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sense of Caputo (ABC), generalized fractional derivative introduced by Katugampola and generalized
ABC containing the Mittag-Leffler function with three parameters Eγα,µ(.). For that purpose, the Laplace
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1. Introduction

A particular feature of the fractional calculus that can be grasped by comprehending tautochrone
problem is that scientists and engineers can create novel models containing fractional differential
equations. Another outstanding feature that makes fractional operators important is that it can be
applied eligibly in various disciplines such as physics, economics, biology, engineering, chemistry,
mechanics and so on. In such models as epidemic, logistic, polymers and proteins, human tissue,
biophysical, transmission of ultrasound waves, integer-order calculus seems to lagging behind the
requirement of those applications when compared with the fractional versions of such models. Under
the rigorous mathematical justification, it is possible to investigate many complex processes by means
of the non-local fractional derivatives and integrals which enable us to observe past history owing to
having memory effect represented by time-fractional derivative. One of the scopes of the fractional
calculus is to provide flexibility in modelling under favour of real, complex or variable order.
Interestingly enough, fractional operators can also be utilized in mathematical psychology in which
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the behavior of humankind is modeled by using the fact that they have past experience and memories.
So, it is clear that to benefit from non-integer order derivatives and integrals is beneficial for
modelling memory-dependent processes due to non-locality represented by space-fractional
derivative. A great amount of phenomena in nature are created to provide more accurate and more
flexible results thanks to non-integer derivatives. Some of the most common fractional operators
capturing many advantageous instruments for modeling in numerous fields are that
Riemann-Liouville (RL) developed firstly in literature and Caputo fractional derivatives which are the
convolution of first-order derivative and power law. The former constitutes some troubles when
applying to the real world problems whereas the latter has the privilege of being compatible with the
initial conditions in applications. One can look for [1] for more information about RL and Caputo
fractional derivatives.

We shall remark that some fractional operators are composed by the idea of fractional derivative
and integral of a function with respect to another function presented by Kilbas in [1]. The left and right
fractional integrals of the function f with respect to the g on (a, b) are as below:

gIαa f (t) =
1

Γ(α)

∫ t

a
(g(t) − g(x))α−1g′(x) f (x)dx, (1.1)

and

bIαg f (t) =
1

Γ(α)

∫ b

t
(g(x) − g(t))α−1g′(x) f (x)dx. (1.2)

where Re(α) > 0, g(t) is an increasing and positive monotone function on (a, b] and have a continuous
derivative g′(t) on (a, b). Also, the left and right fractional derivatives of f with respect to g are
presented by

gDα
a f (t) =

(
1

g′(t)
d
dt

)n

gIn−α
a f (t), bDα

g f (t) =

(
−

1
g′(t)

d
dt

)n

bIn−α
g f (t), (1.3)

where Re(α) > 0, n = [Re(α)] + 1 and g′(t) , 0. Note that by choosing the convenient g(t), one can
get Riemann-Liouville, Hadamard, Katugampola fractional operators. So, an open problem is that it
is possible to create novel fractional operators by choosing other productive and suitable function g(t),
which allow us to utilize more variety of non-local fractional operators. Moreover, for these
generalized fractional derivatives and integrals, Jarad and Abdeljawad in [2, 3] have introduced the
generalized LT which is the strong and useful method for many fractional differential equations. On
the other hand, there also some non-local frational operators with non-singular kernel, for instance,
Caputo-Fabrizio (CF) defined by the convolution of exponential function and first-order derivative
and Atangana-Baleanu (AB) fractional derivative obtained by the convolution of Mittag-Leffler
function and first-order derivative. By making use of aforementioned fractional operators, many
authors have addressed fractional models in various areas. For example, Bonyah and Atangana in [4]
have submitted the 3D IS-LM macroeconomic system model in economics in which past fluctuations
or changes in market can be observed much better by non-local fractional operators with memory
than classical counterparts. Also, the fractional Black-Scholes model has been presented by Yavuz
and Ozdemir in [5]. In [6], Atangana and Araz have submitted modified Chuan models by means of
three different kind of non-local fractional derivatives including Caputo, CF and AB. The fractional
chickenpox disease model among school children by using real data for 25 weeks and the modeling of
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deforestation on wildlife species in terms of Caputo fractional operator have been investigated by
Qureshi and Yusuf in [7, 8]. Yavuz and Bonyah in [9] have examined the fractional schistosomiasis
disease models which target to prevent the spread of infection by virtue of the CF and AB fractional
derivatives. A fractional epidemic model having time-delay has discussed by Rihan et all in [10]. All
of these fractional models mentioned above are only a few of the studies using an advantage of
fractional operators. In these studies and in many other studies, the authors aim to find the most
appropriate fractional derivative that they can utilize, to understand which fractional derivative works
better for their objective under favour of real data and to determine which fractional derivative tends
to approach the integer-order derivative more rapidly. Therefore, having several fractional operator
definitions is of great importance in order to apply them to different type of models and to state much
more accurate results. For more application on fractional operators, we refer the readers to [11–29].

Generally, in order to obtain fractional solutions of some models similar to the above-mentioned
models, the authors replace the integer order derivative by a fractional derivative. However, when it
comes to applying to physical models, this approach is not exactly correct due to the need to maintain
the dimension fractional equation. For example, in [30], the authors have introduced the fractional
falling body problem by preserving the dimension. They have done this as follows:

d
dt
→

1
σ1−α

dα

dtα
, 0 < α ≤ 1, (1.4)

where σ has the dimension of seconds. Also, in [31,32], the falling body problem by means fractional
operators with exponential kernel has been investigated. In this study, we also examine the falling body
problem relied on the Newton’s second law which expresses the acceleration of a particle is depended
on the mass of the particle and the net force action on the particle.

Let us consider an object of mass m falling through the air from a height h with velocity v0 in a
gravitational field. By utilizing the Newton’s second law, we get

m
dv
dt

+ mkv = −mg, (1.5)

where k is positive constant rate, g represents the gravitational constant. The solution of the equation
(1.5) is

v(t) = −
g
k

+ e−kt
(
v0 +

g
k

)
, (1.6)

and by integrating for z(0) = h, we have

z(t) = h −
gt
k

+
1
k

(1 − e−kt)
(
v0 +

g
k

)
. (1.7)

Considering all the information presented above, we organize the article as follows: In section 2,
some basic definitions and theorems about non-local fractional calculus are given. In section 3, the
fractional falling body problem is investigated by means of ABC, generalized fractional derivative
and generalized ABC including Mittag-Leffler function with three parameters. Also, we carry out
simulation analysis by plotting some graphs in section 4. In section 5, some outstanding consequences
are clarified.
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2. Some fundamental tools on fractional calculus

Before coming to the main results, we provide some significant definitions, theorems and properties
of fractional calculus in order to establish a mathematically sound theory that will serve the purpose of
the current article.

Definition 2.1. [1] The Mittag-Leffler (ML) function including one parameter α is defined as follows

Eα(t) =

∞∑
k=0

tk

Γ(αk + 1)
(t ∈ C,Re(α) > 0), (2.1)

whereas the ML function with two parameters α, β is

Eα,β(t) =

∞∑
k=0

tk

Γ(αk + β)
(t, β ∈ C,Re(α) > 0). (2.2)

As seen clearly, Eα,β(t) corresponds to the ML function (2.1) when β = 1.

Definition 2.2. [33] The generalized ML function is defined by

Eρα,β(t) =

∞∑
k=0

tk(ρ)k

Γ(αk + β)k!
(t ∈ C, α, β, ρ ∈ C,Re(α) > 0), (2.3)

where (ρ)k = ρ(ρ + 1)...(ρ + k − 1) is the Pochhammer symbol introduced by Prabhakar. Note that
(1)k = k!, and so E1

α,β(t) = Eα,β(t).

Definition 2.3. [33] The ML function for a special function is given by

Eα(λ, t) =

∞∑
k=0

λktαk

Γ(αk + 1)
(0 , λ ∈ R, t ∈ C,Re(α) > 0), (2.4)

and

Eα,β(λ, t) =

∞∑
k=0

λktαk+β−1

Γ(αk + β)
(0 , λ ∈ R, t, β ∈ C,Re(α) > 0). (2.5)

It should be noticed that Eα,1(λ, t) = Eα(λ, t). Also, the modified ML function with three parameters
can be written as

Eρα,β(λ, t) =

∞∑
k=0

λktαk+β−1(ρ)k

Γ(αk + β)k!
(0 , λ ∈ R, t, β ∈ C,Re(α) > 0). (2.6)

Definition 2.4. [1] The left and right Caputo fractional derivative are defined as below

C
aD

α f (t) =
1

Γ(n − α)

∫ t

a
(t − x)n−α−1 f (n)(x)dx, (2.7)

and
CDα

b f (t) =
(−1)n

Γ(n − α)

∫ b

t
(x − t)n−α−1 f (n)(x)dx, (2.8)

where α ∈ C, Re(α) > 0, n = [Re(α)] + 1.
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Definition 2.5. [34] The left and right Caputo-Fabrizio fractional derivative in the Caputo sense (CFC)
are given by

CFC
aD

α f (t) =
M(α)
1 − α

∫ t

a
f ′(x)exp(λ(t − x))dx, (2.9)

and
CFCDα

b f (t) =
−M(α)
1 − α

∫ b

t
f ′(x)exp(λ(x − t))dx, (2.10)

where 0 < α < 1, M(α) is a normalization function and λ = −α
1−α .

Definition 2.6. [35] The left and right ABC fractional derivative are

ABC
aD

α f (t) =
B(α)
1 − α

∫ t

a
f ′(x)Eα(λ(t − x)α)dx, (2.11)

and the right one

ABCDα
b f (t) =

−B(α)
1 − α

∫ b

t
f ′(x)Eα(λ(x − t)α)dx, (2.12)

where 0 < α < 1, B(α) is a normalization function and λ = −α
1−α .

Definition 2.7. [33] The left and right ABC fractional derivative containing generalized ML function
Eγα,µ(λtα) such that γ ∈ R, Re(µ) > 0, 0 < α < 1 and λ = −α

1−α are defined by

ABC
aD

α,µ,γ f (t) =
B(α)
1 − α

∫ t

a
Eγα,µ(λ(t − x)α) f ′(x)dx, (2.13)

and also
ABCD

α,µ,γ
b f (t) =

−B(α)
1 − α

∫ b

t
Eγα,µ(λ(x − t)α) f ′(x)dx. (2.14)

Definition 2.8. [36] The generalized left and right fractional integrals are defined by

aI
α,ρ f (t) =

1
Γ(α)ρα−1

∫ t

a
(tρ − xρ)α−1 f (x)xρ−1dx, (2.15)

and

I
α,ρ
b f (t) =

1
Γ(α)ρα−1

∫ b

t
(xρ − tρ)α−1 f (x)xρ−1dx, (2.16)

respectively.

Definition 2.9. [37] The generalized left and right fractional derivatives in the Caputo sense are given
respectively by

C
aD

α,ρ f (t) = aI
n−α,ρ

(
t1−ρ d

dt

)n

f (t) (2.17)

=
1

Γ(n − α)ρn−α−1

∫ t

a
(tρ − xρ)n−α−1

(
t1−ρ d

dt

)n

f (x)xρ−1dx,
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and

CD
α,ρ
b f (t) = I

n−α,ρ
b

(
−t1−ρ d

dt

)n

f (t) (2.18)

=
1

Γ(n − α)ρn−α−1

∫ b

t
(xρ − tρ)n−α−1

(
−t1−ρ d

dt

)n

f (x)xρ−1dx.

Definition 2.10. [33] Let υ, ω : [0,∞)→ R, then the convolution of υ and ω is

(υ ∗ ω)(t) =

∫ t

0
υ(t − s)ω(s)ds. (2.19)

Proposition 2.11. [33] Assume that υ, ω : [0,∞)→ R, then the following property is valid

L{(υ ∗ ω)(t)} = L{υ(t)}L{ω(t)}. (2.20)

Theorem 2.1. [38] The LT of Caputo fractional derivative is presented by

L{CDα f (t)} = sαF (s) −
n−1∑
k=0

sα−k−1 f (k)(0), (2.21)

where F (s) = L{ f (t)}.

Theorem 2.2. [34] The LT of CFC fractional derivative is given as

L{CFCDα} =
M(α)
1 − α

sF (s)
s + α

1−α

−
M(α)
1 − α

f (0)
s + α

1−α

. (2.22)

Theorem 2.3. [39] The LT of the ABC is as below

L{ABCDα f (t)} =
B(α)
1 − α

sαF (s) − sα−1 f (0)
sα + α

1−α

. (2.23)

Theorem 2.4. [3] Let f ∈ ACn
γ[0, a], a > 0, α > 0 and γk =

(
t1−ρ d

dt

)k
f (t), k = 0, 1, ..., n has

exponential order ec tρ
ρ , then we have

L{C0D
α,ρ f (t)} = sα

L{ f (t)} −
n−1∑
k=0

s−k−1
(
t1−ρ d

dt

)k

f (0)

 , (2.24)

where s > 0.

Theorem 2.5. [33] The LT of the generalized ABC can be presented by

L{ABCDα,µ,γ f (t)} =
B(α)
1 − α

s1−µF (s)(1 − λs−α)−γ −
B(α)
1 − α

f (0)s−µ(1 − λs−α)−γ. (2.25)

Lemma 2.12. The LT of some special functions are as below

• L{Eα(−atα)} = sα
s(sα+a) .

• L{1 − Eα(−atα)} = a
s(sα+a) .
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• L{tα−1Eα,α(−atα)} = 1
sα+a .

Lemma 2.13. [40] Let α, µ, γ, λ, s ∈ C, Re(µ) > 0, Re(s) > 0, |λs−α| < 1, then the Laplace transform
of Eγα,µ(λtα) is as follows

L{Eγα,µ(λtα)} = s−µ(1 − λs−α)−γ. (2.26)

3. Main results

The purpose of this section is to introduce the solutions for fractional falling body problem by
means of some non-local fractional derivative operators such as ABC, Katugampola and generalized
ABC. We put a condition for ABC type falling body problem in order to achieve right result. Also,
dimensionality of the physical parameter in the model is kept by using different auxiliary parameters
for each fractional operator.

3.1. The fractional falling body problem in the frame of ABC

The ABC type fractional falling body problem relied on Newton’s second law is presented as
follows

m
σ1−α

ABC
0D

αv(t) + mkv(t) = −mg, (3.1)

where the initial velocity v(0) = v0, g represents the gravitational constant, the mass of body is indicated
by m and k is the positive constant rate.

If we apply LT to the Eq (3.1), then we have

L{ABC
0D

αv(t)} + kσ1−αL{v(t)} = L{−gσ1−α}, (3.2)

B(α)
1 − α

sαL{v(t)} − sα−1v(0)
sα + α

1−α

+ kσ1−αL{v(t)} =
−gσ1−α

s
, (3.3)

L{v(t)}
(

B(α)
1 − α

sα

sα + α
1−α

+ kσ1−α
)

=
B(α)
1 − α

sα−1v(0)
sα + α

α−1

−
gσ1−α

s
, (3.4)

L{v(t)} =
B(α)
1 − α

sα

s
(
sα

(
B(α)
1−α + kσ1−α

)
+ kσ1−α α

1−α

)v(0) (3.5)

− gσ1−α s + α
1−α

s
(
sα

(
B(α)
1−α + kσ1−α

)
+ kσ1−α α

1−α

) ,

L{v(t)} =
B(α)

B(α) + kσ1−α(1 − α)
sα

s
(
sα + kασ1−α

B(α)+kσ1−α(1−α)

)v(0) (3.6)

−
gσ1−α(1 − α)

B(α) + kσ1−α(1 − α)
sα

s
(
sα + kασ1−α

B(α)+kσ1−α(1−α)

)
AIMS Mathematics Volume 5, Issue 3, 2608–2628.
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−
g
k

kασ1−α

B(α)+kσ1−α(1−α)

s
(
sα + kασ1−α

B(α)+kσ1−α(1−α)

) ,
and applying the inverse LT to the both side of the (3.6) and using the condition v(0) = v0, we obtain
the velocity as follows

v(t) =
B(α)

B(α) + kσ1−α(1 − α)
Eα

(
−kασ1−α

B(α) + kσ1−α(1 − α)
tα
)

v0 (3.7)

−
gσ1−α(1 − α)

B(α) + kσ1−α(1 − α)
Eα

(
−kασ1−α

B(α) + kσ1−α(1 − α)
tα
)

−
g
k

[
1 − Eα

(
−kασ1−α

B(α) + kσ1−α(1 − α)
tα
)]
.

Because α = σk, 0 < σ ≤ 1
k , the velocity v(t) can be written in the form below

v(t) =
B(α)

B(α) + α1−αkα(1 − α)
Eα

(
−α2−α

B(α) + α1−αkα(1 − α)
(kt)α

)
v0 (3.8)

−
gα1−αkα−1(1 − α)

B(α) + α1−αkα(1 − α)
Eα

(
−α2−α

B(α) + α1−αkα(1 − α)
(kt)α

)
−

g
k

[
1 − Eα

(
−α2−α

B(α) + α1−αkα(1 − α)
(kt)α

)]
,

where Eα(.) is the ML function. Note that we put the condition v0 =
−g
k in order to satisfy initial

condition v(0) = v0. By benefiting from the velocity (3.7), vertical distance z(t) can be get in the
following way

ABC
0D

αz(t) =
B(α)σ1−α

B(α) + kσ1−α(1 − α)
Eα

(
−kασ1−α

B(α) + kσ1−α(1 − α)
tα
)

v0 (3.9)

−
gσ2(1−α)(1 − α)

B(α) + kσ1−α(1 − α)
Eα

(
−kασ1−α

B(α) + kσ1−α(1 − α)
tα
)

−
gσ1−α

k

[
1 − Eα

(
−kασ1−α

B(α) + kσ1−α(1 − α)

)
tα
]
.

By applying the LT to the Eq (3.9), we have

L{ABC
0D

αz(t)} =
B(α)σ1−αv0

B(α) + kσ1−α(1 − α)
L

{
Eα

(
−kασ1−α

B(α) + kσ1−α(1 − α)
tα
)}

(3.10)

−
gσ2(1−α)(1 − α)

B(α) + kσ1−α(1 − α)
L

{
Eα

(
−kασ1−α

B(α) + kσ1−α(1 − α)
tα
)}

− L

{
gσ1−α

k

}
+

gσ1−α

k
L

{
Eα

(
−kασ1−α

B(α) + kσ1−α(1 − α)
tα
)}
,
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B(α)
1 − α

sαL{z(t)} − sα−1z(0)
sα + α

1−α

=
B(α)σ1−αv0

B(α) + kσ1−α(1 − α)
sα

s
(
sα + kασ1−α

B(α)+kσ1−α(1−α)

) (3.11)

−
gσ2(1−α)(1 − α)

B(α) + kσ1−α(1 − α)
sα

s
(
sα + kασ1−α

B(α)+kσ1−α(1−α)

)
−

gσ1−α

ks
+

gσ1−α

k
sα

s
(
sα + kασ1−α

B(α)+kσ1−α(1−α)

) ,
L{z(t)} =

z(0)
s

+
σ1−α(1 − α)v0

B(α) + kσ1−α(1 − α)
sα

s
(
sα + kασ1−α

B(α)+kσ1−α(1−α)

) (3.12)

+
v0

k

kασ1−α

B(α)+kσ1−α(1−α)

s
(
sα + kασ1−α

B(α)+kσ1−α(1−α)

) − gσ2(1−α)(1 − α)2

B(α)[B(α) + kσ1−α(1 − α)]
sα

s
(
sα + kασ1−α

B(α)+kσ1−α(1−α)

)
−

gσ1−α(1 − α)
kB(α)

kασ1−α

B(α)+kσ1−α(1−α)

s
(
sα + kασ1−α

B(α)+kσ1−α(1−α)

) − gσ1−α(1 − α)
kB(α)

1
s
−

gασ1−α

kB(α)
1

sα+1

+
gσ1−α(1 − α)

kB(α)
sα

s
(
sα + kασ1−α

B(α)+kσ1−α(1−α)

) +
gB(α) + kgσ1−α(1 − α)

k2B(α)

kασ1−α

B(α)+kσ1−α(1−α)

s
(
sα + kασ1−α

B(α)+kσ1−α(1−α)

) ,
by utilizing the inverse LT for the Eq (3.12) and taking the z(0) = h, we obtain the vertical distance z(t)
as below

z(t) = h +
σ1−α(1 − α)v0

B(α) + kσ1−α(1 − α)
Eα

(
−kασ1−α

B(α) + kσ1−α(1 − α)
tα
)

(3.13)

+
v0

k

[
1 − Eα

(
−kασ1−α

B(α) + kσ1−α(1 − α)
tα
)]

−
gσ2(1−α)(1 − α)2

B(α)[B(α) + kσ1−α(1 − α)]
Eα

(
−kασ1−α

B(α) + kσ1−α(1 − α)
tα
)

−
gσ1−α(1 − α)

kB(α)

[
1 − Eα

(
−kασ1−α

B(α) + kσ1−α(1 − α)
tα
)]
−

gσ1−α

kB(α)

[
1 − α +

αtα

Γ(1 + α)

]
+

gσ1−α(1 − α)
kB(α)

Eα

(
−kασ1−α

B(α) + kσ1−α(1 − α)
tα
)

+
gB(α) + kgσ1−α(1 − α)

k2B(α)

[
1 − Eα

(
−kασ1−α

B(α) + kσ1−α(1 − α)
tα
)]
,

where v0 =
gσ1−α

B(α) . Due to the fact that α = σk, 0 < σ ≤ 1
k , the vertical distance z(t) can be written as

follows

z(t) = h +
α1−αkα−1(1 − α)v0

B(α) + α1−αkα(1 − α)
Eα

(
−α2−α

B(α) + α1−αkα(1 − α)
(kt)α

)
(3.14)
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+
v0

k

[
1 − Eα

(
−α2−α

B(α) + α1−αkα(1 − α)
(kt)α

)]
−

gα2(1−α)k2(α−1)(1 − α)2

B(α)[B(α) + α1−αkα(1 − α)]
Eα

(
−α2−α

B(α) + α1−αkα(1 − α)
(kt)α

)
−

gα1−αkα−1(1 − α)
kB(α)

[
1 − Eα

(
−α2−α

B(α) + α1−αkα(1 − α)
(kt)α

)]
−

gα1−αkα

k2B(α)

[
1 − α +

αtα

Γ(1 + α)

]
+

gα1−αkα(1 − α)
kB(α)

Eα

(
−α2−α

B(α) + α1−αkα−1(1 − α)
(kt)α

)
+

gB(α) + gα1−αkα(1 − α)
k2B(α)

[
1 − Eα

(
−α2−α

B(α) + α1−αkα(1 − α)
(kt)α

)]
.

3.2. The fractional falling body problem in the frame of generalized fractional derivative

The fractional falling body problem relied on Newton’s second law by means of generalized
fractional derivative introduced by Katugampola is given by

m
σ1−αρ

C
0D

α,ρv(t) + mkv(t) = −mg, (3.15)

where the initial velocity v(0) = v0, g is the gravitational constant, the mass of body is represented by
m and k is the positive constant rate.

Applying the LT to the both side of the Eq (3.15), we have

L{C0D
α,ρv(t)} + kσ1−αρL{v(t)} = L{−gσ1−αρ}, (3.16)

sαL{v(t)} − sα−1v(0) + kσ1−αρL{v(t)} =
−gσ1−αρ

s
, (3.17)

L{v(t)} =
sα

s(sα + kσ1−αρ)
v(0) −

g
k

kσ1−αρ

s(sα + kσ1−αρ)
. (3.18)

If the inverse LT is utilized for (3.18), one can obtain the following velocity

v(t) = v0Eα

(
−kσ1−αρ

(
tρ

ρ

)α)
−

g
k

[
1 − Eα

(
−kσ1−αρ

(
tρ

ρ

)α)]
, (3.19)

by inserting the α = σk, 0 < σ ≤ 1
k , we get

v(t) = v0Eα

(
α1−αρkαρ

(
tρ

ρ

)α)
−

g
k

[
1 − Eα

(
α1−αρkαρ

(
tρ

ρ

)α)]
. (3.20)

From the velocity (3.19), we obtain the vertical distance z(t) in terms of generalized fractional
derivative after some essential calculations below

C
0D

α,ρz(t) = σ1−αρv0Eα

(
−kσ1−αρ

(
tρ

ρ

)α)
−
σ1−αρg

k

[
1 − Eα

(
−kσ1−αρ

(
tρ

ρ

)α)]
, (3.21)

applying the LT to the both side of (3.21), one can have
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L{C0D
α,ρz(t)} = σ1−αρv0L

{
Eα

(
−kσ1−αρ

(
tρ

ρ

)α)}
− L

{
gσ1−αρ

k

}
(3.22)

+
gσ1−αρ

k
L

{
Eα

(
−kσ1−αρ

(
tρ

ρ

)α)}
,

L{z(t)} =
z(0)

s
+

v0

k
kσ1−αρ

s(sα + kσ1−αρ)
−

gσ1−αρ

ksα+1 +
g
k2

kσ1−αρ

s(sα + kσ1−αρ)
, (3.23)

after applying the inverse LT to the (3.23) and for z(0) = h, we get

z(t) = h +
v0

k

[
1 − Eα

(
−kσ1−αρ

(
tρ

ρ

)α)]
−

gσ1−αρ

kΓ(α + 1)

(
tρ

ρ

)α
(3.24)

+
g
k2

[
1 − Eα

(
−kσ1−αρ

(
tρ

ρ

)α)]
,

substituting the α = σk, 0 < σ ≤ 1
k to the Eq (3.24), we obtain as follows

z(t) = h +
v0

k

[
1 − Eα

(
−α1−αρkαρ

(
tρ

ρ

)α)]
−

gα1−αρ

k2−αρΓ(α + 1)

(
tρ

ρ

)α
(3.25)

+
g
k2

[
1 − Eα

(
−α1−αρkαρ

(
tρ

ρ

)α)]
.

3.3. The fractional falling body problem in the frame of generalized ABC

The fractional falling body problem relied on Newton’s second law in terms of generalized ABC
including ML function with three parameters is as follows

m
σ1−αµ

ABC
0D

α,µ,γv(t) + mkv(t) = −mg, (3.26)

where the initial velocity v(0) = v0, g represents the gravitational constant, the mass of body is indicated
by m and k is the positive constant rate.

If we apply the LT to the (3.26), we have

L{ABC
0D

α,µ,γv(t)} + kσ1−αµL{v(t)} = L{−gσ1−αµ}, (3.27)

B(α)
1 − α

s1−µ(1 − λs−α)−γL{v(t)} −
B(α)
1 − α

s−µv0(1 − λs−α)−γ + kσ1−αµL{v(t)} =
−gσ1−αµ

s
, (3.28)

L{v(t)} =
v0

s +
(

kσ1−αµ(1−α)
B(α)s−µ(1−λs−α)−γ

) +
1
s

gσ1−αµ

B(α)
1−α s1−µ(1 − λs−α)−γ + kσ1−αµ

. (3.29)

In order to obtain inverse LT of the (3.29), this equation should be expanded as below
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L{v(t)} =
v0

s

∞∑
j=0

(−kσ1−αµ) j

(
1 − α
B(α)

) j

s(µ−1) j(1 − λs−α)−γ j (3.30)

+ gσ1−αµ1
s

∞∑
j=0

(−kσ1−αµ) j

(
1 − α
B(α)

) j+1

s(µ−1)( j+1)(1 − λs−α)γ( j+1),

by applying inverse LT to the expression (3.30), one can get the following velocity

v(t) = v0

∞∑
j=0

(−kσ1−αµ) j

(
1 − α
B(α)

) j

E−γ j
α,(1−µ) j+1(λ, t) (3.31)

+ gσ1−αµ
∞∑
j=0

(−kσ1−αµ) j

(
1 − α
B(α)

) j+1

E−γ( j+1)
α,(1−µ)( j+1)+1(λ, t),

plugging the α = σk, 0 < σ ≤ 1
k to the (3.31), we reach

v(t) = v0

∞∑
j=0

(−kαµα1−αµ) j

(
1 − α
B(α)

) j

E−γ j
α,(1−µ) j+1(λ, t) (3.32)

+
gα1−α

k1−α

∞∑
j=0

(−kαα1−α) j

(
1 − α
B(α)

) j+1

E−γ( j+1)
α,(1−µ)( j+1)+1(λ, t).

We can obtain the vertical distance z(t) in terms of generalized ABC by benefiting from the velocity
(3.31) after the following calculations

ABC
0D

α,µ,γz(t) = v0σ
1−αµ

∞∑
j=0

(−kσ1−αµ) j

(
1 − α
B(α)

) j

E−γ j
α,(1−µ) j+1(λ, t) (3.33)

+ gσ2(1−αµ)
∞∑
j=0

(−kσ1−αµ) j

(
1 − α
B(α)

) j+1

E−γ( j+1)
α,(1−µ)( j+1)+1(λ, t),

L{z(t)} =
z(0)

s
+ v0

∞∑
j=0

(−kσ1−αµ) j

(
1 − α
B(α)

) j+1

s(µ−1)( j+1)−1(1 − λs−α)γ( j+1) (3.34)

+ gσ2(1−αµ)
∞∑
j=0

(−kσ1−αµ) j

(
1 − α
B(α)

) j+2

s(µ−1)( j+2)−1(1 − λs−α)γ( j+2),

utilizing the inverse LT for the Eq (3.34) and when z(0) = h, one can have

z(t) = h + v0

∞∑
j=0

(−kσ1−αµ) j

(
1 − α
B(α)

) j+1

E−γ( j+1)
α,(1−µ)( j+1)+1(λ, t) (3.35)
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+ gσ2(1−αµ)
∞∑
j=0

(−kσ1−αµ) j

(
1 − α
B(α)

) j+2

E−γ( j+2)
α,(1−µ)( j+2)+1(λ, t),

after inserting the α = σk, 0 < σ ≤ 1
k to the (3.36), we get

z(t) = h + v0

∞∑
j=0

(−α1−αµkαµ) j

(
1 − α
B(α)

) j+1

E−γ( j+1)
α,(1−µ)( j+1)+1(λ, t) (3.36)

+
gα2(1−αµ)

k2(1−αµ)

∞∑
j=0

(−α1−αµkαµ) j

(
1 − α
B(α)

) j+2

E−γ( j+2)
α,(1−µ)( j+2)+1(λ, t).

4. Comparative analysis and discussions

This section is dedicated to demonstrate a comparison between such non-local fractional operators
and traditional derivative. We compare these fractional operators with traditional derivative to observe
which fractional derivative approaches the classical derivative faster. By this way, the behavior of
each non-integer order derivative is shown by plotting. Additionaly, the main objective is to elaborate
and expatiate the main findings of our results via graphical illustrations. To this aim, we set some
suitable values of α and ρ to see the actual characteristic of behavior of our model. The comparison
we made is between ABC, generalized ABC, generalized fractional derivative, Caputo, CFC and their
corresponding classical version. So it can be seen that the presented graphs availed the main difference
between the mentioned non-local fractional operators and classical version with the help of different
parameter values.

In order to comprehend the exact advantage of non-local fractional derivative operators for some
governing models, one should utilize the real data. So, without using real data we can only observe
the behavior of the solution curves and see the accuracy of our results. As can be seen in [30–32],
the Caputo and CF type fractional falling body problem are handled by some authors. By benefiting
from them, we discuss the relation between these fractional operators and our results obtained by ABC,
generalized ABC and generalized fractional derivative.

In Figure 1, the vertical notion of a falling body is demonstrated by means of ABC fractional
derivative when α = 0.5, 0.6, 0.7, 0.8, 1. Caputo and ABC fractional operators are compared with
classical derivative for α = 0.9 in Figure 2 and for α = 0.8 in Figure 3. It can be noticed clearly
that ABC tends to approach the integer-order case faster. In Figure 4, we show the vertical motion
of a falling body in terms of CF fractional operator when α = 0.5, 0.6, 0.7, 0.8, 1. Also, CFC, Caputo
and classical derivative are compared with each other when α = 0.9, 0.95, 0.8 in Figures 5–7 while
CFC, generalized fractional derivative, ABC and Caputo are compared with integer-order derivative
for ρ = 0.9 and α = 0.7, ρ = 0.9 and α = 0.9, ρ = 0.9 and α = 0.95. In Figures 8–10 CFC, generalized
fractional derivative, ABC and Caputo operators are compared when ρ = 0.9, α = 0.7, 0.9, 0.95.
Similarly, ABC fractional derivative operator tends approach the classical derivative faster then other
counterparts.
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α=0.5 α=0.6 α=0.7 α=0.8 Classical

0 20 40 60 80 100 120
t0

5000

10000

15000

20000

25000

30000

X[t]

Figure 1. Comparative analysis with ABC fractional derivative.
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Figure 2. Comparative analysis for α = 0.9.

AIMS Mathematics Volume 5, Issue 3, 2608–2628.



2622

ABC Caputo Classical
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Figure 3. Comparative analysis for α = 0.8.
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Figure 4. Comparative analysis with CFC fractional derivative.
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CFC Caputo Classical
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Figure 5. Comparative analysis for α = 0.9.
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Figure 6. Comparative analysis for α = 0.95.
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CFC Caputo Classical
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Figure 7. Comparative analysis for α = 0.8.
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Figure 8. Comparative analysis for ρ = 0.9 and α = 0.7.
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CFC Gen Frac ABC Caputo Classical
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Figure 9. Comparative analysis for ρ = 0.9 and α = 0.9.
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Figure 10. Comparative analysis ρ = 0.9 and α = 0.95.

5. Conclusions

In recent years, fractional derivative operators have been utilized frequently in the solution of many
physical models. On the other hand, various physical problems investigated using real data show that
problems solved by means of fractional operators exhibit closer behavior to real data. So, we have
analyzed an outstanding physical model called falling body problem in terms of some beneficial non-
local fractional operators such as ABC, generalized ABC and generalized fractional derivative. Also,
we have noticed that in order to solve a constant coefficient linear differential equation with initial
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condition, we have to put a convenient condition to satisfy the initial condition. Thereby, when solving
the ABC type fractional falling body problem, we put a condition for velocity and vertical distance of
falling body.

In order to keep the dimensionality of the physical parameter, an auxiliary parameter σ has been
used in different forms like σ1−α, σ1−αρ and σ1−αµ for each fractional operator. Moreover, for
generalized ABC type fractional falling body problem containing the Mittag-Leffler function with
three parameters, power series has been used to apply inverse Laplace transform for getting velocity
and vertical distance. Ultimately, all results obtained in this study have been strengthened by graphs.

It is worth pointing out that in all graphs, the case of α = 1 and ρ = 1 corresponds to the traditional
solutions and by comparing the classical solutions with the fractional solutions, each with different
parameters , we can see clearly that our solutions behaves similar to the traditional one and as α and
ρ values approach 1, the solution curves tends to approach classical solutions. This shows that our
fractional solutions are accurate. So, the characteristic behavior of solution curves has been observed
by comparing the solutions obtained above-stated operators.
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