =
2
√
π

∫ 1

0
(1 − t)

1
2 u1(t)dt =

∫ 1

0
ω(t)u1(t)dt,

where ω(t) = 2
√
π
(1 − t)

1
2 . And

r
∫ 1

0
ω(t)dt = r

(
0I

3
2
t (1)

)
=

r
Γ(3

2 )

∫ 1

0
(1 − t)

1
2 dt = 1. (5.2)

So boundary value problem (5.1) is a resonance problem.
Let f1(t, x, y) = 1

3 arctan
(
2(1 − t)

1
2 x + 3t

1
4 y

)
+ et and f2(t, x, y) = 1

4 arctan
(
3(1 − t)

1
2 x + 2t

1
4 y

)
+ e−t,

a1(t) = 2(1 − t)
1
2 , a2(t) = 3(1 − t)

1
2 , b1(t) = 3t

1
4 , b2(t) = 2t

1
4 , then we can easily check f1 and f2 satisfy

the condition (H1) with σ = 1. And we can get that

m0 = max
{ 1
Γ(α)

∫ 1

0
(1 − s)α−1(a1(s) + a2(s))ds,

1
Γ(β)

∫ 1

0
sβ−1(b1(s) + b2(s))ds

}
=

1
Γ(α)

∫ 1

0
(1 − s)α−1(a1(s) + a2(s))ds

≈0.940316 < 1,

and
f0 = max

{
max
t∈[0,1]

1
Γ(α + 1)

| f1(t, 0, 0)|, max
t∈[0,1]

1
Γ(β + 1)

| f2(t, 0, 0)|
}
≈ 2.04484.

As a result, all conditions in Theorem 3.2 hold. By Theorem 3.2, boundary value problem (5.1) has
at least one solution.

Example 5.2 We consider the following boundary value problem

C
0 D

3
2
t u1(t) = 2

3 (1 − t)
1
2
(
u1(t)

) 3
2 + 4

5 t
1
4
(
u2(t)

) 5
4 + et, t ∈ (0, 1) ,

C
t D

5
4
1 u2(t) = 4

5 t
1
4
(
u1(t)

) 5
4 + 2

3 (1 − t)
1
2
(
u2(t)

) 3
2 + e−t, t ∈ (0, 1) ,

u1(0) =
3
√
π

4 u2(1), u2(0) = 0I
3
2
t u1(1),

u′1(0) = 0, u′2(1) = 0.

(5.3)

Let f1(t, x, y) = 2
3 (1− t)

1
2 x

3
2 + 4

5 t
1
4 y

5
4 + et and f2(t, x, y) = 4

5 t
1
4 x

5
4 + 2

3 (1− t)
1
2 y

3
2 + e−t, a1(t) = 2(1− t)

1
2 ,

a2(t) = 2(1− t)
1
2 , b1(t) = 3t

1
4 , b2(t) = 3t

1
4 . Other parameters are same as the ones in Example 5.1. Then

we can easily check fi, i = 1, 2, satisfy the conditions of (H1), where σ = 1
2 < 1.

Then the conditions in Theorem 3.1 hold. By Theorem 3.1, boundary value problem (5.3) has at
least one solution.

Example 5.3 We consider the integral boundary value problem of fractional differential equation as
following 

C
t Dβ

1

(
C
0 Dα

t u(t)
)

= 1
4 arctan

(
3(1 − t)

1
2 u(t) + 2t

1
4 C

0 Dα
t u(t)

)
+ e−t, t ∈ (0, 1) ,

u(0) =
3
√
π

4
C
0 Dα

t u(1), C
0 Dα

t u(0) = 0I
3
2
t u(1),

u′(0) = 0, (C
0 Dα

t u(t))′|t=1 = 0.

(5.4)

Similar to Example 5.1, we can check that the conditions in Theorem 4.1 hold. As a result, boundary
value problem (5.4) has at least one solution by Theorem 4.1.
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