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1. Introduction

Cancer is one of the most frequently encountered diseases that can lead to the end of human life
in spite of the advances in science and medicine. It is a multi-staged disease which occurs as a result
of changes in DNA formation (mutation) of abnormal cells. Uncontrolled proliferation of the cells
causes tumors and a great number cells mutate in the human body on a daily basis. While some of
these mutated cells die, others continue to live and form cancerous cells. Cancer can occur when the
immune system or other defensive mechanisms fail to protect the human body from these cells [1].
Cancer cells are different from normal cells due to their size, shape, number, differentiation, function,
and ability to travel to distant tissues and organ systems [1]. The immune system recognizes cancer
cells and tumors from their antigens [2].

Dendritic cells known as professional antigen-presenting cells, send tumor antigens to lymph
nodes to activate T lymphocytes after recognizing cancer cells. CD4+T cells play a central role in the
initiation and progression of immune responses [3] and also help CD8+T cells to activate and
proliferate [4]. The basic mechanism of tumor immunity is to kill tumor cells by the help of CD8+T
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cells. Immune reactions that provide protection against tumors, are typically the task of CD8+T cells.
CD4+T cells also play a major role in these tasks [3]. Human CD4+T cells can identify
tissue-specific antigens, common tumor antigens and viral antigens caused by tumor transformation
[3]. Another task of CD4+T cells is to produce IL-2 as a result of antigen stimulation response. IL-2
has a potent T cell growth factor effect and it has been reported that the application of IL-2 seemingly
leads to curative and persistent regressions in cancer patients [5].

Recently, interest in fractional has increased in order to clarify real life problems because of memory
and hereditary property [6, 7, 8, 9, 10, 11, 12, 13, 14]. One of the most common fractional operators is
Caputo, Riemann-Liouville (RL). However, these operators are considered weakness due to singularity
problems caused by their kernel function. As a result of this weakness, Atangana felt the need to define
Atangana-Baleanu (AB) derivative in [15] and [16, 17, 18, 19, 20, 21, 22, 23, 24, 25] are the some of
the studies about AB derivative.

Mathematical modeling, known as the reinterpretation of real world problems with mathematical
equations, has recently become one of the tools that scientists use to foresee the development of
diseases that cause serious problems. [26, 27, 28, 29, 30] are some of the studies which attempt to
show the relation between cancer and immune system by way of mathematical modeling.

The study is organized as: In section 2, some basic definitions and theorems to be used in study are
briefly mentioned. In section 3, the existence and uniqueness of the solution of the fractional immune
system-cancer model is given. The graphics of the numerical solution via predictor-corrector scheme
is given in section 4 and comments is made on graphics. Lastly, we finalize our study in section 5.
Briefly, the relationship between cancer cells and immune system cells will be examined with AB
derivative and the effect of IL-2 and dendritic cells on cancer cells will be discussed using the integer
form of model presented by Castiglione in [31].

Let us rearrange this model with fractional derivative:

ABC
0 Dτ

t (H (t)) = a0 + b0D (t) H (t)
(
1 −

H (t)
f0

)
− c0H (t) ,

ABC
0 Dτ

t (C (t)) = a1 + b1I (t) (M (t) + D (t)) C (t)
(
1 −

C (t)
f1

)
− c1C (t) ,

ABC
0 Dτ

t (M (t)) = b2M (t)
(
1 −

M (t)
f2

)
− d2M (t) C (t) ,

ABC
0 Dτ

t (D (t)) = −d3D (t) C (t) ,
ABC
0 Dτ

t (I (t)) = b4D (t) H (t) − e4I (t) C (t) − c4I (t) , (1.1)

with the initial conditions H (0) = 0,C (0) = 0,M (0) = 1,D (0) = 10, I (0) = 0, where ABC
0 Dτ

t is AB
derivative in Caputo sense and τ ∈ [0, 1]. And H,C,M,D, I represent CD4+T (helper) cells, CD8+T
(cytotoxic) cells, myeloid (cancer) cells, dendritic cells and IL-2, respectively.

2. Basic definitions

In this part, some definitions and properties that will be helpful in this work is given.

Definition 2.1. Suppose that g ∈ H1 (a, b), a < b be a function and τ ∈ [0, 1]. The AB derivative in
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Caputo sense of order τ of g is given by [15]

ABC
a Dτ

t
[
g (t)

]
=

F (τ)
1 − τ

t∫
a

g′ (y) Eτ

[
−τ

(t − y)τ

1 − τ

]
dy (2.1)

where Eτ is the Mittag-Leffler function and F (τ) is a normalization function with F (0) = F (1) = 1.

Definition 2.2. Assume that g ∈ H1 (a, b), a < b be a function and τ ∈ [0, 1]. The AB derivative in RL
sense of order Eτ of g is given by [15]:

ABR
a Dτ

t
[
g (t)

]
=

F (τ)
1 − τ

d
dt

t∫
a

g (y) Eτ

[
−τ

(t − y)τ

1 − τ

]
dy. (2.2)

Definition 2.3. The fractional integral is given by [15]:

AB
a Iτt

[
g (t)

]
=

1 − τ
F (τ)

g (t) +
τ

F (τ) Γ (τ)

t∫
a

g (λ) (t − λ)τ−1 dλ. (2.3)

Theorem 2.1. [15] Let g on [a, b] is a continuous function. Given the following inequality holds on
[a, b]: ∥∥∥ABR

0 Dτ
t
[
g (t)

]∥∥∥ < F (τ)
1 − τ

‖g (t)‖ , (2.4)

where ‖g (t)‖ = max
a≤t≤b
|g (t)| .

Theorem 2.2. The AB derivative in Caputo and RL sense satisfy Lipschitz condition [15]:∥∥∥ABC
0 Dτ

t
[
g (t)

]
−ABC

0 Dτ
t [h (t)]

∥∥∥ ≤ H ‖g (t) − h (t)‖ (2.5)

and ∥∥∥ABR
0 Dτ

t
[
g (t)

]
−ABR

0 Dτ
t [h (t)]

∥∥∥ ≤ H ‖g (t) − h (t)‖ . (2.6)

Theorem 2.3. The fractional ordinary differential equation

ABC
0 Dτ

t (h (t)) = s (t)

has a unique solution given as [15]

h (t) =
1 − τ
F (τ)

s (t) +
τ

F (τ) Γ (τ)

t∫
a

s (λ) (t − λ)τ−1 dλ.

3. Existence and uniqueness

Let P = C (K) ×C (K) ×C (K) ×C (K) ×C (K) and C (K) be a Banach space of continuous R→ R
valued functions on the interval K with the norm

‖(H,C,M,D, I)‖ = ‖H‖ + ‖C‖ + ‖M‖ + ‖D‖ + ‖I‖ ,
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where ‖H‖ =sup {|H (t)| : t ∈ K}, ‖C‖ = sup {|C (t)| : t ∈ K}, ‖M‖ = sup {|M (t)| : t ∈ K},
‖D‖=sup {|D (t)| : t ∈ K}, ‖I‖ = sup {|I (t)| : t ∈ K} .

For clarity, we rewrite the model (1.1) of the following form:
ABC
0 Dτ

t (H (t)) = N1 (t,H) ,
ABC
0 Dτ

t (C (t)) = N2 (t,C) ,
ABC
0 Dτ

t (M (t)) = N3 (t,M) ,
ABC
0 Dτ

t (D (t)) = N4 (t,D) ,
ABC
0 Dτ

t (I (t)) = N5 (t, I) . (3.1)

Using Theorem 2.3, the system (3.1) can be written as:

H (t) − H (0) =
1 − τ
F (τ)

N1 (t,H) +
τ

F (τ) Γ (τ)

t∫
0

(t − λ)τ−1 N1 (λ,H) dλ,

C (t) −C (0) =
1 − τ
F (τ)

N2 (t,C) +
τ

F (τ) Γ (τ)

t∫
0

(t − λ)τ−1 N2 (λ,C) dλ,

M (t) − M (0) =
1 − τ
F (τ)

N3 (t,M) +
τ

F (τ) Γ (τ)

t∫
0

(t − λ)τ−1 N3 (λ,M) dλ,

D (t) − D (0) =
1 − τ
F (τ)

N4 (t,D) +
τ

F (τ) Γ (τ)

t∫
0

(t − λ)τ−1 N4 (λ,D) dλ,

I (t) − I (0) =
1 − τ
F (τ)

N5 (t, I) +
τ

F (τ) Γ (τ)

t∫
0

(t − λ)τ−1 N5 (λ, I) dλ. (3.2)

Theorem 3.1. If the following inequality holds

0 ≤ b0ψ4 +
b0

f0
ψ4 (ψ1 + ω1) + c0 < 1,

then the kernel N1 satisfies the Lipschitz condition and contraction.

Proof. Let H and H1 be two functions, then we have

‖N1 (t,H) − N1 (t,H1)‖

=

∥∥∥∥∥−b0D (t) (H (t) − H1 (t)) −
b0

f0
D (t)

(
H2 (t) − H2

1 (t)
)
− c0 (H (t) − H1 (t))

∥∥∥∥∥
≤

(
b0 ‖D (t)‖ +

b0

f0
‖D (t)‖ ‖H (t) + H1 (t)‖ + c0

)
‖H (t) − H1 (t)‖

≤ A1 ‖H (t) − H1 (t)‖ . (3.3)

Taking A1 = b0ψ4+ b0
f0
ψ4 (ψ1 + ω1)+c0 where D, H and H1 are bounded functions such that ‖D (t)‖ ≤ ψ4,

‖H (t)‖ ≤ ψ1, ‖H1 (t)‖ ≤ ω1 then we have

‖N1 (t,H) − N1 (t,H1)‖ ≤ A1 ‖H (t) − H1 (t)‖ . (3.4)
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Hence, the Lipschitz condition is fulfilled for N1 and 0 ≤ b0ψ4 + b0
f0
ψ4 (ψ1 + ω1) + c0 < 1 implies N1 is

also contraction. �

Similarly, the other kernels N2, N3, N4 and N5 satisfy Lipschitz condition and contraction.
Consider the system (3.2) in the following recursive formula:

Hn (t) =
1 − τ
F (τ)

N1 (t,Hn−1) +
τ

F (τ) Γ (τ)

t∫
0

(t − λ)τ−1 N1 (λ,Hn−1) dλ,

Cn (t) =
1 − τ
F (τ)

N2 (t,Cn−1) +
τ

F (τ) Γ (τ)

t∫
0

(t − λ)τ−1 N2 (λ,Cn−1) dλ,

Mn (t) =
1 − τ
F (τ)

N3 (t,Mn−1) +
τ

F (τ) Γ (τ)

t∫
0

(t − λ)τ−1 N3 (λ,Mn−1) dλ,

Dn (t) =
1 − τ
F (τ)

N4 (t,Dn−1) +
τ

F (τ) Γ (τ)

t∫
0

(t − λ)τ−1 N4 (λ,Dn−1) dλ,

In (t) =
1 − τ
F (τ)

N5 (t, In−1) +
τ

F (τ) Γ (τ)

t∫
0

(t − λ)τ−1 N5 (λ, In−1) dλ, (3.5)

with the initial conditions

H0 (t) = H (0) ,C0 (t) = C (0) ,M0 (t) = M (0) ,D0 (t) = D (0) , I0 (t) = I (0) .

We find the difference between the successive terms in the expressions:

Φ1n (t) = Hn (t) − Hn−1 (t) =
1 − τ
F (τ)

[N1 (t,Hn−1) − N1 (t,Hn−2)]

+
τ

F (τ) Γ (τ)

t∫
0

(t − λ)τ−1 [N1 (λ,Hn−1) − N1 (λ,Hn−2)] dλ,

Φ2n (t) = Cn (t) −Cn−1 (t) =
1 − τ
F (τ)

[N2 (t,Cn−1) − N2 (t,Cn−2)]

+
τ

F (τ) Γ (τ)

t∫
0

(t − λ)τ−1 [N2 (λ,Cn−1) − N2 (λ,Cn−2)] dλ,

Φ3n (t) = Mn (t) − Mn−1 (t) =
1 − τ
F (τ)

[N3 (t,Mn−1) − N3 (t,Mn−2)]

+
τ

F (τ) Γ (τ)

t∫
0

(t − λ)τ−1 [N3 (λ,Mn−1) − N3 (λ,Mn−2)] dλ,
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Φ4n (t) = Dn (t) − Dn−1 (t) =
1 − τ
F (τ)

[N4 (t,Dn−1) − N4 (t,Dn−2)]

+
τ

F (τ) Γ (τ)

t∫
0

(t − λ)τ−1 [N4 (λ,Dn−1) − N4 (λ,Dn−2)] dλ,

Φ5n (t) = In (t) − In−1 (t) =
1 − τ
F (τ)

[N5 (t, In−1) − N5 (t, In−2)]

+
τ

F (τ) Γ (τ)

t∫
0

(t − λ)τ−1 [N5 (λ, In−1) − N5 (λ, In−2)] dλ. (3.6)

Notice that

Hn (t) =

n∑
k=1

Φ1k (t) ,

Cn (t) =

n∑
k=1

Φ2k (t) ,

Mn (t) =

n∑
k=1

Φ3k (t) ,

Dn (t) =

n∑
k=1

Φ4k (t) ,

In (t) =

n∑
k=1

Φ5k (t) . (3.7)

Taking the norm on both sides of the Eq. (3.6) and applying triangular identity, we find

‖Φ1n (t)‖ = ‖Hn (t) − Hn−1 (t)‖

≤
1 − τ
F (τ)

‖[N1 (t,Hn−1) − N1 (t,Hn−2)]‖

+
τ

F (τ) Γ (τ)

∥∥∥∥∥∥∥∥
t∫
0

(t − λ)τ−1 [N1 (λ,Hn−1) − N1 (λ,Hn−2)] dλ

∥∥∥∥∥∥∥∥
Because the kernel N1 satisfy Lipschitz condition proved in Eq. (3.4), we have

‖Φ1n (t)‖ = ‖Hn (t) − Hn−1 (t)‖

≤
1 − τ
F (τ)

A1 ‖Hn−1 − Hn−2‖ +
τ

F (τ) Γ (τ)
A1

t∫
0

(t − λ)τ−1
‖Hn−1 − Hn−2‖ dλ
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and

‖Φ1n (t)‖ ≤
1 − τ
F (τ)

A1

∥∥∥Φ1(n−1) (t)
∥∥∥ +

τ

F (τ) Γ (τ)
A1

t∫
0

(t − λ)τ−1
∥∥∥Φ1(n−1) (λ)

∥∥∥ dλ (3.8)

Analogously, we have the following results:

‖Φ2n (t)‖ ≤
1 − τ
F (τ)

A2

∥∥∥Φ2(n−1) (t)
∥∥∥ +

τ

F (τ) Γ (τ)
A2

t∫
0

(t − λ)τ−1
∥∥∥Φ2(n−1) (λ)

∥∥∥ dλ,

‖Φ3n (t)‖ ≤
1 − τ
F (τ)

A3

∥∥∥Φ3(n−1) (t)
∥∥∥ +

τ

F (τ) Γ (τ)
A3

t∫
0

(t − λ)τ−1
∥∥∥Φ3(n−1) (λ)

∥∥∥ dλ,

‖Φ4n (t)‖ ≤
1 − τ
F (τ)

A4

∥∥∥Φ4(n−1) (t)
∥∥∥ +

τ

F (τ) Γ (τ)
A4

t∫
0

(t − λ)τ−1
∥∥∥Φ4(n−1) (λ)

∥∥∥ dλ,

‖Φ5n (t)‖ ≤
1 − τ
F (τ)

A5

∥∥∥Φ5(n−1) (t)
∥∥∥ +

τ

F (τ) Γ (τ)
A5

t∫
0

(t − λ)τ−1
∥∥∥Φ5(n−1) (λ)

∥∥∥ dλ. (3.9)

In the light of the results in hand, we give the below theorem.

Theorem 3.2. The fractional model given in (1.1) has a solution, if we can find t0 satisfying the
equation

1 − τ
F (τ)

Ai +
tτ0

F (τ) Γ (τ)
Ai < 1

for i = 1, 2, 3, 4, 5.

Proof. We know that H (t), C (t), M (t), D (t) and I (t) are bounded functions and satisfy Lipschitz
condition. From the Eqs. (3.8) and (3.9), we obtain the succeeding relations:

‖Φ1n (t)‖ ≤ ‖Hn (0)‖
[
1 − τ
F (τ)

A1 +
tτ

F (τ) Γ (τ)
A1

]n

,

‖Φ2n (t)‖ ≤ ‖Cn (0)‖
[
1 − τ
F (τ)

A2 +
tτ

F (τ) Γ (τ)
A2

]n

,

‖Φ3n (t)‖ ≤ ‖Mn (0)‖
[
1 − τ
F (τ)

A3 +
tτ

F (τ) Γ (τ)
A3

]n

,

‖Φ4n (t)‖ ≤ ‖Dn (0)‖
[
1 − τ
F (τ)

A4 +
tτ

F (τ) Γ (τ)
A4

]n

,

‖Φ5n (t)‖ ≤ ‖In (0)‖
[
1 − τ
F (τ)

A5 +
tτ

F (τ) Γ (τ)
A5

]n

. (3.10)

Thus, the existence and continuity of the above solutions are proved. Our goal is to show that the above
functions are solutions of Eq. (1.1), assume that

H (t) − H (0) = Hn (t) − K1n (t) ,
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C (t) −C (0) = Cn (t) − K2n (t) ,
M (t) − M (0) = Mn (t) − K3n (t) ,
D (t) − D (0) = Dn (t) − K4n (t) ,

I (t) − I (0) = In (t) − K5n (t) . (3.11)

Then,we have

‖K1n (t)‖ =

∥∥∥∥∥1 − τ
F (τ)

[N1 (t,H) − N1 (t,Hn−1)]

+
τ

F (τ) Γ (τ)

t∫
0

(t − λ)τ−1 [N1 (λ,H) − N1 (λ,Hn−1)] dλ

∥∥∥∥∥∥∥∥
≤

1 − τ
F (τ)

‖N1 (t,H) − N1 (t,Hn−1)‖

+
τ

F (τ) Γ (τ)

t∫
0

(t − λ)τ−1
‖N1 (λ,H) − N1 (λ,Hn−1) dλ‖

≤
1 − τ
F (τ)

A1 ‖H − Hn−1‖ +
tτ

F (τ) Γ (τ)
A1 ‖H − Hn−1‖ . (3.12)

By continuing this method recursively, it gives at t0

‖K1n (t)‖ ≤
(
1 − τ
F (τ)

+
tτ0

F (τ) Γ (τ)

)n+1

An+1
1 a. (3.13)

As n approaches to ∞, ‖K1n (t)‖ tends to 0. In an analogous way, it can be shown ‖K2n (t)‖ → 0,
‖K3n (t)‖ → 0, ‖K4n (t)‖ → 0 and ‖K5n (t)‖ → 0. �

It is another matter to demonstrate the uniqueness of the solutions of the Eq. (1.1). Suppose that
there exist another set of solutions H1 (t), C1 (t), M1 (t), D1 (t) and I1 (t), we find

H (t) − H1 (t) =
1 − τ
F (τ)

[N1 (t,H) − N1 (t,H1)] +
τ

F (τ) Γ (τ)

×

t∫
0

(t − λ)τ−1 [N1 (λ,H) − N1 (λ,H1)] dλ (3.14)

Applying the norm to the Eq. (3.14) and because the kernel satisfies the Lipschitz condition, we
find

‖H (t) − H1 (t)‖ ≤
1 − τ
F (τ)

A1 ‖H (t) − H1 (t)‖

+
tτ

F (τ) Γ (τ)
A1 ‖H (t) − H1 (t)‖ (3.15)

This gives

AIMS Mathematics Volume 5, Issue 2, 1519–1531.



1527

‖H (t) − H1 (t)‖
(
1 −

1 − τ
F (τ)

A1 −
tτ

F (τ) Γ (τ)
A1

)
≤ 0. (3.16)

Clearly H (t) = H1 (t), if the following inequality holds

(
1 −

1 − τ
F (τ)

A1 −
tτ

F (τ) Γ (τ)
A1

)
> 0, (3.17)

Using the same attitude, we obtain

C (t) = C1 (t) ,M (t) = M1 (t) ,D (t) = D1 (t) , I (t) = I1 (t) .

4. Numerical simulations

In this section, graphs obtained by using predictor-corrector numerical scheme given in [32] of
fractional mathematical model in Eq. (1.1) is given. Our aim is to observe how cancer cells and immune
system cells change as fractional order changes. In addition, the interaction between cancer cells and
immune system cells can be observed by means of graphs. We use the initial conditions (0, 0, 1, 10, 0)
for H,C,M,D, I, respectively and use parameters a0 = 10−4, b0 = 10−1, f0 = 1, c0 = 0.005, a1 = 10−4,
b1 = 10−2, f1 = 1, c1 = 0.005, b2 = 0.02, f2 = 1, d2 = 0.1, d3 = 0.1, b4 = 10−2, e4 = 10−7, c4 = 10−2

given in [31]. Figures 1–3 represents that the action of the fractional cancer-immune system model
constituent for distinct values of τ and it can be seen that as the fractional order τ is decreased, the
number of helper, cytotoxic, dendritic cells and IL-2 are increased, while the cancer cells is declined.
In other words, when τ = 0.98, approximately 60 percent of cancer cells die, while τ = 0.65, about 90
percent die. Moreover, Figures 4–5 represents that numerical simulations for the Eq. (1.1) at τ = 0.9,
τ = 0.8, τ = 0.7 and τ = 0.6, respectively.
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Figure 1. The action of T cells which are constituent of the fractional cancer-immune system
model for distinct values of τ.
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Figure 2. The action of dendritic cells and IL-2 which are constituent of the fractional
cancer-immune system model for distinct values of τ.
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Figure 3. The action of cancer cells which are constituent of the fractional cancer-immune
system model for distinct values of τ.
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Figure 4. Numerical simulations for the Eq. (1.1) at τ = 0.9 and τ = 0.8, respectively.

AIMS Mathematics Volume 5, Issue 2, 1519–1531.



1529

0 5 10 15 20 25 30 35 40
0

1

2

3

4

5

6

7

8

9

10

time (day)

P
o

p
u

la
ti
o

n

 

 

CD4+T cells

CD8+T cells

Cancer cells

Dendritic cells

IL−2

0 5 10 15 20 25 30 35 40
0

1

2

3

4

5

6

7

8

9

10

time (day)

P
o

p
u

la
ti
o

n

 

 

CD4+T cells

CD8+T cells

Cancer cells

Dendritic cells

IL−2

Figure 5. Numerical simulations for the Eq. (1.1) at τ = 0.7 and τ = 0.6, respectively.

5. Conclusions

Cancer is an issue that needs to be addressed when because of affects many people’s lives directly
and indirectly. How does the body respond to cancer? The answer to the question can be made more
effective in the fight against cancer. So, the integer order cancer-immune system model given in [31]
is studied in this paper. Firstly, the cancer-immune system model is modified by AB derivative and
then the existence and uniqueness of numerical solution of this model is given. After obtaining graphs
related to the model with predictor-corrector numerical method, these graphs is interpreted briefly it
can be seen that as τ is increased, it is observed that immune system cells eliminate cancer cells less
in these graphs. Apparently, because of the hereditary property of fractional derivative, the fractional
derivative is more suitable for real life events.
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