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1. Introduction

In 1960, Opial [12] established the following inequality:
Theorem A Suppose f € C'[0, h] satisfies £(0) = f(h) = 0 and f(x) > 0 for all x € (0,h). Then
the inequality holds

h h h
‘fo If(x)f’(x)ldxsZj;(f’(x))zdx, (1.1)

where this constant h/4 is best possible.

Many generalizations and extensions of Opial’s inequality were established [2, 411, 15-19]. For
an extensive survey on these inequalities, see [13]. Opial’s inequality and its generalizations and
extensions play a fundamental role in the ordinary and partial differential equations as well as
difference equation [2—4, 67, 9—11, 17]. In particular, Agarwal and Pang [3] proved the following
Opial-Wirtinger’s type inequalities.

Theorem B Let A > 1 be a given real number, and let p(t) be a nonnegative and continuous function
on [0, al. Further, let x(t) be an absolutely continuous function on [0, a], with x(0) = x(a) = 0. Then

f ap(t)lx(t)l‘dts % f [1(a — 0]V p(n)dt f I ()] dt. (1.2)
0 0 0
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The first aim of the present paper is to establish Opial-Wirtinger’s type inequalities involving
Katugampola conformable partial derivatives and @-conformable integrals (see Section 2). Our result
is given in the following theorem, which is a generalization of (1.2).

Theorem 1.1 Let A > 1 be a real number and a € (0, 1], and let p(s,t) be a nonnegative and
continuous functions on [0,a] X [0, b]. Further, let x(s,t) be an absolutely continuous function and
Katugampola partial derivable on [0,a] X [0, b], with x(s,0) = x(0,¢f) = x(0,0) = 0 and x(a,b) =

x(a,t) = x(s,b) =0. If p> 1, l + l =1 Then
A-1
f f ps. Dlx(s, D dy syt < 2 (az) ( f f Fapatas. 1) - p(s. Ddysd r)
d o sdat, (1.3)

ff

Taspgia(s. 1) = {(st)?[(a = $)(b - D]

Remark 1.1 Let x(s, 7) reduce to s(¢) and with suitable modifications, and p = ¢ = 2 and @ = 1,
(1.3) become (1.2).

Theorem C Let A > 1 be a given real number, and let p(t) be a nonnegative and continuous

function on [0, al. Further, let x(t) be an absolutely continuous function on [0, a], with x(0) = x(a) = 0

Another aim of this paper is to establish the following inequality involving Katugampola
conformable partial derivatives and a-conformable integrals. Our result is given in the following
theorem.

Theorem 1.2 Let j = 1,2 and A > 1 be a real number, and let p;(s,t) be a nonnegative and
continuous functions on [0,a] X [0,b]. Further, let x;(s,t) be an absolutely continuous function and
Katugampola partial derivable on [0, a] X [0, b], with x;(s,0) = x;(0,1) = x;(0,0) = 0 and x(a,b) =
xj(a,t) = xj(s,b) = 0. Then for a € (0, 1]

b
f f (pi(s. Dl (s, 1" + paCs, Dlxa(s, )I') d st
0

RIIL Lol 113
([ Lo [ [12

2. Katugampola conformable partial derivatives

where
}a(/l—l)

2
d,sd,t

A

dysd tl (1.5)

Here, let’s recall the well-known Katugampola derivative formulation of conformable derivative of
order for @ € (0, 1] and ¢ € [0, c0), given by

D)D) = M o1
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and
Do(£(0) = lim Do), (22)
provided the limits exist. If f is fully differentiable at #, then
_Adf
(D) = 17 (0).
Da(f)®) 7 (0

A function f is a-differentiable at a point ¢+ > 0, if the limits in (2.1) and (2.2) exist and are finite.
Inspired by this, we propose a new concept of a-conformable partial derivative. In the way of (1.4),
a-conformable partial derivative is defined in as follows:

Definition 2.1 [20] (@-conformable partial derivative) Let @ € (0, 1] and s,¢ € [0, c0). Suppose
f(s, 1) is a continuous function and partial derivable, the @-conformable partial derivative at a point
s > 0, denoted by £(f),(s, 1), defined by

f(se® ", 1) = f(s,1)

&

0
55 als, 1) = lim (2.3)
provided the limits exist, and call a-conformable partial derivable.

Recently, Katugampola conformable partial derivative is defined in as follows:

Definition 2.2 [20] (Katugampola conformable partial derivatives) Let @ € (0, 1] and s, ¢ € [0, c0).
Suppose f(s,t) and %( f)a(s, 1) are continuous functions and partial derivable, the Katugampola

conformable partial derivative, denoted by %zat( )a2(s, 1), defined by

o 2 (als, 1) = Z(als, 1)
—(f)QZ(S, t) = lim = > >
0sot -0

(2.4)
E

provided the limits exist, and call Katugampola conformable partial derivable.
Definition 2.3 [20] (a-conformable integral) Let &« € (0,1],0 < a < band 0 < ¢ < d. A function
f(x,y) : [a,b] X [c,d] — R is a-conformable integrable, if the integral

f; ’ f f(x,y)dyxd,y = f; ’ f () f(x, y)dxdy (2.5)
exists and is finite.
3. Main results
Theorem 3.1 Let A > 1 be a real number and a € (0, 1], and let p(s,t) be a nonnegative and
continuous functions on [0,a] X [0, b]. Further, let x(s,t) be an absolutely continuous function and

Katugampola partial derivable on [0, a] X [0, b], with x(s,0) = x(0,7) = x(0,0) = 0 and x(a,b) =
x(a,t) = x(s,b) =0. If p > 1, % + é =1 Then

a b 1 A-1 b
f f p(s, Dx(s, D' dy syt < 7 +q(—2) ( f f Tapgia(s,1) - (s, )5yt
0 Jo prq \a 0 Jo
a b
“J,
0 0
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where wet)
Caspgra(s, ) = {(s)7[(a = )b = ]9}

Proof From (2.4) and (2.5), we have

N t 62
7t = r—y a? ,t d[l dat.
x(s, 1) fofoasat(X) (s,0dqs

By using Holder’s inequality with indices A and 4/(4 — 1), we have

) A1l/p
(X)2(s, 1) dasdat) ]

o |Bsor

1 A-1/p
S(—Z(St)a) (
a 0
a b 62
x(s,t) = fs ft M(X)az(s,t)dasdat,

(A-D/q
|x(s, DIV < (—[(a - s)(b-n]* ) (f f

Now a multiplication of (3.2) and (3.3), and by using the well-known Young inequality gives

Ix(s, VP < [(
0

2
(X)a2(s, 1)

2 1/p
— d,sd,t . 3.2
0 asat 5 ] ( )

Similarly, from

we obtain

1 1/q
d,sd, t) . 3.3)

1 -1 1 1/p
Ix(s, HI' < E) Cappgaa(s, 1) - (f f d,sd, t]
lq
X 8 Ey (x)(,z(s 1) d sd t)
1\ Pl
S E) Labpgra(s, 1) - ( f f dysdyt
1
+ 6—1 f f ﬁ(x)az(s, 1) dasdat)
K t
-1 5 1
pt+qf(l 0
= 2 T o 4
g (az) abpga 0sat(x)“2(s’ )| dysdat, (3.4)

where
(A-1)

Fabpgia(s.1) = {(s1)/7[(a = 5)(b — 0]/}

Multiplying the both sides of (3.4) by p(s, ) and a—conformable integrating both sides over ¢ from 0
to b first and then integrating the resulting inequality over s from O to a, we obtain

a b
f f p(s, D)lx(s, ) dysdyt
0 0
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IA

2
d, sdat] d,sd,t

02
M(x)az(s’ t)

1 -1 b
+4q (_2) . fﬂ f Fabpq/la(s’ t) ' p(S, t)[
04 0 0 0

_pr+t q( ) (j‘”f Cibpgra(s, 1) - p(s, Ddy sdat) (9 5 (x)az(s 1) d L Sd,t.
This completes the proof. [
Remark 3.1 Let x(s, ¢) reduce to s(¢) and with suitable modifications, (3.1) becomes the following
result. .
a + 1 - '
f POyt < 21 (—2) : f TapgiaOp(D)d,1 f DL OO dat (3.5)
0 pqg \a@ 0 0

where D, (x)(¢) is Katugampola derivative (2.1) stated in the introduction, and

a(A-1)
Lapgao(t) = {tl/p(a - t)l/q} .

Putting p = ¢ = 2 and @ = 1 in (3.5), (3.5) becomes inequality (1.2) established by Agarwal and
Pang [3] stated in the introduction.
Taking fora = 1, p = ¢ = 2 and p(s, t) = constant in (3.1), we have the following interesting result.

b
ff |x(s»l)|ﬁdsdtsl(ab)ﬁ[ (/l+1 /l+1) ff
0 0 2

where B is the Beta function.

Theorem 3.2 Let j = 1,2 and A > 1 be a real number, and let p;(s,t) be a nonnegative and
continuous functions on [0,a] X [0,b]. Further, let x;(s,t) be an absolutely continuous function and
Katugampola partial derivable on [0, a] X [0, b], with x;(s,0) = x;(0,1) = x;(0,0) = 0 and x(a,b) =
xj(a,t) = xj(s,b) = 0. Then for a € (0, 1]

—x(s 1) dsdt,

0sot

b
f f (pr(s, Dlxi(s, DI + pa(s, Dxa(s, OI') dasdlat
0 0

%(?) [( f f (st)" Vp (s, H)d, sdat) f f
( f f (st)* ™ D,y (s, H)d, sd, r) f f
Proof Because
s ¢ (92 a b 82
x(s.1) = fo fo (x5, Dt = f f ()5, O s
Ixi1(s, )| < = f f
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By Holder’s inequality with indices A and 4/(A — 1), it follows that

(xl)c,z(s Hld,sd t)

pi(s, Dl (s, DI < 2Apl(s t)( a %

1 (1
< 5(;) (sp)*7D a o O (s d sdyt, (3.7)
Similarly
a1 1 " A1) !
Pa(s, Dxa(s, | < i\ (st)‘ dysd,t, (3.8)

Taking the sum of (3.7) and (3.8) and «-integrating the resulting inequalities over ¢ from O to b first
and then over s from 0 to a, we obtain

b
f f (p1(s, Dlx1 (s, DI + paCs, Dlxa(s, DY) dosdlat
0 0

YL
[ oo 18
S [(ffw ]|
([ Lo 12

Remark 3.2 Taking for x;(s,t) = x2(s,1) = x(s,1) and pi(s,t) = pa(s,t) = p(s,t) in (3.6), (3.6)
changes to the following inequality.

A-1
f f p(s, Dx(s, )'dysdyt < 21( ! )

A

dsdt]d sd,t

+

(x2)02(5, 1)

da sdat] d, sdat}

(xl)az(s 1) d sd,t

(9(9

dsd t]

( f f (st)*Vp(s, 1)d, sd t) f f d sd,t. (3.9)
Putting @ = 1 in (3.9), we have
ff p(s, D|x(s, D dsdt < —(f f(st)/l 'n(s, t)dsdt)f f dsdt (3.10)

Let x(s, ¢) reduce to s(¢) and with suitable modifications, and 4 = 1, (2.10) becomes the following

result. . . .
f p@O|x(®)|dt < l(f p(t)dt)f |x"(2)| dt. (3.11)
0 2\Jo 0
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This is just a new inequality established by Agarwal and Pang [4]. For A = 2 the inequality (3.11) has
appear in the work of Traple [14], Pachpatte [13] proved it for A = 2m (m > 1 an integer).

Remark 3.3 Let x;(s, 1) reduce to x;(¢) (j = 1,2) and p;(s, 1) reduce to p;(¢) (j = 1, 2) with suitable
modifications, (3.6) becomes the following interesting result.

11\ a a
j: (p1<r>|x1(r)|”+pz(r>|xz<r>|)dtsy( ) [( fo r‘l“‘”m(r)dar) fo 1D, ()| dut

+( j: t"“‘”pz(r)dar) f: |z>a(x;><t)|”d<,r]. (3.12)

Putting 4 = 1 and @ = 1 in (3.12), we have the following interesting result.

f pr(H)dt f |x'2(t)|dt).
0 0

Finally, we give an example to verify the effectiveness of the new inequalities. Estimate the
following double integrals:
1l
A
f f |st(s = D@t = 1)| dsat,
0o Jo
where 4 > 1.

Let x;(s,1) = x1(s,t) = x(s,1) = st(s — 1)(t = 1), pi(s,1) = pi(s,1) = p(s,t) = (s)'"%,a=b =1 and
0 < @ <1, and by using Theorem 3.2, we obtain

1 1 2
ff[st(s—l)(t—l)] dsdt
0 0
1 1
f f p(s, 1) |x(s, D' dysdyt
0

' 1 /]
f (PO (1)) + p2<r>|x2<r>|)dts§( f pi(o)dt
0 0 0

< %(é) ( f f (s, t)dasdar) f f dosdot
SRR |25 = D@t - 1)| (st 'dsd

- 2l mff(s—)(t—)](st) sdt
o\ 1 AL

- ?(E) (cy(/l—l)+l (2&—1 L (t+ D@ ’)

< (ATt Yy

- 21\ a? al-1)+1) \2e! o

22—/1
2 (a(A-1)+ 1)

4. Conclusions

We have introduced a general version of Opial-Wirtinger’s type integral inequality for the
Katugampola partial derivatives. The established results are generalization of some existing Opial
type integral inequalities in the previous published studies. For further investigations we propose to
consider the Opial-Wirtinger’s type inequalities for other partial derivatives.
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