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1. Introduction and preliminaries

Means of different types play significant role in different fields of sciences through their
applications. For instance it has been observed harmonic means have applications in electrical circuits
theory. To be more precise, the total resistance of a set of parallel resistors is just half of harmonic
means of the total resistors, for details, see [3]. Recently many researchers have extensively utilized
different types of means in theory of convexity. Consequently a number of new and novel extensions
of classical convexity have been proposed in the literature. For some recent studies, see [4, 5, 21, 22].
We now recall some preliminary concepts and results pertaining to convexity and for its other
extensions.

Definition 1.1 ( [18]). (AA-convex functions) A function X : C ⊆ R→ R is said to be AA-convex, if

(1 − µ)X(x) + µX(y) ≥ X((1 − µ)x + ty), ∀x, y ∈ C, µ ∈ [0, 1],

where C is a convex set.
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Definition 1.2 ( [18]). (GG-convex functions) A function X : G ⊆ R+ → R+ is said to be GG-convex,
if

X1−µ(x)Xµ(y) ≥ X(x1−µyµ), ∀x, y ∈ G, µ ∈ [0, 1],

where G is a geometric convex set.

Definition 1.3 ( [13]). (HH-convex functions) A function X : H ⊆ R+ → R is said to be HH-convex,
if

X(x)X(y)
µX(x) + (1 − µ)X(y)

≥ X

(
xy

(1 − µ)x + ty

)
,

∀x, y ∈ H , µ ∈ [0, 1],

whereH is a harmonic convex set.

For some other useful details, see [18]. Convexity theory also played significant role in the
development of theory of inequalities. Many known results are obtained directly using the functions
having convexity property. Hermite and Hadamard presented independently a result which now a
days known as Hermite-Hadamard’s inequality. This result is very simple in nature but very powerful,
as it provides us a necessary and sufficient condition for a function to be convex. It reads as: Let
X : I ⊆ R→ R be a convex function, then

X

(
c + d

2

)
≤

1
d − c

d∫
c

X(x)dx ≤
X(c) + X(d)

2
.

Dragomir et al. [8] written a very interesting detailed monograph on Hermite-Hadamard’s inequality
and its applications. Interested readers may find useful details in it. In recent years several famously
known researchers from all over the world have studied the result of Hermite and Hadamard
intensively. For more details, see [4, 6, 7, 9, 10, 17, 20]. This result has also been generalized for other
classes of convex functions, for instance, see [8, 11, 12, 14, 18, 22].
Fractional calculus [15, 16] has played an important role in various scientific fields since it is a good
tool to describe long-memory processes. Sarikaya et al. [24] used the concepts of fractional calculus
and obtained new refinements of fractional Hermite-Hadamard like inequalities. This article of
Sarikaya et al. opened a new venue of research. Consequently several new generalizations of
Hermite-Hadamard’s inequality have been obtained using the fractional calculus concepts.
Recently many authors have shown their special interest in utilizing the concepts of quantum calculus
for obtaining q-analogues of different integral inequalities. For some basic definitions and recent
studies, see [1, 2, 19, 23, 25, 26]. The main objective of this article is to introduce the notion of
M -convex functions. This class can be viewed as novel extension of the classical definition of
convexity. We link this class with Hermite-Hadamard’s inequality and obtain several new variants of
this famous result. We also obtain the fractional and quantum analogues of the obtained results. We
expect that the results of this paper may stimulate further research in this direction.
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2. M -convexity

In this section, we introduce the notions of M -convex functions, log-M -convex and quasi M -
convex functions. First of all for the sake of simplicity, we take G =

√
cd andA = c+d

2 .

Definition 2.1. A function X : D ⊆ R+ → R+ is said to be M -convex function, if

X ((1 − µ)G + µA) ≤ (1 − µ)X(G) + tX(A),
∀c, d ∈ D, µ ∈ [0, 1].

Definition 2.2. A function X : D ⊆ R+ → R+ is said to be log-M -convex function, if

X ((1 − µ)G + µA) ≤ X1−µ(G)Xµ(A),∀c, d ∈ D, µ ∈ [0, 1].

Definition 2.3. A function X : D ⊆ R+ → R+ is said to be quasi M -convex function, if

X ((1 − µ)G + µA) ≤ max {X(G),X(A)} ,∀c, d ∈ D, µ ∈ [0, 1].

3. Hermite-Hadamard like inequalities using M -convex functions

We now derive a new auxiliary result which play a key role in the development of our coming
results.

Lemma 3.1. Let X : I◦ ⊆ R+ → R+ be a differentiable function on I◦, c, d ∈ I◦ with c < d. If
X′ ∈ L[c, d], then

X(G) + X(A)
2

−
2

(
√

d −
√

c)2

A∫
G

X(x)dx =
(
√

d −
√

c)2

4

1∫
0

(1 − 2µ)X′ (µG + (1 − µ)A) dµ.

Proof. It suffices to show that
1∫

0

(1 − 2µ)X′ (µG + (1 − µ)A) dµ = 2
X(G) + X(A)

(
√

d −
√

c)2
−

8

(
√

d −
√

c)4

A∫
G

X(x)dx.

This implies

(
√

d −
√

c)2

4

1∫
0

(1 − 2µ)X′ (µG + (1 − µ)A) dµ =
X(G) + X(A)

2
−

2

(
√

d −
√

c)2

A∫
G

X(x)dx.

This completes the proof. �

Now utilizing Lemma 3.1, we derive our next results.

Theorem 3.2. Let X : I◦ ⊆ R+ → R+ be a differentiable function on I◦, c, d ∈ I◦ with c < d and
X′ ∈ L[c, d]. If |X′| is M -convex function, then∣∣∣∣∣∣∣∣∣

X(G) + X(A)
2

−
2

(
√

d −
√

c)2

A∫
G

X(x)dx

∣∣∣∣∣∣∣∣∣ ≤
(
√

d −
√

c)2

16
[
|X′(G)| + |X′(A)|

]
.
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Proof. Using Lemma 3.1, property of the modulus and the fact that |X′| is M -convex function, we
have ∣∣∣∣∣∣∣∣∣

X(G) + X(A)
2

−
2

(
√

d −
√

c)2

A∫
G

X(x)dx

∣∣∣∣∣∣∣∣∣
≤

(
√

d −
√

c)2

4

1∫
0

|1 − 2µ| |X′ (µG + (1 − µ)A)| dµ

≤
(
√

d −
√

c)2

4

1∫
0

|1 − 2µ|
[
µ|X′(G)| + (1 − µ) |X′(A)|

]
dµ

=
(
√

d −
√

c)2

16
[
|X′(G)| + |X′(A)|

]
.

This completes the proof. �

If we apply Theorem 3.2 for log-M -convex functions, then

Theorem 3.3. Let X : I◦ ⊆ R+ → R+ be a differentiable function on I◦, c, d ∈ I◦ with c < d and
X′ ∈ L[c, d], If |X′| is decreasing and log-M -convex function, then∣∣∣∣∣∣∣∣∣
X(G) + X(A)

2
−

2

(
√

d −
√

c)2

A∫
G

X(x)dx

∣∣∣∣∣∣∣∣∣ ≤
(
√

d −
√

c)2

4

[
−2 + 4

√
w − 2w − log w + w log w

log w2

]
,

where w =
|X′(G)|∣∣∣X′(A)

∣∣∣ .
Theorem 3.4. Let X : I◦ ⊆ R+ → R+ be a differentiable function on I◦, c, d ∈ I◦ with c < d and
X′ ∈ L[c, d]. If |X′|q, where 1

p + 1
q = 1 is M -convex function, then∣∣∣∣∣∣∣∣∣

X(G) + X(A)
2

−
2

(
√

d −
√

c)2

A∫
G

X(x)dx

∣∣∣∣∣∣∣∣∣
≤

(
√

d −
√

c)2

4

(
1

p + 1

) 1
p
(
|X′(G)|q + |X′(A)|q

2

) 1
q

.

Proof. Using Lemma 3.1, Holder’s inequality and the fact that |X′|q is M -convex functions, we have∣∣∣∣∣∣∣∣∣
X(G) + X(A)

2
−

2

(
√

d −
√

c)2

A∫
G

X(x)dx

∣∣∣∣∣∣∣∣∣
≤

(
√

d −
√

c)2

4


1∫

0

|1 − 2µ|pdµ


1
p


1∫
0

|X′ (µG + (1 − µ)A)| dµ


1
q
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≤
(
√

d −
√

c)2

4

(
1

p + 1

) 1
p


1∫

0

[
µ|X′(G)|q + (1 − µ) |X′(A)|q

]
dµ


1
q

=
(
√

d −
√

c)2

4

(
1

p + 1

) 1
p
(
|X′(G)|q + |X′(A)|q

2

) 1
q

.

This completes the proof. �

Theorem 3.5. Let X : I◦ ⊆ R+ → R+ be a differentiable function on I◦, c, d ∈ I◦ with c < d and
X′ ∈ L[c, d]. If |X′|q, where q ≥ 1 is M -convex function, then∣∣∣∣∣∣∣∣∣

X(G) + X(A)
2

−
2

(
√

d −
√

c)2

A∫
G

X(x)dx

∣∣∣∣∣∣∣∣∣ ≤
(
√

d −
√

c)2

8

(
|X′(G)|q + |X′(A)|q

2

) 1
q

.

Proof. Using Lemma 3.1, power mean inequality and the fact that |X′| is M -convex functions, we have∣∣∣∣∣∣∣∣∣
X(G) + X(A)

2
−

2

(
√

d −
√

c)2

A∫
G

X(x)dx

∣∣∣∣∣∣∣∣∣
≤

(
√

d −
√

c)2

4


1∫

0

|1 − 2µ|dµ


1− 1

q


1∫
0

|1 − 2µ| |X′ (µG + (1 − µ)A)| dµ


1
q

≤
(
√

d −
√

c)2

4

(
1
2

)1− 1
q


1∫

0

|1 − 2µ|
[
µ|X′(G)|q + (1 − µ) |X′(A)|q

]
dµ


1
q

=
(
√

d −
√

c)2

8

(
|X′(G)|q + |X′(A)|q

2

) 1
q

.

This completes the proof. �

4. Fractional estimates

In this section, we derive some fractional estimates of Hermite-Hadamard like inequalities using
M -convex functions. Before that we recall basic definition of Riemann-Liouville fractional integrals.

Definition 4.1 ( [15]). Let X ∈ L[c, d], where c ≥ 0. The Riemann-Liouville integrals Jνc+X and Jνd−X,
of order ν > 0, are defined by

Jνc+X(x) =
1

Γ(ν)

∫ x

c
(x − µ)ν−1X(µ)dµ, for x > c

and

Jνd−X(x) =
1

Γ(ν)

∫ d

x
(µ − x)ν−1X(µ)dµ, for x < d,
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respectively. Here, Γ(ν) =
∫ ∞

0
e−µµν−1dµ is the Gamma function. We also make the convention

J0
c+X(x) = J0

d−X(x) = X(x).

We now derive a new auxiliary result utilizing the definition of Riemann-Liouville fractional
integrals.

Lemma 4.1. Let X : I◦ ⊆ R+ → R+ be a differentiable function. If X′ ∈ L[c, d], then

X(G) + X(A)
2

−
2α−1Γ(α + 1)

(
√

d −
√

c)2

[
Jα(A)−X(G) + Jα(G)+X(A)

]
=

(
√

d −
√

c)2

4

1∫
0

[(1 − µ)α − µα]X′ (µG + (1 − µ)A) dµ.

Proof. It suffices to show that

I =

1∫
0

[(1 − µ)α − µα]X′ (µG + (1 − µ)A) dµ

=

1∫
0

(1 − µ)αX′ (µG + (1 − µ)A) dµ −

1∫
0

µαX′ (µG + (1 − µ)A) dµ

= I1 − I2. (4.1)

Now using change of variable technique and definition of Riemann-Liouville fractional integrals, we
have

I1 =

1∫
0

(1 − µ)αX′ (µG + (1 − µ)A) dµ

=
2

(
√

d −
√

c)2
X(A)

−
2α+1Γ(α + 1)

(
√

d −
√

c)2(α+1)

1
Γ(α)

A∫
G

(x − G)α−1X(x)dx

=
2

(
√

d −
√

c)2
X(A) −

2α+1Γ(α + 1)

(
√

d −
√

c)2(α+1)
Jα(A)−X(G). (4.2)

Similarly

I2 =

1∫
0

µαX′ (µG + (1 − µ)A) dµ

= −
2

(
√

d −
√

c)2
X(G) +

2α+1Γ(α + 1)

(
√

d −
√

c)2(α+1)
Jα(G)+X(A). (4.3)

Combining (4.1), (4.2) and (4.3) completes the proof. �
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Now using Lemma 4.1, we derive our next results.

Theorem 4.2. Let X : I◦ ⊆ R+ → R+ be a differentiable function and X′ ∈ L[c, d]. If |X′| is M -convex
function, then ∣∣∣∣∣∣X(G) + X(A)

2
−

2α−1Γ(α + 1)

(
√

d −
√

c)2

[
Jα(A)−X(G) + Jα(G)+X(A)

] ∣∣∣∣∣∣
≤

(
√

d −
√

c)2

4(α + 1)

(
1 −

1
2α

)
[|X′(a)| + |X′(b)|].

Proof. Using Lemma 4.1 and the property of modulus, we have∣∣∣∣∣∣X(G) + X(A)
2

−
2α−1Γ(α + 1)

(
√

d −
√

c)2

[
Jα(A)−X(G) + Jα(G)+X(A)

] ∣∣∣∣∣∣
≤

1∫
0

(
√

d −
√

c)2

4
|(1 − µ)α − µα| |X′ (µG + (1 − µ)A)| dµ.

Since it is given that |X′| is M -convex function, so we have∣∣∣∣∣∣X(G) + X(A)
2

−
2α−1Γ(α + 1)

(
√

d −
√

c)2

[
Jα(A)−X(G) + Jα(G)+X(A)

] ∣∣∣∣∣∣
≤

1∫
0

(
√

d −
√

c)2

4
|(1 − µ)α − µα|

[
µ|X′(G)| + (1 − µ)

∣∣∣∣X′(A)
∣∣∣∣] dµ

=
(
√

d −
√

c)2

4

|X′(G)|

1∫
0

µ|(1 − µ)α − µα|dµ +
∣∣∣∣X′(A)

∣∣∣∣ 1∫
0

(1 − µ)|(1 − µ)α − µα|dµ


=

(
√

d −
√

c)2

4(α + 1)

(
1 −

1
2α

)
[|X′(a)| + |X′(b)|].

This completes the proof. �

5. Quantum estimates

In this section, we derive some quantum analogues of Hermite-Hadamard like inequalities using
M -convex functions. Before proceeding, let us recall some basics of quantum calculus. Tariboon et
al. [25] defined the q-integral as follows:

Definition 5.1 ( [25]). Let X : I ⊂ R→ R be a continuous function. Then q-integral on I is defined as:∫ x

a
X(µ) adqµ = (1 − q)(x − a)

∞∑
n=0

qnX(qnx + (1 − qn)a), (5.1)

for x ∈ J.
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The following result will play significant role in main results of the section.

Lemma 5.1 ( [25]). Let α ∈ R \ {−1}, then
x∫

a

(µ − a)α adqµ =
( 1 − q
1 − qα+1

)
(x − a)α+1.

Lemma 5.2. Let X : I◦ ⊆ R+ → R+ be a q-differentiable function on I◦, c, d ∈ I◦ with c < d. If DqX is
an integrable function with 0 < q < 1, then

2

(
√

d −
√

c)2

A∫
G

X(µ)dqµ −
q f (G) + X(A)

1 + q
=

q(
√

d −
√

c)2

2(1 + q)

1∫
0

(1 − (1 + q)µ)Dq

(
(1 − µ)G + µA

)
dqµ.

Proof. It suffices to show that

1∫
0

(1 − (1 + q)µ)Dq

(
(1 − µ)G + µA

)
dqµ

=
2

(
√

d −
√

c)2

1∫
0

(
X
(
(1 − µ)G + µA

)
− X

(
(1 − qµ)G + qµA

)
(1 − q)µ

)
dqµ

−
2(1 + q)

(
√

d −
√

c)2

1∫
0

µ

(
X
(
(1 − µ)G + µA

)
− X

(
(1 − qµ)G + qµA

)
(1 − q)µ

)
dqµ

=
2

(
√

d −
√

c)2

 ∞∑
n=0

X
(
(1 − qn)G + qnA

)
−

∞∑
n=0

X
(
(1 − qn+1)G + qn+1A

)
−

2(1 + q)

(
√

d −
√

c)2

 ∞∑
n=0

qnX
(
(1 − qn)G + qnA

)
−

∞∑
n=0

qnX
(
(1 − qn+1)G + qn+1A

)
=

2

(
√

d −
√

c)2
[X(A) − X(G)] −

2(1 + q)

(
√

d −
√

c)2

∞∑
n=0

qnX
(
(1 − qn)G + qnA

)
+

2(1 + q)

q(
√

d −
√

c)2

∞∑
n=1

qnX
(
(1 − qn)G + qnA

)
=

2

(
√

d −
√

c)2
[X(A) − X(G)] −

2(1 + q)

(
√

d −
√

c)2

∞∑
n=0

qnX
(
(1 − qn)G + qnA

)
+

2(1 + q)

q(
√

d −
√

c)2

X(A) − X(A) +

∞∑
n=1

qnX
(
(1 − qn)G + qnA

)
= −

2

q(
√

d −
√

c)2

[
q f (G) + X(A)

]
+

4(1 + q)

q(
√

d −
√

c)4

A∫
G

X(µ)dqµ.

This completes the proof. �

AIMS Mathematics Volume 5, Issue 3, 2376–2387.



2384

Now using Lemma 5.2, we derive our next results.

Theorem 5.3. Let X : I◦ ⊆ R+ → R+ be a q-differentiable function on I◦, c, d ∈ I◦ with c < d and DqX

is an integrable function with 0 < q < 1. If |DqX| is M -convex, then∣∣∣∣∣∣∣∣∣
2

(
√

d −
√

c)2

A∫
G

X(µ)dqµ −
q f (G) + X(A)

1 + q

∣∣∣∣∣∣∣∣∣
≤

q(
√

d −
√

c)2

2(1 + q)4(1 + q + q2)

{
(1 + 3q2 + 2q3)|DqX(G)| + (1 + 4q + q2)

∣∣∣∣DqX(A)
∣∣∣∣} .

Proof. Using Lemma 5.2 and the given hypothesis of the theorem, we have∣∣∣∣∣∣∣∣∣
2

(
√

d −
√

c)2

A∫
G

X(µ)dqµ −
q f (G) + X(A)

1 + q

∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣q(
√

d −
√

c)2

2(1 + q)

1∫
0

(1 − (1 + q)µ)DqX
(
(1 − µ)G + µA

)
dqµ

∣∣∣∣∣∣∣∣
≤

q(
√

d −
√

c)2

2(1 + q)

1∫
0

|1 − (1 + q)µ|
[
(1 − µ)|DqX(G)| + µDq

∣∣∣∣DqX(A)
∣∣∣∣] dqµ

=
q(
√

d −
√

c)2

2(1 + q)

|DqX(G)|

1∫
0

(1 − µ)|1 − (1 + q)µ|dqµ +
∣∣∣∣DqX(A)

∣∣∣∣ 1∫
0

µ|1 − (1 + q)µ|dqµ


=

q(
√

d −
√

c)2

2(1 + q)4(1 + q + q2)

{
(1 + 3q2 + 2q3)|DqX(G)| + (1 + 4q + q2)

∣∣∣∣DqX(A)
∣∣∣∣} .

This completes the proof. �

Theorem 5.4. Let X : I◦ ⊆ R+ → R+ be a q-differentiable function on I◦, c, d ∈ I◦ with c < d and DqX

is an integrable function with 0 < q < 1. If |DqX|
r is M -convex, where r > 1, then∣∣∣∣∣∣∣∣∣

2

(
√

d −
√

c)2

A∫
G

X(µ)dqµ −
q f (G) + X(A)

1 + q

∣∣∣∣∣∣∣∣∣
≤

q(
√

d −
√

c)2

2(1 + q)

(
2q

(1 + q)2

)1− 1
r
(

q(1 + 3q2 + 2q3)
(1 + q)3(1 + q + q2)

|DqX(G)|r +
q(1 + 4q + q2)

(1 + q)3(1 + q + q2)

∣∣∣∣DqX(A)
∣∣∣∣r) 1

r

.

Proof. Using Lemma 5.2, power-mean inequality and the given hypothesis of the theorem, we have∣∣∣∣∣∣∣∣∣
2

(
√

d −
√

c)2

A∫
G

X(µ)dqµ −
q f (G) + X(A)

1 + q

∣∣∣∣∣∣∣∣∣
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=

∣∣∣∣∣∣∣∣q(
√

d −
√

c)2

2(1 + q)

1∫
0

(1 − (1 + q)µ)DqX
(
(1 − µ)G + µA

)
dqµ

∣∣∣∣∣∣∣∣
≤

q(
√

d −
√

c)2

2(1 + q)


1∫

0

|1 − (1 + q)µ|dqµ


1− 1

r

×


1∫

0

|1 − (1 + q)µ|
[
(1 − µ)|DqX(G)|r + µ

∣∣∣∣DqX(A)
∣∣∣∣r] dqµ


1
r

=
q(
√

d −
√

c)2

2(1 + q)

(
2q

(1 + q)2

)1− 1
r
(

q(1 + 3q2 + 2q3)
(1 + q)3(1 + q + q2)

|DqX(G)|r +
q(1 + 4q + q2)

(1 + q)3(1 + q + q2)

∣∣∣∣DqX(A)
∣∣∣∣r) 1

r

.

This completes the proof. �

6. Conclusion

In this article, we have introduced the notions of M -convex functions, log-M -convex functions
and quasi M -convex functions. We have discussed these classes in context with integral inequalities
of Hermite-Hadamard type. We have also obtained some new fractional and quantum versions of these
results. It is worth to mention here that essentially using the techniques of this article one can easily
obtain extensions of Iynger type inequalities using the class of quasi M -convex functions. We hope
that the ideas and techniques of this paper will inspire interested readers working in the field.
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