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1. Introduction

In recent years, there has been an increasing interest in the fractional calculus. One of the
significant motivations for such deep interest in the subject is its capability to model a number of
natural phenomena, see, for example, the papers [9, 12]. On the other hand Chebyshev inequality has
broad practicability in statistical problems, numerical quadrature, probability and transform theory,
and the bounding of special functions. Its basic appeal develops out of a desire to approximate, for
instance, information in the form of a particular measure of the product of functions in terms of the
products of the individual function measures. It is, also, of great interest in differential and difference
equations [7,13].

The essential destination of the present study is to prove a Chebyshev type inequality for the
generalized fractional integral operators. After some preliminaries and summarization of some
previous known results in Section 2, Section 3 deals with general Chebyshev type inequalities for
generalized fractional integral operators. Finally, some concluding remarks are given in Section 4.
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2. Preliminaries

In this section we recall some basic definitions and previous results which will be used in what
follows.
In 1882, Chebyshev [3] proved the following inequality:

Theorem 2.1. Let f and g be two integrable functions in [0, 1]. If both functions are simultaneously
increasing or decreasing for the same values of x in [0, 1], then

1

1 1
f f(x)g(x)dx > f f(x)dx f g(x)dx. 2.1
0 0

0

If one function is increasing and the other is decreasing for the same values of x in [0, 1], then (2.1)
reverses. In the last years, many papers were devoted to the generalization of the inequalities (2.1), we
can mention the works [1,2,4-6,8,11,15-19].

2.1. Generalized fractional integral operators

In [14], Raina defined the following results connected with the general class of fractional integral
operators.

. 000 o (k)
,¢m=ﬂ9m<>—ZrW7@ﬁQM>OM<m (2.2)

where the coefficients o (k) (k € Ny = NU {0}) is a bounded sequence of positive real numbers and R is
the set of real numbers. With the help of (2.2), in [14], Raina defined the following fractional integral
operators, as follows:

7 () = fu O L0 (- 1Y) )t x> a. (2.3)

The importance of these operators stems indeed from their generality. Many useful fractional integral
operators can be obtained by specializing the coefficient o~ (k). Here, we just point out that the classical
Riemann-Liouville fractional integrals I, of order a defined by (see, [10])

(I5f) (x) = 1 fx x -0 f(Odt (x> a;a>0), (2.4)
I'(a) Ja
follow easily by setting
A=a,c0)=1, w=0, (2.5

in (2.3).
In [19], Usta et. al gave the following Chebychev type inequalities for the generalized fractional
integral operators:

Theorem 2.2. Let f and g be two synchronous functions on [0, o), that is they are having the same
sense of variation on [0, ). Then for all t,p, A > 0 and w € R, we have

01000 (DDOT ] 3040 ([ O 2 T 1010 DT 1.04:08(1D, (2.6)

where the coefficients o (k) (k € Ny = NU{0}) is a bounded sequence of positive real numbers.
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Theorem 2.3. Let f and g be two synchronous functions on [0, o), that is they are having the same
sense of variation on [0, o). Then for all t > 0 and py, p>, A1, A, > 0 and wy,w, € R, we have

e [0V T 0, (OO + T 02" T2 0, () O 2.7)

> T s D OT 000, @O+ T o (@) DT g, N O
where the coefficients o (k) , 0, (k) (k € Ny = NU{0}) are bounded sequences of positive real numbers.
For more details, one may consult [19].

3. Main findings & Cumulative results

In this section, we will present some fractional integral inequalities for functions defined on the
positive real line with the help of fractional integral operators given above. The inequalities to be given
in this section are a generalization of the former inequalities.

Theorem 3.1. Let f and g be two synchronous functions on [0, o), that is they are having the same
sense of variation on [0,00) and h > 0. Then for all t > 0 and py,p2, 1,2 > 0 and wi,w, € R, we
have

h?p%m [“’2tp2]j P1ALO+w) (fgh) (1) + t/h?o-l/l o 1T p2.42.0+w, (f&h) (1)
2 j o101 (h)T:* 2o, 04102 () () + ff 11 0401 (he)(OT” .00 (H®
+j o141 041 H T a0 (hg) (1) + j o1 041 (IXGN S 92041002 (hf) (D)

~T 0 T DT g0 DO =T (o D DT T g1, (£ ()
where the coefficients o (k) , 0, (k) (k € Ny = NU {0}) are bounded sequences of positive real numbers.

Proof. Let f, g and h be three functions satisfying the conditions of Theorem 3.1. Then, we have

(f() = f(©) (g(n) = (&) (h(p) + h(£)) = 0.

Therefore

Jgmh(m) + f(E)EOME) = h(pfmg&) + h(m) f(§)gln) + h(&) f(gé) (3.1)

+ W& — fFNgtnh(&) — f(E)gh(n).

Now, by multiplying both sides of (3.1) by (r = py"' ™' (¢t = &Y* 7 F7!) [w) (¢ =)' 1 F72 [wa (2 = €],
we obtain:

=" = F Lo = T2, (w2 (6= €] Fgmhn (3.2)
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- = FD [wi (=P 1T, [w2 (1= 6] F@ZEE)

\%

=) = FT [wr =0 | Fr lwr (= £ h() f()g @)

+ (=T = & FD [ (- ) FD, [wa (6= £ hp f(E)g(m)
+(t ==& T [ (=) T FE [w (0= YT E) f()g @)
+( =" =T FET w1 =0 1T, [wa (= £ hE f(E)g()
— (=@ = & ET [ (=) TF [wr (1= EF2] fFg(mh(é)

—=" =" Lo =) T Lwr (0= EY2] f(E)gEh).

Finally, if we double integrate (3.2) with respect to  and & over (0,¢) X (0,1), we get the desired
result. =

Corollary 3.2. Choosing Ay, = A, = A, 01 =0, =0, p1 =p2 =pandwy, = w, = w in Theorem 3.1, we
obtain the following inequality

,1+1 [w?’] ;)T,z 0+:w (fgh) (1) + p/10+ w (W) () Z/LO‘H(U (fe) (@

> Jpaorw M) DT 51010 @) (O + T 040 (M) (DT 4040 () (D)
where the coefficients o (k) (k € Ny = NU{0}) is a bounded sequence of positive real numbers.

Remark 3.3. Ifwe choose h = 1 in Theorem 3.1, Theorem 3.1 reduce to Theorem 2.3 which was proved
by Usta et al. in [19].

Theorem 3.4. Let f, g and h be three monotonic functions defined on [0, 00), satisfying the following

(f(p) — f(©) (g() — g(&)) (h(n) — h(£)) = 0
foralln, & € (0,t], then for all t > 0 and py, ps, A1, A > 0 and wi, w, € R, we have

ﬂszaz-z/lerl [wZIpz]j P1.41,0+;01 (fgh) (t) - t/ll?i,ol-’l/th] [w2tp ]j 2,2,0+;w) (fgh) (t)
> T e YOI v OO+ T g ) DTy o (D
T D OT T o () (D =T v O DT v B D)

+ T 0r SO DT 0100y WO =T 10y WD DOT o, (fO) @)

where the coefficients o (k) , 0, (k) (k € Ny = NU{0}) are bounded sequences of positive real numbers.
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Proof. The proof is similar to previous theorem. O

Theorem 3.5. Let f, g be two functions on [0, 00). Then for all t > 0 and py,p2, 41,42 > 0 and
wi, Wa € R, we have

ﬂz?o- 2,A2+1 [wztp ]j 01,41,0+;01 (fz) (t) + ldll?pol-,l/ll+1 [wztp ]j 02,42,0+;02 ( 2) (t)

> 297 e D OTZ 010 (8 0,
where the coefficients o (k) , 07, (k) (k € Ny = NU{0}) are bounded sequences of positive real numbers.

Proof. As
((fp) — g©)* =0

we have
)+ g2 = 2f(g(®. (3.3)
Now, by multiplying both sides of (3.3) by
=" = O F [wr (= F2, [wr (8= €Y7, we get
=" = F [wi = F 2, (w2 (6= €2 F2 () (3.4)
+ =" = F [wi = F2 [wa (1= €Y1 7€)
> 20— - & T [wn (- P T (w2 (- EY2] fg(©).
Finally by double integration (3.4) over (0, ¢) x (0, 7), we get the desired result. O

Corollary 3.6. Choosing Ay, = A, = A, 01 =0, =0, p1 =p2 =pandwy; = w, = w in Theorem 3.5, we
obtain the following inequality

F oot [0P1 T 040 (fz) () + 1'F, st L1 T3 1040 (82) 0]

\%

p/lO+ w () (@ ;,T,,z,o+;w (g) (1.

In particular
Aqgo o 2
?;),/Hl [wtp] P,4,0+;w (f ) (t) 2 [ 0,4,0+;0 (f) (l)]

where the coefficients o (k) (k € Ny = NU{0}) is a bounded sequence of positive real numbers.

Theorem 3.7. Let f, g be two functions on [0,00). Then for all t > 0 and py,p,, 1,42 > 0 and
wi, wy € R, we have

T 10w (F) OT T 0 (8) O+ T 10, ()OI o4 (8) O

> 2T v PO OT T o1 (£2) ().

where the coefficents o (k) , 0, (k) (k € Ny = NU{0}) are bounded sequences of positive real numbers.
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Proof. As
(f(mg@ ~ fEgm)* =2 0
we have
L@ + O m) = 2f )gmg@f(€). (3.5)
Then by multiplying both sides of 3.5) by
(t—np)t (-t 7—:1' o Lo =)' 7—;‘?/12 [wy (f — €)?] and following the similar steps in Theorem
3.5, we get the desired result. O

Corollary 3.8. Choosing Ay, = A, = A, 01 =0, =0, p1 =pr =pandw, = wy, = w in Theorem 3.7, we
obtain the following inequality

2
ma0vw (12) OT 50000 (€) 0 2 | T3 000 (F8) 0]
where the coefficients o (k) (k € Ny = NU{0}) is a bounded sequence of positive real numbers.

Lemma 3.9. Let f : R — R, and define

ﬂm:j}mn
0

then forall t,p > 0,1 > 1 andw € R, we have

=10+ (7) () =T 1000 (@)

where the coefficients o (k) (k € Ny = NU{0}) is a bounded sequence of positive real numbers.

f(t 7')11 7w x =1 [ff(u)du]dr

ff(u)f(t—u)“ | (t = wf] drdu

Proof.

7 o (F) ©

f(t ) st [ (x = 0] f(w)du

= ;,-/l+1,0+;a) (f) (t)
O

Theorem 3.10. Let f and g be two functions on [0, 00), Then for all t,p > 0, 1;, 4, > 1 and wy,w; € R,
we have

/lzf(r 2,A2+1 [wztpz] j p1,41=1,0+;01 (fg) (t) + tll?:m/lwl [wztp ]jpz A2—1,0+;w2 (E) (t)
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> T e (F) OT 7o @O+ T o0 @ OT g (F) O,

where the coefficients o (k) , 07, (k) (k € Ny = NU{0}) are bounded sequences of positive real numbers.

Proof. From Lemma 3.9 and inequality (2.7), we have

RFC 01T e (F8) O+ FT 01T ov (F8) @

/IZTZZAZJJ [w2tp2]j .10+ w1 (fg) @) + t/h?:o-l/lwl [w,?”" ]j 02,42,0+;02 (fg) ®)

T v D OT 0 @ O+ T g1 O DT v, (N D

= Titar0min (F) OT a1 @ O+ T3 10y @ DT 010 () O
which completes the proof. O

Corollary 3.11. Choosing A = A, = A, 01 =0, =0, p1 = p2 = p and wy = w, = w in Theorem 3.10,
we obtain the following inequality

ot LOPTT 1 04 (fg) D =2T 1100w (f) DT 1-1.04:0 &) (D
where the coefficients o (k) (k € Ny = NU{0}) is a bounded sequence of positive real numbers.

Theorem 3.12. Let f and g be two differentiable function on [0, 00).Then for all t,p > 0, 1,4, > 0
and wi,w, € R, we have

FT 01T o (FR O+ AFT [ant 1 T2, o (F8) (0)
T v D OT T 040 © O = T 10 @) DT T 040 (DD

< ”f ” ”g ” /11+/12+27:0-1/1 +1 [a)ltp] 2/12+1 [(UZZ’O]
where

1/l = sup [/ (x)] < o,

x€[0,00)

and the coefficients oy (k) , 0 (k) (k € Ny = NU{0}) are bounded sequences of positive real numbers.

Proof. With basic calculation, we have

/127:;;2/124_1 [w2tp2] jpl A1,0+;0; (fg) (t) + t/ll?i,ol-’l/h_,_l [w2tp ]j 02,42,0+:0) (fg) (t)
— T e PYOT 0 @ O =T o @ OT T, o (DO

f f (= =T FT [wr (=P 0, [wa (6= £F7] (FOD) — £E) (8(7) — () did.
0 0
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Then taking modulus of the above equality, we find that

bfz A2+1 [wztpz] jpl ,A1,0+501 (fg) (t) + t/l ?a-l/lwl [wztpl]jpz A2,0+;w2 (fg) (t)

v D OT T 0 @O =T 10 @ OT L 1 (N O

. f f (=" (= & F (w1 (=P |7 w2 (= 871 (F0) — F(E)) (@) — g(©)) dndé

tot n n
— [ [ o a7 (o - 67| [ 7| [0 |ande
0 13

¢

t
< W [ [ = =0 T o =) [n - 0] - 7 e
0
< N g Nl BTy o fn P T2 L Tt
which completes the proof. O

Corollary 3.13. Choosing A = A, = A, 01 =0, =0, p1 = p2 = p and wy = wy, = w in Theorem 3.12,
we obtain the following inequality

Ao o o 1 / ’ 2442 o 2
[T (01T g1, () () = T a1 1) DT 1012 (&) O] < 5 1 s 1l 1272 [ 77, L1

where the coefficients o (k) (k € Ny = NU{0}) is a bounded sequence of positive real numbers.

Remark 3.14. If we choose 1, = a, 1, = B, 01(0) = 0,(0) = 1, and wi = w, = 0, in Theorem
3.1, Theorem 3.4, Theorem 3.5, Theorem 3.7, Theorem 3.10 and Theorem 3.12, then the inequalities
reduces to Theorem 2.1, Theorem 2.2, Theorem 2.3, Theorem 2.4, Theorem 2.6 and Theorem 2.7 proved
by Sulaiman in [18], respectively.

Theorem 3.15. Let f and g be two synchronous functions on [0, o), that is they are having the same
sense of variation on [0, ), and let v{, v, : [0,00) — [0,00). Then for all t,p > 0, 1,4, > 0 and
wi, wa € R, we have

jpz 12,0+ (VZ)( )j p1,A1,0+;01 (Vlfg) (t) + j 02,2,0+;w> (Vng) (t)j p1,A1,0+;w; (V]) (t) (36)

2 02, /12 0+: wz( 28)( )j P1.41,0+;0 (Vlf) (t) +j 02,42,0+:w) (VZf)( )j p1,41,0+;0 (vlg) (t)9

where the coefficients o (k) , 07, (k) (k € Ny = NU{0}) are bounded sequences of positive real numbers.

Proof. As f and g be two synchronous functions on [0, c0) , then for all , ¢ > 0 we have

(fm) = f(&) (g(m) — g(&)) = 0.
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Therefore

Fmgm) + f(£)g(&) = f(mg(&) + f(E)gn). (3.7)
Mutlipying both sides of (3.7) by (t — )" ' F7' [w; (t — )] vi(m), n € (0, ), we find that

p1,41

=" F Lwr =P i fagm) + @ =mh T F [wr (=0 i) f(©)géx3.8)

> (=" [ (= T fmg@) + ¢ = ET (o (=) Tvi) fE@)gm),

Integrating (3.7) with repect to n over (0, 1), we get

T s VLD O+ FEOZEOTT 10 DD 2 8OTT o D O+ FEOTT g 118) ().

(3.9)
Now, similarly, by multiplying both sides of (3.9) by (r — &)2™! F o, w2 (= £ [va(), € € (0,1) and
integrating with respect to & over (0, 7) , we get the desired result. O

Corollary 3.16. Choosing A} = A, = A, 01 =0, =0, p1 = p2 = p and wy = wy, = w in Theorem 3.15,
we obtain the following inequality

‘g,{,oﬂw (v2) (1), 5:,1,0+ W vife) @ + o ,1 0+:w (v2fg) (D) 5/1,0+;w (v) (0

2 I 1000 8 DT} 1040 ) @O + T 1040 V2) DT 5 10420 (V18) (D,
where the coefficients o (k) (k € Ny = NU{0}) is a bounded sequence of positive real numbers.

Remark 3.17. If we choose vi = v, = 1 in Theorem 3.15, the inequality (3.14) reduce to inequality
(2.7).

Theorem 3.18. Let f and g be two synchronous functions on [0, o), that is they are having the same
sense of variation on [0, ), and let p,q,r : [0,00) — [0, 00). Then for all t,p > 0, 4;,4, > 0 and
wi, wa € R, we have

T v D OT 0 @ DT v (PFO @)
2T o DT v @D DT v () ()
LT v DY OT T 010 @ OT T o1 (2 ()
LT e @ OT T o, DOTT o (P (D)
LT v @ OT T o FFO DT o1 (D) ()

> T ovw D OT 0 00, @8) DTS 040, P (D)

AIMS Mathematics Volume 5, Issue 2, 1147-1161.
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000 D OT L0 000, @ OT 5 010 (P8 (O

+jp1 ,A1,0+501 (6]) (t)jpz A2,0+;w) (rg) (t)j p1,41,0+;01 (pf) (t)
+j p1,41,0+;w1 (q) (t)j 02,12,0+;02 (rf) (t)j p1,41,0+;01 (pg) (l)
+T 0 0 P DT 1 040y @8) DT 0400, ) @)

LT v DY OT T 010 @H DT g1 (78 (),

where the coefficients o (k) , 07, (k) (k € Ny = NU{0}) are bounded sequences of positive real numbers.

Proof. 1If we choose v = p and v, = g in Theorem 3.15, we can write:

T 0v:00 @D OT ] 0100 PO O+ T2 1 000, @) DT 040, () () (3.10)

> T 000 @8 DT 1 04y PO+ T 20 0000 @ DT 040, (P8 (D).
Multiplying both sides of (3.10) by j 1y 0401 (r) (1), we get

T ome D OT o @ DT v (PFO @ (3.11)

LT v DV OT 2 010 @) DT g () )
= jpl A0+ w) (r )(t)jzflz 0+;w2 (qg)( )j P1,41,0+301 (pf) @

FT sy DV OT T 00 @H DT 01, (P8) 0.

If we choose v; = rand v, = g in Theorem 3.15 and multiplying by j (p) (1), then we find that

P1 AL, 0+; w1

T 0o P OT 1 0100 @ DT 01 s, ) (D) (3.12)
T 0 DY OT T 000 @FD DT 1, (1) (0)

> T ovo P OT 0 010, @ DT 010, ) (D)

FT sy DY DT 000 @H DT o1, (78) (0.

Similarly, if we choose vi = p and v, = r in Theorem 3.15 and multiplying by j 1 O, (g) (1), then
we find that
T 0s @D OT 20 010y D DOT T 010, (P D) (3.13)

AIMS Mathematics Volume 5, Issue 2, 1147-1161.
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FTT 1 v @D OT 2 000 CFD DT g1 (P @)
2 P1 /11 0+;w1 (q) (t)j 02,42,0+;02 (l"g) (t)j P1,41,0+;01 (pf) (Z)

+J!

o

" omio @D OT T 00 FHOITT L o0, (P8 ().

Then by adding the inequalities of (3.11)-(3.13), the desired inequality has been obtained. O

Corollary 3.19. Choosing A, = A, = A, 01 =0, =0, p; = pr = p and wy = wy, = w in Theorem 3.18,
we obtain the following inequality

7 0510 P OT 040 @ DT 1010 (PFE) ()
2 20430 (D DT 51040 (P) (DT 5 1040 (@S 8) (1)
2951000 (D) DT 510100 @ DT {010, 1 2) (1)
> T 1000 D O[T 1000 @) OIT 1010 PH O + T 1040 @) DT L1010 (P9 ()]
+ T 1010 @ O[T 1000 T8 DT L1040 PO O + T 10000 T OT 1010 (P8) )]

10+ (P) (@) [ o0+ 8 (DT 5 1040 T (O + T 1040 @) DT 1040 (18) (t)]
where the coefficients o (k) (k € Ny = NU{0}) is a bounded sequence of positive real numbers.

Remark 3.20. If we choose 1, = a, 1, = 8, 01(0) = 02(0) = 1, and wy = w, = 0, in Theorem 3.15
and Theorem 3.18 then the inequalities reduces to Lemma 3 and Theorem 4 proved by Dahmani in [5],
respectively.

Theorem 3.21. Let v and v, be two positive functions on [0, o) and let f and g be two differentiable
functions on [0, 00).If f* € L,([0,00)), g € L,([0,0)), p > 1, 1_17 + é = 1, then for all t > 0 and
P1,02, A1, A > 0 and wi,w, € R, we have

T(fog:viev2) < P, T o O DT 010y 2) (0,
where

T(f’ &5V, VZ) = jaz/lz’()_'_;wz (VZ) (t)j p1.A1,0+0; (Vlfg) (t) + j 02,42,0+;02 (Vng) (t)j P1,A1L0+F;w1 (Vl) (t)

o

T 0 2O DT o DO =TT g0y V2D OT T o (118) (1)

and the coefficients oy (k) , 0 (k) (k € Ny = NU{0}) are bounded sequences of positive real numbers.
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Proof. Following the similar steps of proof of Theorem 8, we can write

t

T(f, g vi,v2) = ffH(n, - =& F o = 1FE [w (8= € vi(va(€)dndé
0

0
(3.14)

where
n

Ui
H@n,&) = (fm) = f(€) () - g(é)) = f f f (g (v)dxdy.
& ¢
Using the well-known Holder inequality for double integral, we find that

r non q n p n
f f gD dxdy| =[] f FCOP dx f & I dy
& & 3 3

Substituting (3.15) into (3.14), we have

1
q

non
H,6)| < f f 1 COP dxdy
& €

(3.15)

t

IT(f.g:vi.v)l < f f =& =" =& T w0 =) F2 [wa (8= €2 vimva(é)
0 0
(3.16)

1 1

n | n
x f P dx f g dy| dndé.
3 13

Appying again Holder inequality to the right hand side of (3.16), we find that

IT(f,g;vi,v2)l

P

IA

t t n
[ [m-aa—m'a-om 0, lon =172, o2 6= 7 nama® | [ 1 d) dnd
0 0 &

1
q

t t n
| [ [m-da-mtra- ot m o - nr 170 Lo (- 7 @ | [ 1 dx| dnag
0 13

0

IA

17711, 1181l

1
P

x ( f f 7=l = " = &P F [wr (- 1 FE [wa (1 - €77 vl(n)Vz(f)dndf)
0 0
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x { f f = &= (=& F (o (- F R, (w2 (2= €77 vl(n)Vz(f)] .
0

0

Now using the fact that |7 — &| < ¢ and %' + é = 1, we have

IT(f, g vi,v2)l

< tif, g, [ f f =" =& FT Jwi =0y T, lwa (= €] vl(n)Vz(f)dndf]
0 0
X [ f f =" =" F wi - | FR [wa (- €Y7 vl(n)Vz(f)]
0 0
= tIF 8N, [T 00 0D O] [T 0ri0n 0D O] [T 00 O O] [T 010y 02 O]
= I N8y T onie, VD DT 1y 02) (0).
Thus the proof is completed. O

Corollary 3.22. If we choose 1, =, =, 0y =0, =0, p1=p2=p, Wi =wy=wand vy =v, =vin
Theorem 3.21, we have the following inequality

2
T(f. g:v.v) < N, 18/, [T 000 0) ()]
where the coefficients o (k) (k € Ny = NU{0}) is a bounded sequence of positive real numbers.

Remark 3.23. In particular, putting 1, = A, = a, 01(0) = 0,(0) = 1, and w; = w, = 0, then Corollary
3.22 reduce to Theorem 3.1 proved by Dahmani et. al in [6].

Corollary 3.24. If we choose vi = v, = v in Theorem 3.21, we have the following inequality

T(fog:vow) < I 81l T o, O DT g1y V) ()
where the coefficients o (k) , 0, (k) (k € Ny = NU{0}) are bounded sequences of positive real numbers.

Remark 3.25. In particular, putting 1, = a, 1, = B, 01(0) = 02(0) = 1, and w; = w, = 0, then
Corollary 3.24 reduce to Theorem 3.2 proved by Dahmani et. al in [6].

Corollary 3.26. If we choose vi = v, = 1 in Theorem 3.21, we have the following inequality

T(f.g) < " NFT o 1F7 L o111, N, -

p2,/12+1
where the coefficients o (k) , 0 (k) (k € Ny = NU{0}) are bounded sequences of positive real numbers.
Remark 3.27. In particular, putting 41 = a, 4, = B, 01(0) = 02(0) = 1, and wy = w, = 0, then
Corollary 3.26 reduce to Corollary 3.4 given by Dahmani et. al in [6].
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4. Concluding remarks

We have introduced a general version of Chebyshev type integral inequality for the generalised
fractional integral operators based on two synchronous functions. The established results are
generalization of some existing Chebychev type integral inequalities in the previous published
studies. For further investigations we propose to consider the Chebyshev type inequalities for other
fractional integral operators.
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