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Abstract: In this article, the authors report the Chebyshev pseudospectral method for solving two-
dimensional nonlinear Schrodinger equation with fractional order derivative in time and space both.
The modified Riemann-Liouville fractional derivatives are used to define the new fractional derivatives
matrix at CGL points. Using the Chebyshev fractional derivatives matrices, the given problem is
reduced to a diagonally block system of nonlinear algebraic equations, which will be solved using
Newton’s Raphson method. The proposed methods have shown error analysis without any dependency
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1. Introduction

The fractional partial differential equation was first developed as a pure mathematical theory in the
19th century [36]. Time- and space- nonlinear fractional Schrodinger equation(NFSE) is the
fundamental equation of physics for describing nonrelativistic quantum mechanical behavior. This
equation was formulated in late 1925, and published in 1926, by the Austrian physicist Erwin
Schrodinger. In past years, the time- and space- NFSE has attracted application of various fields such
as, electromagnetic waves, quantitative finance, quantum evolution of complex systems and dielectric
polarization [6,9, 28,29, 35,37].

Let us consider nonlinear fractional Schrodinger equation

07U + k(07U + 6°U) + G(x,y,OU + AUPU = F(x,y,0), (x.y) €Q, 1€[0,T], (1.1)
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with initial condition:
U(x,y,0) = ki(x,y), (x,y) € Q,

and boundary conditions:

pll(y’ t)’ U(xRay’ t) = pZI(y’ t)a re [0’ 1], (X,Y) € aQ’
p31(-x’ t)’ U(X,yR, t) = p41(-x, l)

U(xLa y’ t)
U(xa YL, t)

Here, a and g represent the fractional order of derivatives in time and space respectively, with values
0O<a<1land1/2 < B < 1. The convex domain Q is defined as, Q = (x,y) € [xz, xr] X [yL, Yr], k and 4
are constants, G(x, y, t) is a potential function, F(x, y, t) is complex source term. The function U(x, y, t)
is assumed to be a complex wave function of time and space.

In past years, many authors have proposed various numerical methods for the solutions of time- and
space- NFSE. These numerical methods are very important for understanding the physical behavior
of the equations. Dong [11] has proposed scattering problems for two-dimensional NFSE and further,
gives the mathematical expression of the Green’s functions. Fan and Qi [14] have introduced the
Galerkin finite element method for the solutions of NFSE. Some other authors [15,18,22,23,25,26,42]
have used the same methods to studied numerical solutions and error analysis of two-dimensional
NFSE. Zhang et al. [43] have proposed Galerkin-Legendre spectral schemes for the numerical solution
of space NFSE. Li et al. [17] have discussed the numerical and stability analysis of multi-dimensional
time-NFSE using the L1-Galerkin finite element method. Zhao et al. [44] have proposed a fourth-
order compact ADI method for the numerical solutions and convergence analysis of two-dimensional
space NFSE. In this method, the authors have found fourth-order of accuracy. Li et al. [21] have
proposed a fast linearized conservative finite element method for the numerical solution of strongly
coupled NFSEs and also prove that the scheme preserved both the mass and energy. Li et al. [24] have
used Galerkin finite element method for the unconditional error analysis of NFSE. Cheng et al. [8]
has proposed novel compact alternating direction implicit scheme for the numerical analysis of two-
dimensional Riesz space fractional nonlinear reaction-diffusion equations. Bhrawy and Zaky [4] have
studied a natural generalization of the NFSE, which is changing the variable-order NFSE to fractional
quantum phenomena. Chen et al. [7] have introduced symplectic and multi-symplectic methods for
the numerical solution of NSE. Further equation (1.1) was solved by several other numerical methods,
such as riccati expansion method [1], Legendre-Galerkin spectral method [19], finite element method
[13,21], discontinuous Galerkin finite element method [39], momentum representation method [12],
compact boundary value method [34], fractional mapping method [40] and finite difference method
[20,41].

Pseudospectral methods have been developed for numerical simulation of related differential
equations in many fields because of its high accuracy, especially sufficiently smooth problems.
Lanczos showed the power of the Fourier series and Chebyshev polynomials in a number of problems
where they had not been used before. Later in the 1970s, Orszag introduced spectral methods again,
alongside Kreiss, Oliger, and others, for the purpose of solving partial differential equations in fluid
mechanics [38]. Many authors have used spectral method to approximate the solution of such
equations [2,27,30-33]. In this paper, the authors propose a highly accurate pseudospectral method to
approximate the NFSE. For the proposed method, we derive the solution of a nonlinear partial
differential equation as a sum of basis functions in both space and time directions. The spectral
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coeflicients of the sum are chosen to satisfy the solution of the nonlinear partial differential equation.
The fractional derivatives matrix is considered in the modified Riemann-Liouville formula. It is a new
approach to study the nonlinear partial differential equations in time and space and the method is
equally important in time as it is in the space direction. The great advantage of time-space
pseudospectral methods resides in their high-accuracy for a relatively small number of grid points as
compared to standard time-stepping methods.

The structure of the paper is organized as follows. In section 2, we describe some basic definitions
and notations. Discretizing and description of the methods are presented in section 3. In section
4, we derive the error analysis for two-dimensional time- and space-NFSE. In section 5, we present
numerical solutions and errors by the proposed scheme. In the last section, the conclusion of our work
is presented.

2. Preliminary

In this section, we present definition of modified Riemann-Liouville formula of the fractional
calculus theory and Sobolev space, which will be useful throughout this paper.

Definition 1: The partial fractional derivatives of order a of a function ¢,,(z), with respect to
variable z, in the modified Riemann-Liouville formula, is defined as [10, 16]

i b GO @u(© — pu(ONdE, @<,
$@ = @) ={ s e [ @& (@u@) - o) dé,  0<a<l,
F(nl—a) = foz(z - N (&) — pu(0)dé, n—1<a<n.
Here, z is dummy variable which represents x,y and ¢ as and when required. I' is the gamma function

and n = [a] + 1 with [@] denoting the upper integer part of @. Some basic properties of modified
Riemann-Liouville fractional derivatives are as follows:

dC = 0, C isconstant,
aazu_ 0}( y fOr veN and U<|-(Y-|,
- v+ —
) F(U+1—(1)ZU ‘ for ve N and v > [a].

and
297 = Loz = 977
Construction of Chebyshev fractional differential matrix is given as
Go(z0) <o o Bo(am)
0 - -
ua) o o o)
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Definition 2: Sobolev space: Let p > 0 be an integer and 1 < g < co. The set of all function in

Ll [a, b] such that all distribution derivatives upto order p are also in L [a, b] is called sobolev space,
which are denoted by W2 “[a, b] and defined by

Whia,b] = {U € Lila,b] | AU € Li[a,bl. 1yl < p},

where w is a weight function and norm is defined by

1Ullypaga = Z M Ullg

lyl<p
For g = 2, sobolev norm denoted by H’,[a, b] = W{j’z [a, b] and Lfv [a, b] is a weighted space defined by
Lfv[a, b] = {U :  Uis measurable and ||U||fv < 00}.

Definition 3: Kronecker products of matrices, let P = (pjx)m, and Q = (qi),s are two matrices,

where, m, n, r, s are nonnegative integers. The Kronecker product P ® Q is a mr X ns block matrix
denoted by

puQ pnQ ... pn@
PoO = P'z-lQ P.z.zQ p.ZnQ

Ple P12Q Pan

3. Pseudospectral method based discretization

mrxns

We seek a pseudospectral approximation /U, as a finite linear combination of a chosen set of
Langrange basis functions in both space and time-variable with pseudospectral coefficients.

M M M
InU = ) 3 > EOEG) BOU Xy, 1),

(3.1)
i=0 j=0 k=0
where,

S S u(2)
M
Ei(2) = ) wi=¢i(z)ei2) =
= (2= 2) [0S w(2)/ 02—
here, ¢;(z) is a Chebyshev polynomial, z; is a CGL points,

M
Su@ = | |-z,
i=0

normalization constant

, i=0and M,
, O0<i< M.

=
I
—

[SIE]
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and Chebyshev Gauss-Lobatto weight quadrature

Wj:{sz, j:QandM,
e 0<j< M.

The spectral approximation given in (3.1) can be expressed as a direct product

TuUxy, D) = (Proan) @ Poan() ® Proan®)" U, (3.2)

where

U = [Upop-> U |- 1 Uosgor s Uopans |-+ 1 Ungagor -+ » Unganal”

Wi0.m1(2) [Eo(2), ... AEn@1

Now, we can define fractional spatial derivative of equation (3.2) with respect to x is given by

PIyU(x,y,1)

5 = (P (@) ® Yo () © Froan(®)' (Qolyonn © T ® e ) U. (3.3)

Similarly, we can define fractional derivative of Eq. (3.2) with respect to ¢ is given by

0“7 yU(x,y,t)

pw = (Pio.m1(0) ® Proan () ® Proan ()" (IM+1 ® Iy ® QES}M,O;M]) U. (3.4

where /), denotes identity matrix of size (M + 1) X (M + 1)).

Next, we define U(x,y, t) and F(x,y,t) into their real and imaginary parts
U(X,y, t) = UI(X,)’, t) + iUZ(-xay’ Z‘) and F(-x’y’ t) = F](x’y’ t) + iFZ(-x’ya t)a (35)

where U,(x,y, 1), Uy(x,y,1), Fi(x,y,t) and F,(x,y,t) are real functions. Using Eq. (3.5) in Eq. (1.1),
we obtain the following coupled system of equations

=00 U, + k(0%U, + 87U ) + G(x,y,0)Uy + A(UT + U3) Uy = Filxy.0), (x.y) € Q, t€[0,T1,(3.6)

BU, + & (FPUy + 0PUs) + G(x.y. DUy + A(U + U3) Uz = Fy(x.3.1), (x.y)€Q, 1€[0,T]. (3.7)

Further, we consider the following transformations which are used to transform the two-dimensional
space Q = (x,y) € [xz, xr] X [yr, yg] and time [0, T'] in to [—1, 1].
XR—X XR+ X - + T T
x— BTy RO TL y—>yR yLy+yR L and — —r+ —.

2 2 2 2 22

We obtain the two dimensional time- and space- NFSE in new space (x,y) € [—1, 1]* and time interval
te[-1,1]

a

a%ﬁU1)+g[G(x,y,r)Ulm(UhUg) U] = )

2(2B-a)a 2 2@p-a) e
— x 1 + .
(xg — x1)% Or—y)* " 2@
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(3.8)
2(2/3—(1)7"(1 2(2,8—(1/)Toz T Te
U, + k| ————=-0%U, + *PU + 57 [Gloy, DU + 4 U+ U2 U,| = —Fy(x,y,0),
3.9
with initial condition:
Ul(xay,_l) :hl(x,}’), UZ(x’y’_l):hZ(-x’y)’ X € [_1$ 1], ye [_1’ 1] (310)

and boundary conditions:

Ui(-1Ly,0)=gu@.n, Ui(l,y, 1) =guy,1), rel[-1,1], yel[-11],
Ur(=1,y,0) = gu(y, 1), Ux(1,y,0) = gn(y,0), te[-1,1], yel[-1,1],
Ui(x,—1,0) = ga1(x, 1), Uix,1,0) = ga(x,0), te[-1,1], xe[-1,1],
Us(x,—1,1) = gno(x, 1), Us(x,1,1) = ga(x, ), te[-1,1], xe[-1,1].

Further, we consider a mapping for converting the non-homogeneous initial and boundary values to
homogeneous initial and boundary values [5].

Q3,0 = S y) + Z2gu, ) + ey, 1) + Fga(x, ) + S ga(x, 1) — 2=

gy, —1) — - U0 g (v, = 1) — 20D e (x, 1) — %g%(x,—l), (3.11)

here corner initial and boundary values satisfy,

gu(=1,-1) = gu(=1,-1) =m(=1,-1), gu(=1,1) = gxu(=-1,1),

gu(l,=1) = gu(=1,-1)=h(=1,1), gu(1,1)=gu(=1,1),
gu(=1,-1) = gx(1,-1)= m(1,-1), gu(=1,1)=g3(1,1),
g2k(19_1) = g4k(1’_1) = hk(191)’ g2k(l’l) :g4k(1’l)'

Define new variable Vi (x, y, ).

Ui(x,y,t) = Vi(x,y,1) + Qu(x, y, 1), Vk=1,2, (3.12)
the above equations, can be modified with new variable and obtain the new equations residuals,
2(2p-a)a 5 2(2p-a)a
9% B 2B
6, (V2 + Qz) + K(()CR ~ xL)Zﬁax (V] + Q]) + (yR — yL)2ﬁa} (V] + Q]))
o GOy, (Vi + Q1) + A((Vi + Q1) + (Vo + Qo)) (Vi + Q)| = S Fitey.0. (3.13)
2(2,3—(1) T ) 2(2ﬁ—cz) T
o B 28
6, (Vl + Ql) + K((xR ~ xL)zﬁax (V2 + Qz) + (yR — yL)Zﬁay (V2 + Qz))
T(Z T(I
77 [GEy. D2 + Q) + (Vi + Q) + (V2 + Qo)) (Va+ Q)| = o Faley.n). (14
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Applying the pseudospectral method in Eqgs. (3.13) and (3.14), we get

Hi(Vi,V)) = =B(Iya1 ® Iyt ® Q51 04n) V2 — 07(Q0) +

2(2,3—a) T o
B)
<o [m (O 0 @ It ® Iygen) +

2(2,6’—11)T(r 2(2,8—(1/)Ta T
P(Q) + (92/3(91)] - _Fl(x y. 1)+

2(2,B—a)Ta
—(y L (IM+1 ® Q%zﬁ,:,,,OZM] ® IM+1)] Vi
R— YL

K| ———— T
(xp —xp)* " Or=y)?*

a

% |G,y (Vi + Q) + /l((Vl Q)+ (Va+Q)?) (Vi +Q)| =0 (3.15)

Hy(Vy, V2) B(IM+1 Q Iys1 ® QE&)M,():M]) Vi+07(Q) +

2@B-a)a ) 2@2B-a) e
kB| ——— Q(é) an @Iyt @ Iy ) + ————
[(XR —xp)% ( [0:34,0:4] ’ v ) Or —yL)?*

2(2,8—11) T« 2(2,8—(1/) T ]

(IM+1 ® Q%@,O:M] ® IM+1)] Va

T¢
__FZ(-X y’t)+

0P () >

(xg = xp)? 7 Or—y)?*

a

o |Gx.y. (Vs + Qo) + A((v1 Q)+ (Va+ Q)?) (Va+ Q)| =0 (3.16)

where B = (¥}0.11(x) @ P01 () ® ‘I’[O;M](t))T Using the CGL points in Egs. (3.15) and (3.16) and
obtained the algebraic equations

(IM+1 ® Iy ® Q[o :M.0: M]) 2= ('Q'Z);t +

22p-a) e
(28
[m (Q[O:M,O:M] Q Iy ® IM+1) +

2@B-a)a 2(2B-a)a
Q¥+ ———
Or —y0)?

T(I
T | G(Vi+Q0) + A(Ivi0) (Vi + Q1) + (V2 + Qo)) | = Hy, (3.17)

2(2ﬁ—a) T«
Or —yL)*

Q@)Y

(IM+1 ® QE(Z)%’O:M] ® IM+1)] Vi

T
-—F +
Y 1

+K

(xg — xp)%

(IM+1 ® Iy ® QEgZ)M,o;M]) Vl - (Ql);l +
[ 2(@p-a)a 20p-aTae
Or —yL)?#

Q)7

2
(QEO:ﬁIz/I,O:M] ® Iy ® IM+1) +

2B—-a) T

(xg — x1)%
2(2,B—a) T«

(IM+1 ® QE(Z):BXLO:M] ® IM+1)] V2

T®
——F2+

Q)? 2

- I + -
(xg — x)% Or —yL)?*

T
? [ G(V2 + Qz) +A (I(V2+Qz)) ((V1 + Ql)z + (V2 + 92)2)] = H2, (318)

+K

where,l(y, 1q,) and Iy,.q,) are diagonal entry matrix
T
V] = [VI,OOI’ RN VI,OO(M) I s | Vl,O(M)l, s Vl,O(M)(M) I s | Vl,(M)(M)l’ R VI,M(M)(M)] ’
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T
V, = [Vaoots---s Vaooany | - | Vaoants- - Vaoonon |- | Vaanonts - - Vamonon ]
T
QD = (@015 @)oo |- 1 Q@D ot »- - QDo |- 1 QD -+ - Q@D wanaan| -
T
(QZ)? = [(QZ);Y()Ol ) (Qz)?oo(M) | oo | (QZ)?()(M)l PRI (QZ)?()(M)(M) | e | (Qz)?(M)(M)l IR (Qz)?M(M)(M)] )
T
28 _
@7 = @)% @K L 1 Q@DE - @D s L T @DE - @D nan|
T
28 _
(Ql)y - [(Ql)y()()] 9 e (Ql)y 00(M) | | (Ql)yO(M)l 5 .. (Ql)yO(M)(M) | | (Ql)y (M)M)1 (Ql)y M(M)(M)] )
28 _
(Q2)x - [(Ql)xom LI (QZ)xOO(M) | | (QZ)xO(M)l 5. (QZ)xO(M)(M) | | (QZ)X (MM " * (QZ)X M(M)(M)] ’
28 _
(QZ)y - [(QZ)yOO] 5 e (QZ)} 00(M) | | (QZ)yO(M)l 5. (Q2)yO(M)(M) | | (QZ)y (MY(M)1°** (QZ)y M(M)(M)] )
T
F, = [Fioots--->Frooon | --- | Fioonts- s Froonon | - | Franants - - Fimonon]
T
F, = [Fao01,---> Faooom | - | Faounts- s Faoonm-u | - | Faonants - - - Famonon]
T
H, = [Hioots---sHiooomn | --- | Hioons---» Hioonon | -« | Hiononts - - - Humonon ] s
T
H, = [Ho01s---sHaooomn | - | Haowns - - Haooma-1) | - | Haononns - - - » Homonon]
T
G = [Goots---»Gooamny | --- | Goanyts - - - » Goonm-1) | - - | Ganants - - - » Guanan ]
Hence,
V = [ViIV,], H(V) = [H;[H;] = 0. (3.19)

The system of nonlinear equations (3.19) can be solved by using Newton Raphson method. The
Jacobian matrix of this coupled nonlinear algebraic equations are as

J(V) = . Vi, jkelo,..,M].

4. Theory of error estimates

In this section, we derive error estimates for two-dimensional nonlinear fractional Schrodinger
equation by using time-space Chebyshev pseudospectral method.

Theorem 1: Let U(x,y,t) € HY[-1,1], where p > 0, there exist a constant C, such that the
following estimate holds:

U - Iyl <CM|U|

L2[-1,1] = HY[-1,1]

Proof : We approximate the solutions obtained from truncated Chebyshev expansion are defined by

M M M
PulU = D" D" > ) 1500 me() Ty (@.1)

i=0 j=0 k=0

AIMS Mathematics Volume 5, Issue 3, 1642-1662.
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where 1,(z), VI € (i, j, k) and z € (x,y,t) is Chebyshev polynomials, w(z) = (VI —z?)~! is weight

function and expansion coeflicients are

Lig = f f f U ni(on;m)m@wxwy)w(t) dx dy dt ,
plpjpk

= f 1 f 1 ;0w )m(O)w(r) [ f 1 U ni(x)w(x) dX]dy dt.

PiP;jPk

where p; [ € (i, j, k) is normalizing constant of orthogonal Chebyshev polynomials.
Next, we define the Chebyshev operator

0w = L(@w(z) =

g (— V1 - zzgz(nn(z))), Vn,

0z
Using Eq. (4.3) in Eq. (4.2), we obtain

l]k -

1 bt 1
Lije = f f 1 Mwn(Dw(r) [-_25 1] dy dt,
PiPiPk J-1 J-1 I

where

1
xi = f U[i(—vl—xzimxx)))] dx
_1 ox ox

using integration by parts:

o 0
x1 = -U Vl—xz—(m(x))l _1+f ECU Vl—x2a(m(x))dx

-1

) d
X1 = f —U V1 - x> —mi(x)) dx
1 Ox ox

1

again applying integration by parts, we obtain

X1

ﬁU V1 — x25;i(x) |jzll+f ( V1-x2—- U)r],(x)dx
10

f ( V1 - x2— U)n,(x)dx
dx

X1

here, £, = £ ( V1 -2 )1s Chebyshev operator,

1
X1 =f [L1U Ini(xyw(x)dx,
-1

f f ;0w w(t) f [{ ( l—xz—(m(X)))}dX]dydt,
plp]pk

(4.2)

4.3)

4.4)

(4.5)
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1651

putting the value of y; in eq(4.4), we get

1 1 1 1 1
Lig = ff’lj()’)w()’)ﬂk(f)w(f) [—zf (LU ni(x)w(x)dx |dy dt,
ppjpk _

TG f f f [LiU 10:(0n,m)nOw(x)w(w(r) dx dy dt .
irj

Similarly integrate for space y and time ¢ and obtain

Ui = —(z]k)f f f [L1.LL3U 1 ni(0m;0)m@w(x)w(y)w(t) dx dy dt,

pp]pk

p 2f f f (LU 1n;(0)n;0)m(Ow(x)w(y)w(t) dx dy dt.
pipjpk(l]k) aJaJda

In this case the order of LU is 6 as L, £, and L3 are second order operator.
Repeatation of procedure for higher order concludes the results i.e.,

T = ———
’ p,pjpk(uk

Then the Cauchy-Schwartz inequality implies

2

( k)4m

where C is generic constant. Therefore, from Sobolev norm

”"EU ||L2[ L1 = ||U ||H6[ L1

By induction,

n

From Eq. 4.7 and Eq. 4.8, we get

2
Wil = CmV Vg

Further, let us consider the discrete approximation

M M M M M M
TuU =) 3 S B E0) B@Vy00 = D) >0 0 0,00 o) Mg

i=0 j=0 k=0 i=0 j=0 k=0

where I1; is discrete expansion coefficient and defined by

M M M
LSS ) 1 et ,U Gt V).

PiPjPk "= 520 w0

IT; i

ez f f f [L"U 1n:(mi)m(Ow(x)w()w(?) dx dy dt.

(4.6)

4.7)

(4.8)

4.9)

(4.10)

(4.11)
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Under the assumption for sufficient smoothness functions, the aliasing error is

Hijk - l]k + Z Z Z nz(x) np(x) [77]'()’)’ nq(x):l [nk(t)’ nr(t)]w Iﬂpqr,
plp]pk SM g>M r>M v

where [., .],, represents the discrete weighted inner product.
We know that,

0 k=
Using Eq. (4.10), Eq. (4.12) and Eq. (4.13 and we get

IU = IuUI; = U -PuUI; +1BuUII;

L2[-1,11 — L2[-1,1] L2[-1,1]°

where the aliasing error

m(x)n ,(y)nk(t)l“i ks

to simplify the expression, first interchange the summations

oo o0

00 M M M
BuU = Y YYNNN o Mm@, [0 m ), .0 o),

p>M g>M r>M i=0 j=0 k=0
n:(On,; (MO k.

Z Z Z 7i(%), Up(x)] [m(y) nq(\/)] [7(0), n,(D],
M

(4.12)

(4.13)

(4.14)

(4.15)

Since 1;(x), n;(y) and () are orthogonal, therefore, we observe that the value of Eq. (4.15) is zero

due to the range of summations.

IU = IuUI; =IU - PuUIlj,

L2[-1,1] [-1,1]°

Subtract the Eq. (4.13) and Eq. (4.1), we get

-2ty =333 000 1,0 1) T

i>M j>M k>M

taking L2 [—1, 1] norm both side and we get

M

v
<

IU = PuUIl =

v
S

M LMe
IPMe IPe LT
sMg ZMS U gk

v
S

f f f 7 O (W ()w()w (1) dx dy di [Tyl

(4.16)
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[e9)

1 1 1
f RCOw () dx f oW dy f 2(Ow(t) dt [Tl
-1 -1 -1

Aagk
Mz I

=
S

k

v
<

r
M

S

[0, mi(0)),, [0 1] i), O], e,

i>M j>M k>

Finally putting the value of discrete inner product and we get

U = PuUI = > D D pipipdTid, (4.17)

i>M j>M k>M

Combining the Eq. (4.9) and Eq. (4.17)and we get

U =PyUIR S CHUR G DY pipipitiii) ™,

i>M j>M k>M
= U =Pyl S CMTU g
= ||U _PMU”LEV[—I,I] < CM™*|U ||H$m[_l’1]. (4.18)
Take p = 6m in Eq. (4.18)
= ||U - PMU”L&.[_l,]] <CM7?|U IIHS[_U]. (4.19)
Finally, putting in Eq. (4.16), we obtain
U - IMU”L?V[—IJ] <CM7|U ”Hfi[—l,lJ' (4.20)

The theorem is complete.

Further, we discuss the bounds of the given Schrodinger operator. We consider the error function
E(x,y,t) = U(x,y,t) — Iy U(x,y,t), where, 1, U(x,y,t) is pseudospectral approximation and U(x, y, t)
is exact solution. Moreover, the pseudospectral approximation satisfies the given problem, i.e.,

Ri(x,y,t) = -0/1yU, +K(8iBIMU1 +5§ﬁIMU1)+G(X,y’t)IMU1 +/1(IMU% +IMU§) ITyU; = Fi(x,y,1),

Rz(x,y, I) = 8;’_Z'MU1 + K(aiﬁIMUz + aiﬁIMUz) + G(x,y, I)IMUZ + A(IMU% + IMUg) IMUz - Fz(x,y, I),
Adding both equations, we get
R(x,y.1) = 07Ty U + & (021U + Iy U) + G(x, 3,0 Iy U + ATy UPTyU — F(x,y,1). (421)

where R(x,y,t) = Ri(x,y,1t) + iR,(x, y, t) is the residual function.
Further, we can define

R(x,y.0) = id{(U - IyU) + k(0P - Iy U) + U - TyU))
+G(x,y, ) (U = Iy U) + AU = Ty U)P(U - I, U),
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R(x,y,t) = i0%E +« (8§BE + a§ﬁE) +G(x,y,)E + AE|E, (4.22)

where £ = E| + iE,.
From theorem 1, we get

”U - IMU”LEV[_LIJ = ||E||Lgv[_1’u S CM7P||U||H5[_1,1]. (423)
Further, Eq. (4.23) can be written in derivative form.
NE _o'U
Ha_Zk”Lﬁ-[—l,l] <CM plla_zk”H‘Z[_l’”’ z€[x,y,t], k=>0. (4.24)
Using sobolev norms
U o okU Ak
”g)_Zk”HZ[—l,u - Z Hazm [)—Zk”Lﬁ)l—l,ll’ - Z ”azmwc Ul vy
v<p lvi<p
= UGy Dl (4.25)
Using Eq. (4.25), we obtain
OE
- 4
15 iz oy < CM NN (4.26)
taking Lfv[—l, 1] norm both side in Eq. (4.22) and we get
IRCE, Y. Dllz o1y = NiOYE + k(¥PE + 0FE) + G(x,y, 0)E + AEPEl|2 -y 11,
< 107 Ellz 1.y + W (107 Ell -y + 107 Ell 2 -11y)
HIGC, 3, DIENz 1y + ANEL, (4.27)
Using Eq. (4.26) in Eq. (4.27), we get
IRy, Oliorny < CM Ul + K (2CM 71U )
+||G(x7 y9 t)”CM_p”U“H‘I:[_l’l] + |/l| (CM—p||U||H5[_1’1]) ’
< CMNUlypy y+ I (2CMPNU )
< CM‘P||U||H£W[_U] + |k] (2CM‘P||U||H£+2,3[_M])
3
+||G(x’ y7 t)”CM_p”U”Hf/[_]’]] + |/1|CM_I7 (”U”Ha[—],l]) . (4'28)

Thus,

IRCx, y, Dl 21,17 <

CM"||U]]

HY -1,1]

3
K (201 )+ 1G5 DU+ A (10, )' | 4290
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5. Numerical results

In this section, we present numerical results for two-dimensional time- and space-NFSE using the
Chebyshev pseudospectral method. We give three examples in this section. To demonstrate the errors
in pseudospectral approximation, we consider the errors in the L, norms, defined by

Ly, = U1 = Ul

where |U[F and |U| are the modulus of pseudospectral approximation and modulus of analytical
solution, respectively.

5.1. Example 1

Let us consider the time- and space- NFSE on an ellipse convex region Q2 = {(x, y)Ijj—z + Z_z < 1}

0°U {82/3U PPU

277 _
g ¥\ e } +Gx,y, DU + AUPU = F(x,y,0),  (x,y)€Q, 1€[0,T],

with 4=k = 1, G(x,y.0) = (5 + 5 - 1).
The source term is

tl—a 2t2—a

. x2 LY 12_t+i(t2+1)
Te-o TG-ol\@ » 2 cos(Br)
2

X yz 3 2 yz 6
+|t+ie + D] (—+ﬁ—1) [t2+(t2+1)2”t+i(t2+1)](—+ﬁ—1)

F(x,y,t) =

[h(x, @) + h(y, b)]

With s,(a) = #5_2@, s(a) = #4—2@ and s3(a) = Wizm’ the function A(x, a), h(y, b) can be given as

hx.a) = si(@)](—x)* + (g = 0* %) + 452(@) [ o — 1) = gl — )] +

4s3(a)x%(x — xL)z_zﬁ + 4s3(a)xi(xR — x)z_zﬁ.

Initial condition

(2 Y
U(x,y,O) = l(;—l—ﬁ_l) ,

boundary conditions
Ulx,y,0) =0, (x,y)€0Q, t€[0,T],
and the exact solution is

2 2 2
Ulx,y.0) = |1+ + 1) (2— + ly? - 1)

_ _ _ _b _ b
where, x; = =7 \/b* =y, xg = § /D> =2,y = =2 Va? — x* , yg = 2 Va? — x*.
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In this example, numerical solutions of the proposed method have obtained over fractional-order
derivative 0 < @ < 1 and 1/2 < B < 1. The tabulated results of the proposed method with different
fractional-order derivatives « and S are presented in Table 1. The numerical results of the proposed
method achieved better accuracy as the number of grid points in both space and time axis is increased.
Figure 1 has shown that surface plot of the proposed method attime 7 = 1.0 witha = 1/2,b = 1/4,a =
0.8 and B = 0.85. Contour plot also has shown the physical behavior of the equation. Moreover, Figure
2 has also shown that surface plot of the proposed method at time 7 = 1.0 witha = 1,b = 1, = 0.8
and B = 0.85. The numerical results are more accurate and consistent with our theoretical results.

Table 1. Numerical solutions of proposed method with different a, 8 and grids points M for

example 1.
M a=0.2 a=04 a=0.6 a=0.8 a=1.0
L2 L2 L2 L2 L2
B =0.70
16 4.5324e-03 2.6634e-03 5.7714e-03 4.3257e-03 7.5687e-05
32 1.8317e-03 1.1843e-03 2.3455e-03 1.7289¢-03 3.0442e-05
64 8.3699¢-04 4.9184e-04 1.1883e-03 7.9882e-04 1.3977e-05
128 5.7443e-05 3.3756e-05 7.3146e-05 5.4823e-05 9.5925e-07
256 1.1066e-05 6.5028e-06 1.4091e-05 1.0561e-05 1.8479¢-07
B =0.85
16 9.5437e-03 8.6147¢-03 6.3341e-03 6.1617e-03 5.4673e-05
32 3.8385e-03 3.4649¢-03 2.5476e-03 2.4783e-03 2.1990e-05
64 1.7624e-04 1.5909e-04 1.1697e-04 1.1379e-04 1.0096e-06
128 1.2096e-05 1.0918e-05 8.0278e-04 7.8093e-04 6.9292e-06
256 2.3301e-05 2.1033e-05 1.5465e-05 1.5044¢-05 1.3349¢-07
B=1.00
16 4.9563e-04 3.8725e-04 4.2852e-04 5.8512e-04 8.2624¢-05
32 1.9934e-04 1.5575e-04 1.7235e-04 2.3534e-04 3.3232e-06
64 9.1527e-04 7.1512e-04 7.9134e-04 1.0805e-04 1.5258e-06
128 6.2815e-05 4.9080e-05 5.4310e-05 7.4157e-05 1.0472e-07
256 1.2101e-06 9.4548e-06 1.0462e-06 1.4286e-06 2.0173e-08

Figure 1. Numerical solutions of example 1 attime 7 = 1.0 witha = 1/2,b = 1/4,a = 0.8

2

2

s

>

X
~u

.

0

y

and 8 = 0.85.
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UGyl

X y
Figure 2. Numerical solutions of example 1 at time 7 = 1.0 witha = 1,b = 1, = 0.8 and
B =0.85.

5.2. Example 2
In this example, let us consider the time- and space- NFSE on a rectangular region Q = [0, 1]x[0, 1]

0'U N 0*PU N o*u
i K ——
ot ox* — oy*#

}+ G(x,y,HU + AUPU = F(x,y,1), (x,y) €Q, 1€[0,T],

withd=k=1,G(x,y,t) = txy(1 — x)(1 —y).
The source term is

[, 158 301~ 307 |, 5 5 5 5 .
F(x,y,t) = [ZF(2—0/) _F(2—a) _F(3—a) x (1 =x)y"(1 —y)” +3375[t" + (1 + 1)"]
[t +i(1 + 0)*1x5(1 = 0)%°(1 — y)® + 15[t + i(1 + 0?1t (1 — x)°y*(1 — y)® —
: 2142(1 _ )2 : 2714201 _ +)\2
15[z + i(1 + *y*(1 — y) (5, B) 4 ol B)] — 15[z + i(1 + H)2]x2(1 - x)
cos(Brm) cos(Bm)
[h1(y,B) + ha(y, B)].
where,
X2 6x 12x2
meh) = 3 ap) [1 “3-28G-p0 —4/3)]’
(1 -x)r¥ 6(1 — x) 12(1 = x)2
N T [1 R (3—2ﬁ><3—4ﬂ)]'

Initial condition
U(x,y,0) = 15ix*(1 = x)2*(1 —y)%,
boundary conditions

Ux,y,t) =0, (x,y)€0Q, te[0,T],

and the exact solution is

U(x,y,1) = 15[t + i(1 + £)*1x°(1 — x)*y*(1 — y)*.
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For computation purpose we have chosen space interval Q = [0, 1]* with time 7 = 1. Numerical
solutions of the proposed method have been computed with different fractional-order derivative 0 <
a < 1and 1/2 < B < 1. Figure 3 has shown the numerical solution of the proposed method and
the contour plot has shown the physical behaviour of the proposed method. In Table 2, the tabulated
results of the proposed method with different fractional-order derivatives @ and S are presented. The
numerical results of the proposed method achieved better accuracy as the number of grid points in both
space and time directions are increased. Moreover, it demonstrated that the numerical method is more
efficient.

Figure 3.

Table 2. Numerical solutions of proposed method with different , 8 and grids points M for

P
w
s
2
Eu
e

X

y

m
X

Numerical solutions of example 2 at time 7 = 1.0 with @ = 0.8 and 8 = 0.85.

example 2.
M a=0.2 a=04 a=006 a=038 a=10
L, L, L, L, L,
B =0.70
16 1.9236e-04 3.2736e-04 4.4412e-04 5.6202e-04 3.5931e-05
32 7.7368e-04 1.3167e-04 1.7863e-04 2.2605e-04 1.4452e-05
64 3.5523e-04 6.0453e-04 8.2014e-04 1.0379¢-04 6.6353e-05
128 2.4379¢-05 4.1489¢-05 5.6287e-05 7.1230e-05 4.5538e-06
256 4.6965¢e-05 7.9926¢e-05 1.0843e-05 1.3722e-05 8.7727e-06
B =0.85
16 2.9351e-05 5.4325e-05 3.4143e-05 4.2313e-05 6.5295e-05
32 1.1805e-05 2.1850e-05 3.4331e-06 4.2546e-06 6.5655e-06
64 5.4202e-06 1.0032e-05 7.8814e-07 9.7673e-07 1.5072e-06
128 3.7199¢-07 6.8851e-07 1.0818e-07 1.3407e-07 2.0688e-07
256 7.1661e-07 1.3264e-07 2.0840e-07 2.5827e-07 3.9855e-08
B =1.00
16 7.1124e-05 3.5341e-05 2.3774e-05 3.4571e-05 6.6325e-05
32 5.1516e-06 3.5536e-06 2.3905e-06 3.4762e-06 6.6690e-06
64 1.6418e-06 8.1579e-07 5.4878e-07 7.9802e-07 1.5310e-06
128 2.2535e-07 1.1198e-07 7.5327e-08 1.0954e-07 2.1015e-08
256 4.3413e-08 2.1572e-08 1.4511e-08 2.1102e-08 4.0484e-09
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5.3. Example 3

In this example, let us consider the time- NFSE with non-homogeneous boundary value

o lig lig
i—U+05-=U+05—U-|U*U=h(x,y,1), (x,y,0)¢€[0,11x][0,1]x [0, 1], (5.1)
ot ox? 0y?
where h(x, y, 1) = £7(6-i(t%+ DI (E-a)1¥)(e" )
> T(4-a) ’
with initial condition:
Ulx,y,00=0,  (xy) €[0,1]x[0,1],

and boundary conditions:

U@©,y,1) = £9, Uy, 0 =M™,  te[0,1], (xy) €[0,1]x][0,1],
U(x, 0, t) = l3ei(x), U(x, 1, t) — l3ei(x+l),
The exact solution of this problem is
Ulx,y, 1) = e (5.2)

In this example, error norms for two dimensional nonlinear time fractional Schrodinger equation has
been calculated with different values of grids point and different fractional order derivative 0 < a < 1.
In Table 3, it can be seen that the accuracy of the numerical results are increased along with the number
of grid points and also achieved good order of accuracy. Further, proposed methods have avheived
better accuracy as compared to [3] at @ = 0.50 with different grid points. Moreover, proposed method
has obtained 14 order of accuracy.

Table 3. Numerical solutions of example 3 for different value of @ and grids points M .

M a=025 a =0.50 a=0.75 a = 1.00 [3]a = 0.50
L, L, L, L, MAE

04  1.8374e-05  2.4281e-05  4.2328¢-05  7.6581e-06  1.55¢-03

06  2.1641e-07  1.8207e-07  3.3021e-07  3.2801e-08  3.58¢-06

08  1.2258¢-09  3.2740e-09  1.5839e-09  1.4142e-10  4.38¢-09

10 8.9053e-12  3.6506e-12  1.0107e-13  9.7058e-14  1.08e-10

6. Conclusion

In this work, we have discussed a highly accurate fully discrete time-space Chebyshev
pseudospectral method for the two-dimensional time- and space-NFSE, defined on a convex and
rectangular domain. The new fractional derivative matrix has been established using a modified
Riemann-Liouville derivative formula at CGL points for a different order of fractional derivatives. We
presented the error analysis without any dependency on time and space step restrictions of the
schemes. The proposed method supports the theoretical results. To demonstrate the performance, the
method has been employed on three different model problems on a convex and rectangular domain
and obtained a good order of accuracy. Reported numerical results are highly accurate which shows
the efficiency of the proposed method.
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