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1. Introduction

Integral transforms involving special functions have gained considerable attention in the
bibliography. In the last decade, many papers are investigated to study the integral transforms
involving the product of Bessel and other special functions (see [4, 8, 9]). In view of this, it is worth
investigating a general integral transform involving Humbert and Bessel functions with a weight e−γx2

.
This integral transform is important in evaluating the expression of the generalized Humbert-Gaussian
beams propagating in the space. A closed form of the considered integral will be derived. To the best
of our knowledge, the results of the present contribution have not been previously published.

The following definitions are essential to recall for the present investigation:
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The four two-variables hypergeometric functions, called confluent Humbert functions [7], are
defined by

Ψ1 (a, b; c, d; x, y) =

∞∑
r=0

∞∑
s=0

(a)r+s(b)r

(c)r(d)s

xr

r!
ys

s!
, (1.1)

Φ1 (a, b; c; x, y) =

∞∑
r=0

∞∑
s=0

(a)r+s(b)r

(c)r+s

xr

r!
ys

s!
, (1.2)

Ξ1 (a, b, c; d; x, y) =

∞∑
r=0

∞∑
s=0

(a)r(b)s(c)r

(d)r+s

xr

r!
ys

s!
, (1.3)

and

Ξ2 (a, b; c; x, y) =

∞∑
r=0

∞∑
s=0

(a)r(b)r

(c)r+s

xr

r!
ys

s!
, (1.4)

with |x| < 1, |y| < ∞ and c, d , 0,−1,−2, . . .
The hypergeometric function 2F1 is defined by (see [1])

2F1 (α, β; γ; z) =

∞∑
n=0

(α)n(β)n

(γ)n

zn

n!
, (1.5)

where (α)n is the Pochhammer symbol defined by

(α)n =
Γ(α + n)

Γ(α)
,

with Γ is the gamma function (see [1]).
The Kummer function is defined by the series

1F1 (α; β; z) =

∞∑
k=0

(α)k

(β)k

zk

k!
. (1.6)

In terms of the hypergeometric function (1.5), it’s easy to obtain Humbert functions (1.1)–(1.4)
(see [13]). Therefore, we can write

Ψ1 (a, b; c, d; x, y) =

∞∑
s=0

(a)s

(d)s

ys

s! 2F1 (a + s, b; c; x) , (1.7)

Φ1 (a, b; c; x, y) =

∞∑
s=0

(a)s

(c)s

ys

s! 2F1 (a + s, b; c + s; x) , (1.8)

Ξ1 (a, b, c; d; x, y) =

∞∑
s=0

(b)s

(d)s

ys

s! 2F1 (a, c; d + s; x) , (1.9)

and

Ξ2 (a, b; c; x, y) =

∞∑
s=0

1
(c)s

ys

s! 2F1 (a, b; c + s; x) , (1.10)
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with |x| < 1, |y| < ∞ and c, d , 0,−1,−2, . . .
The four Appell series [2], which are double hypergeometric series, are defined by

F1
(
a, b, b′; c; x, y

)
=

∞∑
m=0

∞∑
n=0

(a)m+n(b)m(b′)n

(c)m+n

xm

m!
yn

n!
, (1.11)

with max{|x|, |y|} < 1;

F2
(
a, b, b′; c, c′; x, y

)
=

∞∑
m=0

∞∑
n=0

(a)m+n(b)m(b′)n

(c)m(c′)n

xm

m!
yn

n!
, (1.12)

with |x| + |y| < 1;

F3
(
a, a′, b, b′; c; x, y

)
=

∞∑
m=0

∞∑
n=0

(a)m(a′)n(b)m(b′)n

(c)m+n

xm

m!
yn

n!
, (1.13)

with max{|x|, |y|} < 1;
and

F4
(
a, b; c, c′; x, y

)
=

∞∑
m=0

∞∑
n=0

(a)m+n(b)m+n

(c)m(c′)n

xm

m!
yn

n!
, (1.14)

with
√
|x| +

√
|y| < 1.

These expressions, with c and c′ are neither zero nor a negative integer, can be expressed in terms
of 2F1 as follows (see [13])

F1
(
a, b, b′; c; x, y

)
=

∞∑
m=0

(a)m(b)m

(c)m

xm

m! 2F1
(
a + m, b′; c + m; y

)
, (1.15)

F2
(
a, b, b′; c, c′; x, y

)
=

∞∑
m=0

(a)m(b)m

(c)m

xm

m! 2F1
(
a + m, b′; c′; y

)
, (1.16)

F3
(
a, a′, b, b′; c; x, y

)
=

∞∑
m=0

(a)m(b)m

(c)m

xm

m! 2F1
(
a′, b′; c + m; y

)
, (1.17)

and

F4
(
a, b; c; c′; x, y

)
=

∞∑
m=0

(a)m(b)m

(c)m

xm

m! 2F1
(
a + m, b + m; c′; y

)
. (1.18)

2. Main results

2.1. Evaluation of the integral Im

In this section, we now evaluate the following integral transform containing Humbert functions
F (= Ψ1,Φ1,Ξ1 or Ξ2):

Im(F ) =

∫ ∞

0
t2m+de−γt2 Jd−1(βt)F (y, xt2)dt, (2.1)
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<(2m + 2d) > 0 and<(γ) > 0.

In (2.1), we replaced x and y with y and xt2 respectively in (1.1), (1.2), (1.3) and (1.4).

Theorem 2.1. The following transformations hold true:

Im(Ψ1) = A

∞∑
q=0

(a)q
(m + d)q

(c′)q

( x
γ
)q

q! 2F1 (a + q, b; d; y) 1F1

(
m + d + q; d;

−β2

4γ

)
, (2.2)

Im(Φ1) = A

∞∑
q=0

(a)q(m + d)q

(d)q

( x
γ
)q

q! 2F1 (a + q, b; d + q; y) 1F1

(
m + d + q; d;

−β2

4γ

)
, (2.3)

Im(Ξ1) = A

∞∑
q=0

(b)q(m + d)q

(c′)q

( x
γ
)q

q! 2F1
(
a, d; c′ + q; y

)
1F1

(
m + d + q; d;

−β2

4γ

)
, (2.4)

and

Im(Ξ2) = A

∞∑
q=0

(m + d)q

(d)q

( x
γ
)q

q! 2F1 (a, b; d + q; y) 1F1

(
m + d + q; d;

−β2

4γ

)
, (2.5)

where,A = 1
βγm

(
β

2γ

)d
(d)m.

Proof. The proof of integral transform in (2.2) is as follows:
By substituting (1.7) in (2.1), we obtain

Im(Ψ1) = A

∞∑
q=0

(a)q

(c′)q

xq

q! 2F1 (a + q, b; d; y) Iq, (2.6)

where

Iq =

∫ ∞

0
tµe−γt2 Jd−1(βt)dt, (2.7)

with
µ = 2m + 2q + d. (2.8)

By means of the identity [6]∫ ∞

0
tµe−γt2 Jν(βt)dt =

1
2

(
β

2

)ν Γ( ν+µ+1
2 )

ν!γ
ν+µ+1

2
1F1

(
ν + µ + 1

2
; ν + 1;

−β2

4γ

)
(2.9)

(<(µ + ν) > −1 , <(γ) > 0),

and using (1.6), (2.7) can be written as

Iq =
1
2

(
β

2

)d−1 1
(d − 1)!

Γ(m + q + d)
γm+q+d 1F1

(
m + q + d; d;

−β2

4γ

)
. (2.10)

Substituting (2.10) into (2.6), the assertion (2.1) of Theorem 2.1 directly follows.
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Note that if m = 0 and c = d, one finds the undermentioned integral:

Im=0(Ψ1) =

∫ ∞

0
tce−γt2 Jc−1(βt)Ψ1

(
a, b; c, c′; y, xt2

)
dt

=
1
β

(
β

2γ

)c ∞∑
q=0

(a)q(c)q

(c′)q

( x
γ
)q

q! 2F1 (a + q, b; c; y) 1F1

(
c + q; c;

−β2

4γ

)
.

(2.11)

�

Proof. The proof of integral transform (2.3) is as follows:

Considering F (y, xt2) = Φ1

(
a, b; d; y, xt2

)
given by (1.8), (2.1) becomes in this case

Im(Φ1) =

∞∑
q=0

(a)q

(d)q

xq

q! 2F1 (a + q, b; d + q; y) Iq, (2.12)

where Iq is given by (2.7).

By using the identity (2.9), (2.12) can be written as

Im(Φ1) =
1
β

(
β

2γ

)d
Γ(m + q + d)

Γ(d)γm+q 1F1

(
m + q + d; d;

−β2

4γ

)
. (2.13)

Substituting this last equation in the expression of Im(Φ1), yields the assertion (2.3) of Theorem 2.1. �

Note here that for m = 0 and c = d, (2.12) becomes

Im=0(Φ1) =

∫ ∞

0
tce−γt2 Jc−1(βt) Φ1

(
a, b; c; y, xt2

)
dt

=
1
β

(
β

2γ

)c ∞∑
q=0

(a)q

( x
γ
)q

q! 2F1 (a + q, b; c + q; y) 1F1

(
c + q; c;

−β2

4γ

)
.

(2.14)

Proof. The proof of the integral transform (2.4) is as follows:
Following the same procedure as above, we use the definition of Ξ1 given by (1.9) and replace

F (y, xt2) by F (y, xt2) = Ξ1

(
a, b, c; c′; y, xt2

)
, then the considered integral Im(Ξ1) can be written as

Im(Ξ1) =

∞∑
q=0

(b)q

(c′)q

xq

q! 2F1
(
a, d; c′ + q; y

)
Iq, (2.15)

where Iq is given by (2.7).
Now, by using (2.9) and substituting (2.7) in (2.15), (2.4) is proved. �

By putting m = 0 and c = d, (2.15) can be written as

Im=0(Ξ1) =

∫ ∞

0
tce−γt2 Jc−1(βt) Ξ1

(
a, b, c; c′; y, xt2

)
dt

=
1
β

(
β

2γ

)c ∞∑
q=0

(b)q(c)q

(c′)q

( x
γ
)q

q! 2F1
(
a, c; c′ + q; y

)
1F1

(
c + q; c;

−β2

4γ

)
.

(2.16)
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Proof. The proof of the integral transform (2.5) is as follows:
Taking F (y, xt2) = Ξ2

(
a, b; d; y, xt2

)
given by (1.10), (2.1) becomes

Im(Ξ2) =

∞∑
q=0

1
(d)q

xq

q! 2F1 (a, b; d + q; y) Iq. (2.17)

Finally, by introducing the expression of Iq given by (2.10), one finds (2.5). This completes the proof
of Theorem 2.1. �

For m = 0 and c = d, (2.17) becomes

Im=0(Ξ2) =
1
β

(
β

2γ

)c ∞∑
q=0

( x
γ
)q

q! 2F1 (a, b; c + q; y) 1F1

(
c + q; c;

−β2

4γ

)
. (2.18)

2.2. Evaluation of some series

In this section, we evaluate the series obtained from the integral transforms given by Theorem 2.1
in the case of m = 0 and c = d. These series are given by (see (2.11), (2.14), (2.16) and (2.18)).

S1 =

∞∑
q=0

(a)q(c)q

(c′)q

xq

q! 2F1 (a + q, b; c; y) 1F1 (c + q; c; z) , (2.19)

S2 =

∞∑
q=0

(a)q
xq

q! 2F1 (a + q, b; c + q; y) 1F1 (c + q; c; z) , (2.20)

S3 =

∞∑
q=0

(b)q(c)q

(c′)q

xq

q! 2F1
(
a, c; c′ + q; y

)
1F1 (c + q; c; z) , (2.21)

and

S4 =

∞∑
q=0

xq

q! 2F1 (a, b; c + q; y) 1F1 (c + q; c; z) . (2.22)

Theorem 2.2. The following result holds true:

S1 =
ez

(1 − x)a

∞∑
n=0

(a)n(b)n

(c)n

( y
1−x )n

n!
Φ1

(
a + n, c′ − c; c′;

x
x − 1

,
xz

1 − x

)
(2.23)

= G

∞∑
n=0

(a)n

(c′)n

Yn

n!
F2

(
a + n, c′ − c, b; c′ + n; X,Z

)
(2.24)

=

∞∑
n=0

zn

n!
F2

(
a, c + n, b; c′, c; x, y

)
. (2.25)

We note that in (2.24), G = e−
Y
X

(1−X)−a , X = x
x−1 , Y = xz

1−x and Z =
y

1−x .
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Proof of Eq. (2.23): We start from (2.19), which, by using the identities (see [10, 12])

(−n)k =

 (−1)k(n)!
(n−k)! , 0 ≤ k ≤ n

0, k > n
, (2.26)

(λ)m+n = (λ)m(λ + m)n, (2.27)

and

∞∑
n=0

n∑
k=0

B(k, n) =

∞∑
n=0

∞∑
k=0

B(k, n + k), (2.28)

can be rearranged as

S1 = ez
∞∑

n=0

(a)n(b)n

(c)n

yn

n!
Gn, (2.29)

where

Gn =

∞∑
s=0

∞∑
q=0

(a + n)q+s(c)q+s

(c)s (c′)s+q

(xz)s

s!
xq

q!
. (2.30)

With the help of (1.5) and (2.27), this last expression can be written as

Gn =

∞∑
s=0

(a + n)s

(c′)s

(xz)s

s! 2F1
(
a + n + s, c + s; c′ + s; x

)
. (2.31)

By using the Euler’s transformation [11]

2F1 (a, b; c; z) = (1 − z)−a
2F1

(
a, c − b; c;

z
z − 1

)
, (2.32)

(2.29) becomes

S1 =
ez

(1 − x)a

∞∑
n=0

(a)n(b)n

(c)n

( y
1−x )n

n!

∞∑
s=0

∞∑
p=0

(a + n)s+p(c′ − c)p

(c′)s+p

( x
x−1 )p

p!
( xz

1−x )s

s!
, (2.33)

where, the double summation in this last expression is Φ1

(
a + n, c′ − c; c′; x

x−1 ,
xz

1−x

)
given by (1.2).

Therefore, the result in (2.23) is proved.
Proof of Eq. (2.24): To prove (2.24), we start from (2.23) by puting

X =
x

x − 1
,Y =

xz
1 − x

and Z =
y

1 − x
, (2.34)

so that, the summation S1 can be written as

S1 =
e
−Y
X

(1 − X)−a

∞∑
m=0

∞∑
p=0

(c′ − c)p

(c′)m+p

∞∑
n=0

(a)n+m+p(b)n

(c)n

Xp

p!
Ym

m!
Zn

n!
, (2.35)
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which, by using the identity

(a)m+p+n = (a)n(a + n)m+p = (a)m+p(a + m + p)n, (2.36)

becomes

S1 =
e
−Y
X

(1 − X)−a

∞∑
m=0

∞∑
p=0

(a)m+p(c′ − c)p

(c′)m+p

Xp

p!
Ym

m! 2F1 (a + m + p, b; c; Z) . (2.37)

After some simplifications and by using (1.15), and the elementary identities

(a + p)m =
(a + m)p(a)m

(a)p
, (2.38)

and

(c′ + p)m =
(c′ + m)p(c′)m

(c′)p
, (2.39)

(2.37) can be expressed in terms of the Appell function F2 as given in (2.24). This completes the proof.
Proof of Eq. (2.25): We start from the expression of S1 and with the help of the identities

(c)q(c + q)n = (c)q+n, and (c + q)n = (c + n)q
(c)n

(c)q
, (2.40)

S1 can be written in terms of 2F1 as follows

S1 =

∞∑
n=0

zn

n!

∞∑
q=0

(a)q(c + n)q

(c′)q

xq

q! 2F1 (a + q, b; c; y) . (2.41)

If one uses (1.15), S1 can be written in terms of the second Appell function F2 (a, c + n, b; c′, c; x, y).
This completes the proof of (2.25) and consequently Theorem 2.2.

Theorem 2.3. The following result holds true:

S2 =
ez

(1 − x)a

∞∑
n=0

(a)n(b)n

(c)n

( y
1−x )n

n!
Φ1

(
a + n, n; c + n;

x
x − 1

,
xz

1 − x

)
, (2.42)

=
ez

(1 − x)a

∞∑
n=0

(a)n(b)n

(c)n

( y
1−x )n

n!
F2

(
a + n,−, n; c + n;

x
x − 1

,
xz

1 − x

)
, (2.43)

=

∞∑
n=0

zn

n!
F1

(
a, c + n, b; c′, c; x, y

)
. (2.44)

Proof of Eq. (2.42): To prove the result (2.42), we use the identities given by (2.26), (2.27) and (2.28)
and the result [10]

1F1 (c + q; c; z) = ez
1F1 (−q; c;−z) = ez

q∑
s=0

(−q)s

(c)s

(−z)s

s!
, (2.45)
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to rewrite the expression of S2 given by (2.20). Consequently, it becomes

S2 = ez
∞∑

q=0

∞∑
s=0

∞∑
n=0

(a)n(a + n)q+s(b)n

(c)s (c + q + s)n

xq

q!
(xz)s

s!
yn

n!
, (2.46)

which can be written as

S2 = ez
∞∑

n=0

(a)n(b)n

(c)n

yn

n!

∞∑
s=0

(a + n)s

(c + n)s

(xz)s

s! 2F1 (a + n + s, c + s; c + n + s; x) . (2.47)

The summation in (2.47) can be rearranged, by using the Euler’s transformation given by (2.32), as

S2 =
ez

(1 − x)a

∞∑
n=0

(a)n(b)n

(c)n

( y
1−x )n

n!

×

∞∑
s=0

∞∑
p=0

(a + n)s(a + n + s)p(n)p

(c + n)s (c + n + s)p

( xz
1−x )s

s!
( x

x−1 )p

p!
.

(2.48)

Now, by employing the following identities

(a + n)q+s = (a + n)s(a + n + s)q,

(c + n)q+s = (c + n)s(c + n + s)q,
(2.49)

The expression of S2 can be written as

S2 =
ez

(1 − x)a

∞∑
n=0

(a)n(b)n

(c)n

( y
1−x )n

n!

∞∑
s=0

∞∑
p=0

(a + n)s+p(n)p

(c + n)s+p

( xz
1−x )s

s!
( x

x−1 )p

p!
. (2.50)

Since, the double summation in (2.50) is the Humbert function given by (1.2), that is,
Φ1

(
a + n, n; c + n; x

x−1 ,
xz

1−x

)
. Therefore, the required proof of (2.42) straightforwardly follows.

Proof of Eq. (2.43): The summation in (2.50) can be rewritten as

S2 =
ez

(1 − x)a

∞∑
n=0

(a)n(b)n

(c)n

( y
1−x )n

n!

×

∞∑
s=0

(a + n)s

(c + n)s

( xz
1−x )s

s!

∞∑
p=0

(a + n + s)p(n)p

(c + n + s)p

( x
x−1 )p

p!
,

(2.51)

which after introducing the hypergeometric function, becomes

S2 =
ez

(1 − x)a

∞∑
n=0

(a)n(b)n

(c)n

( y
1−x )n

n!

×

∞∑
s=0

(a + n)s

(c + n)s

( xz
1−x )s

s! 2F1

(
a + n + s, n; c + n + s;

x
x − 1

)
.

(2.52)

By using the expression of the second Appell function given by (1.15), (2.52) can be rearranged to
yield (2.43). This completes the proof.
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Proof of Eq.(2.44): By using the elementary identities

(λ + q)n =
(λ)n(λ + n)q

(λ)q
, (2.53)

and
(λ + q)s =

(λ)q+s

(λ)q
, (2.54)

(2.20) can be written as

S2 =

∞∑
n=0

zn

n!

∞∑
s=0

∞∑
q=0

(a)q+s(c + n)q(b)s

(c)q+s

xq

q!
ys

s!
. (2.55)

With the help of the definition of the first Appell function given by (2.55), we can easily obtain (2.44).
This completes the proof of Theorem 2.3.

Theorem 2.4. The following result holds true:

S3 =
ez

(1 − x)b

∞∑
n=0

(a)n(c)n

(c′)n

yn

n!
Φ1

(
b, c′ + n − c; c′ + n;

x
x − 1

,
xz

1 − x

)
, (2.56)

=
ez

(1 − x)b

∞∑
n=0

(a)n(c)n

(c′)n

yn

n!
F1

(
b,−, c′ + n − c; c′ + n;

x
x − 1

,
xz

1 − x

)
, (2.57)

=

∞∑
n=0

zn

n!
F3

(
b, a, c + n; c, c′; x, y

)
. (2.58)

Proof of Eq. (2.56): By the use of (2.28), (2.53) and (2.54), S3 can be expressed as

S3 = ez
∞∑

n=0

(a)n(c)n

(c′)n

yn

n!

∞∑
s=0

(b)s

(c′ + n)s

(xz)s

s!

∞∑
q=0

(b + s)q(c + s)q

(c′ + n + s)q

xq

q!
. (2.59)

By replacing the last summation in (2.59) by the hypergeometric function 2F1 and using the Euler’s
transformation given by (2.32), we find

S3 =
ez

(1 − x)b

∞∑
n=0

(a)n(c)n

(c′)n

yn

n!

∞∑
p=0

∞∑
s=0

(b)s+p(c′ + n − c)p

(c′ + n)s+p

( x
x−1 )p

p!
( xz

1−x )s

s!
. (2.60)

The last summation in this equation is none other than the Humbert function
Φ1

(
b, c′ + n − c; c′ + n; x

x−1 ,
xz

1−x

)
given by (1.2). From here, the proof of (2.56) straightforwardly

follows.

Proof of Eq. (2.57): We start from (2.59) which can be written, with the help of (2.32), as

S3 =
ez

(1 − x)b

∞∑
n=0

(a)n(c)n

(c′)n

yn

n!

∞∑
s=0

(b)s

(c′ + n)s

( xz
1−x )s

s!

×2F1

(
b + s, c′ + n − c; c′ + n + s;

x
x − 1

)
.

(2.61)
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Now, by recalling (1.14), S3 can be rewritten in terms of the first Appell function F1 (a, b, b′; c; x, y) as
expressed in (2.57). This completes the proof.

Proof of Eq. (2.58): We write (2.21) of S3 as

S3 =

∞∑
q=0

∞∑
s=0

(b)q(c)q(c + q)s

(c′)q(c)s

xq

q!
zs

s! 2F1
(
a, c; c′ + q; y

)
, (2.62)

which, with the help of the identities given by (2.27), becomes

S3 =

∞∑
s=0

zs

s!

∞∑
q=0

(b)q(c + s)q

(c′)q

xq

q! 2F1
(
a, c; c′ + q; y

)
. (2.63)

Recalling the expression of the third Appell function F3 given by (1.16) that yields (2.58) in terms of
series of this function. This completes the proof of (2.58) and the proof of Theorem 2.4.

Theorem 2.5. The following result holds true:

S4 =
ez

(1 − x)a

∞∑
n=0

(a)n(b)n

(c)n

yn

n!
Φ1

(
a, n, c + n;

x
x − 1

,
xz

1 − x

)
, (2.64)

=
ez

(1 − x)a

∞∑
n=0

(a)n(b)n

(c)n

yn

n!
F1

(
a,−, n, c + n;

x
x − 1

,
xz

1 − x

)
, (2.65)

=

∞∑
n=0

zn

n!
F3 (a, a, c + n, b; c; x, y) . (2.66)

Proof of Eq. (2.64): The use of (2.26), (2.27), (2.28) and (2.45) yields the following expression of S4

S4 = ez
∞∑

n=0

(a)n(b)n

(c)n

yn

n!

∞∑
s=0

(a)s

(c)s

(xz)s

s!

∞∑
q=0

(a + s)q(c)q+s

(c + n)q+s

xq

q!
, (2.67)

or in the terms of the hypergeometric function 2F1 as

S4 = ez
∞∑

n=0

(a)n(b)n

(c)n

yn

n!

∞∑
s=0

(a)s

(c + n)s

(xz)s

s! 2F1 (a + s, c + s; c + n + s; x) . (2.68)

With the help of the Euler’s transformation (see (2.32)), (2.68) can be rewritten as

S4 =
ez

(1 − x)a

∞∑
n=0

(a)n(b)n

(c)n

yn

n!

∞∑
p=0

∞∑
s=0

(a)s+p(n)p

(c + n)s+p

( x
x−1 )p

p!
( xz

1−x )s

s!
. (2.69)

This last summation in the above equation is the Humbert function Φ1

(
a, n; c + n; x

x−1 ; xz
1−x

)
. If one

introduces this function, the result (2.64) is proved.
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Proof of Eq. (2.65): If we apply the Euler’s transformation on the function 2F1 which appears in
(2.69), we find

S4 =
ez

(1 − x)a

∞∑
n=0

(a)n(b)n

(c)n

yn

n!

∞∑
s=0

(a)s

(c + n)s

( xz
1−x )s

s! 2F1

(
a + s, n; c + n + s;

x
x − 1

)
. (2.70)

The last summation in (2.70) is the first Appell function F1

(
a,−, n, c + n; x

x−1 ,
xz

1−x

)
(see (1.14)), which

proves the desired result (2.65).

Proof of Eq. (2.66):

The series in (2.22) can be written as

S4 =

∞∑
q=0

(a)q
xq

q!

∞∑
s=0

(c + q)s

(c)q

zs

s! 2F1 (a, b; c + q; y) . (2.71)

By using the identity given by (2.48), (2.71) can be written as

S4 =

∞∑
s=0

zs

s!

∞∑
q=0

(a)q(c + s)q

(c)q

xq

q! 2F1 (a; b; c + q; y) . (2.72)

The last summation in (2.72) is the third Appell function F3 (a, a, c + s, b; c; x, y). This completes the
proof of (2.66) and consequently of Theorem 2.5.

3. Applications

In this section, we will apply our main results to express the output field resulting from the
propagation of generalized Humbert Gaussian beams through a paraxial ABCD optical system. These
beams are obtained by modulating generalized Humbert beams [3] with a Gaussian envelope.

The output field is given by Huygens-Fresnel integral [5]

E(ρ, φ,Z) =
k

2πiB
eik(Z+ D

2Bρ
2)

∫ ∞

0

∫ 2π

0
E(ρ′, φ′)e

ik
2B (Aρ′2−2ρρ′cos(φ−φ′))ρ′dρ′dφ′, (3.1)

where k = 2π/λ is the wave number, λ is the optical wavelength and E(ρ′, φ′) is the input field of the
form

E(ρ′, φ′) = C1e
ikρ′
2z0 ei(m+l)φ′e

−ηρ′

2w0
2 ρ′m+l Ψ1

(
a, b; c, c′; x, y

)
, (3.2)

where x = 2iα′
α+iα′ , y = −

k2ρ′2
4z2

0(α+iα′) , z0 is a constant, a = l/2 + m + 1, b = β, c = m + l + 1 and c′ = m + 1.

In (3.2), C1 is a constant, w0 is the waist width of the Gaussian part, m is the beam order and l is the
topological charge.

By using the development of Humbert confluent Hypergeometric function in terms of
Hypergeometric functions 2F1 (a, b; c; x) [14]

ψ1
(
a, b; c; c′; x, y

)
=

∞∑
n=0

(a)n

(c′)n

yn

n! 2F1 (a + n, b; c; x) , (3.3)
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and by substituting (3.2) in (3.1) with the help of the identity given by (2.9) and the well-known
relationship [6]

∫ 2π

0
eilθ1e−

2r1r2cos(θ1−θ2)
ρ2 .dθ1 = 2π(−i)leilθ2 Jl(

2r1r2

ρ2 ), (3.4)

The output field can be expressed in terms of Hypergeometric functions 1F1 (a; b; x) and
2F1 (a, b; c; x) as

E(ρ, φ,Z) = CZei(m+l)φ
∞∑

q=0

(a)q(c)q

(c′)q

xq

q! 2F1 (a + q, b; c; y) 1F1 (c + q; c; z) , (3.5)

where CZ is a function of the coordinate Z and z =
k2ρ2

4γB2 .

By using (2.19) of Theorem 2.2, (3.4) can be written in terms of the Humbert function
Φ1 (a, b; c; x, y) as

E(ρ, φ,Z) =CZei(m+l)φ ez

(1 − x)a (3.6)

×

∞∑
n=0

(a)n(b)n

(c)n

( y
1−x )n

n!
Φ1

(
a + n, c′ − c; c′;

x
x − 1

,
xz

1 − x

)
, (3.7)

or in terms of Appell function F2 (a, b, b′; c, c′; x, y) as

E(ρ, φ,Z) = CZei(m+l)φ
∞∑

n=0

zn

n!
F2

(
a, c + n, b; c′, c; x, y

)
. (3.8)

In the following, we investigate some numerical simulations of particular cases of GHGBs called
as GHGBssLGBs, GHGBsQBGBs and GHGBsWGBs which are derived from standard Laguerre-Gaussian
beams, quadratic Bessel-Gaussian beams and Whittaker-Gaussian beams respectively after passing
through a paraxial ABCD optical system with a spiral phase plate.

Figure1 illustrates the normalized intensity distribution as a function of the transverse coordinate
for particular cases of GHGBs propagating in free space system with two values of the lowest orders
beam (m=0 and m=1), where A = 1, B = z, C = 0 and D = 1. From the plots of this figure, it’s seen
that the GHGBs family is characterized by a dark spot at the center with zero intensity. It’s observed
that when the beam orders increase, the side lobes of GHGBssLGBs and GHGBsWGBs disappear.
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Figure 1. The Normalized intensity distribution versus ρ of GHGBssLGBs, GHGBsWGBs and
GHGBsQBGBs as particular cases of GHGBs propagating in free space for two values of the
beam orders: m = 0 and m = 1. The other parameters are given as: l = 1, the waist beam
ω0 = 0.5mm, the wavelength λ = 1330nm.

4. Conclusion

In this note, we have obtained a new general formulae for the integral transforms containing the
product of Humbert and Bessel functions. For each confluent Appell function, we have evaluated
the corresponding integral transfoms which is an infinite series of generalized hypergeometric and
Appell functions. An application of our main results is investigated to evaluate the output generalized
Humbert-Gaussian beam propagating through a paraxial ABCD optical system.
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