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1. Introduction

In the last few decades, fractional differential equations have gained more importance due to its
applications in various sciences such as physics, mechanics, chemistry, engineering, etc. For a detailed
introduction on this topic, we refer the monographs of Podlubny [23], Miller & Ross [16], Kibas
et al. [12] and the references therein. Many mathematicians and scientists have contributed to the
development of the theory of fractional differential equations. In this process, several types of fractional
derivatives were introduced including the Hadamard fractional derivative, which is the focus of this
article.

There has been a rigorous development in the theory and applications of fractional boundary value
problems. However, most of the results are concerned with the Riemann-Liouville or the Caputo
fractional derivatives. Recently, much attention has been paid to the study of two-point boundary value
problems for fractional differential equations involving Hadamard fractional derivatives. In [2], Ahmad
and Ntouyas studied a coupled system of Hadamard fractional differential equations together with
integral boundary conditions. Also, they developed Hadamard fractional integro-differential boundary
value problems in [3]. Wang et al. [26] investigated a non-local Hadamard fractional boundary value
problem with Hadamard integral and discrete boundary condition on half line. Recently, Mao et al.
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[19] and Ardjouni [1] established sufficient conditions on positive solutions for Hadamard fractional
boundary value problems. More recently, Wang et al. [27, 28] analysed the stability properties of
nonlinear Hadamard fractional differential system.

On the other hand, Lyapunov [14] proved a necessary condition for the existence of a nontrivial
solution of Hill’s equation associated with Dirichlet boundary conditions.

Theorem 1.1. [14] If the boundary value problemy′′(t) + q(t)y(t) = 0, a < t < b,

y(a) = y(b) = 0,
(1.1)

has a nontrivial solution, where q : [a, b]→ R is a continuous function, then∫ b

a
|q(s)|ds >

4
b − a

. (1.2)

The Lyapunov inequality (1.2) has several applications in various problems related to differential
equations. Due to its importance, it has been generalized in many forms. Many researchers have
derived Lyapunov-type inequalities for various classes of fractional boundary value problems in the
recent years. For the first time, in 2013, Ferreira [8] generalized Theorem 1.1 to the case where
the classical second-order derivative in (1.1) is replaced by the αth-order (1 < α ≤ 2) Riemann–
Liouville fractional derivative. Further, in 2014, Ferreira [9] developed a Lyapunov-type inequality
for the Caputo fractional derivative. In 2018, Ntouyas et al. [21] presented a survey of results on
Lyapunov-type inequalities for fractional differential equations associated with a variety of boundary
conditions. For more details on Lyapunov-type inequalities and their applications, we refer [4, 6, 10,
11, 22, 24, 25, 29, 30] and the references therein.

In particular, Ma et al. [17] developed a Lyapunov-type inequality for the Hadamard fractional
boundary value problem in 2017.

Theorem 1.2. If the Hadamard fractional boundary value problemHDαy(t) − q(t)y(t) = 0, 1 < t < e, 1 < α ≤ 2,
y(1) = y(e) = 0,

(1.3)

has a non-trivial solution, where q : [1, e]→ R is a continuous function, then∫ e

1
|q(s)|ds > Γ(α)(1 − λ)1−αλ1−αeλ. (1.4)

Here λ =
2α−1−

√
(2α−2)2+1
2 and HDα denotes the αth-order Hadamard fractional differential operator

with 1 < α ≤ 2.

Recently, Dhar [7] and Laadjal et al. [15] generalized the Lyapunov-type inequality in Theorem 1.2
by replacing the interval [1, e] with [a, b].
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Theorem 1.3. If the Hadamard fractional boundary value problemHDαy(t) + q(t)y(t) = 0, 0 < a < t < b, 1 < α ≤ 2,
y(a) = y(b) = 0,

(1.5)

has a non-trivial solution and y(t) , 0 on (a, b), where q : [a, b]→ R is a continuous function, then∫ b

a
q+(s)ds >

4α−1Γ(α)(
log b

a

)α−1 . (1.6)

Here q+(t) = max{q(t), 0}.

Theorem 1.4. If the Hadamard fractional boundary value problemHDαy(t) + q(t)y(t) = 0, 1 ≤ a < t < b, 1 < α ≤ 2,
y(a) = y(b) = 0,

(1.7)

has a non-trivial solution, where q : [a, b]→ R is a continuous function, then∫ b

a
|q(s)|ds > Γ(α)ξ1

 log ξ1
a log b

ξ1

log b
a


1−α

. (1.8)

where

ξ1 = exp

1
2

[(2α − 2) + log ba] −

√
(2α − 2)2 + log2 b

a

 .
Motivated by the works in [7, 15, 17], in this article, we establish a few Lyapunov-type inequalities

for Hadamard fractional boundary value problems associated with a variety of boundary conditions.

2. Preliminaries

Throughout, we shall use the following notations, definitions and some lemmas from the theory of
fractional calculus in the sense of Hadamard. These results can be found in the monographs [6, 12].
Denote the set of all real numbers and complex numbers by R and C, respectively.

Definition 2.1. [12] Let α > 0 and a ∈ R. The αth-order Hadamard fractional integral of a function
y : [a, b]→ R is defined by(

HIαy
)

(t) =
1

Γ(α)

∫ t

a

(
log

t
s

)α−1
y(s)

ds
s
, a < t < b, (2.1)

provided the right-hand side exists. Here Γ(.) denotes the Euler’s Gamma function.

Definition 2.2. [12] The αth-order Hadamard fractional derivative of a function y : [a, b] → R is
defined by (

HDαy
)

(t) =
1

Γ(n − α)

(
t

d
dt

)n ∫ t

a

(
log

t
s

)n−α−1
y(s)

ds
s
, a < t < b, (2.2)

where n = [α] + 1.
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Definition 2.3. [12] C[a, b] be the space of all continuous functions y : [a, b]→ R with the norm

‖y‖C = max
t∈[a,b]

|y(t)|.

Definition 2.4. [12] Let 0 ≤ γ < 1, y : (a, b]→ R and define

yγ,log(t) =

(
log

t
a

)γ
y(t), t ∈ [a, b].

Cγ,log[a, b] be the weighted space of functions y such that yγ,log ∈ C[a, b], and

‖y‖Cγ,log = max
t∈[a,b]

∣∣∣∣(log
t
a

)γ
y(t)

∣∣∣∣.
Lemma 2.1. [12] If α > 0, β > 0 and 0 < a < b < ∞, then(

HIα
(
log

t
a

)β−1
)

(x) =
Γ(β)

Γ(β + α)

(
log

x
a

)β+α−1
,(

HDα
(
log

t
a

)β−1
)

(x) =
Γ(β)

Γ(β − α)

(
log

x
a

)β−α−1
.

Lemma 2.2. [6] Let α > 0, n = [α] + 1, and 0 < a < b < ∞. Assume y ∈ C(a, b). The equality

(HDαy)(t) = 0

is valid if, and only if,

y(t) = C1

(
log

t
a

)α−1
+ C2

(
log

t
a

)α−2
+ · · · + Cn

(
log

t
a

)α−n
,

where C1, C2, · · · , Cn are arbitrary constants.

Lemma 2.3. [6] Let α > 0, n = [α] + 1, and 0 < a < b < ∞. Assume y ∈ C(a, b). Then,(
HDα

(
HIαy

))
(t) = y(t),

and (
HIα

(
HDαy

))
(t) = y(t) +

n∑
i=1

Ci

(
log

t
a

)α−i
,

where C1, C2, · · · , Cn are arbitrary constants.

3. Main results

In this section, we obtain Lyapunov-type inequalities for Hadamard fractional boundary value
problems associated with mixed, Sturm-Liouville, Robin and general boundary conditions, using the
properties of the corresponding Green’s functions.
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Theorem 3.1. Let 1 < α ≤ 2 and h : [a, b]→ R. The fractional boundary value problem
(HDα

ay)(t) + h(t) = 0, a < t < b,

l(HI2−α
a y)(a) − m(HDα−1

a y)(a) = 0,
ny(b) + p(HDα−1

a y)(b) = 0,

(3.1)

has the unique solution

y(t) =

∫ b

a
G(t, s)h(s)ds, (3.2)

where G(t, s) is given by

G(t, s) =

G1(t, s), a < s ≤ t ≤ b,

G2(t, s), a < t ≤ s ≤ b,
(3.3)

G1(t, s) = G2(t, s) −
(log t

s )α−1

sΓ(α)
, (3.4)

and

G2(t, s) =

 l(log t
a )α−1 + m(α − 1)(log t

a )α−2

sA

 n(log b
s )α−1

Γ(α)
+ p

 . (3.5)

Here l, p ≥ 0; m, n > 0 and

A = ln
(
log

b
a

)α−1

+ mn(α − 1)
(
log

b
a

)α−2

+ lpΓ(α) > 0.

Proof. Applying HIαa (the αth-order Hadamard fractional integral operator) on both sides of (3.1) and
using Lemma 2.2, we have

y(t) = −(HIαa h)(t) + C1

(
log

t
a

)α−1
+ C2

(
log

t
a

)α−2
, (3.6)

for some C1, C2 ∈ R. Applying HI2−α
a on both sides of (3.6) and using Lemmas 2.1, we get

(HI2−α
a y)(t) = −(HI2

ah)(t) + C1Γ(α)
(
log

t
a

)
+ C2Γ(α − 1). (3.7)

Applying HDα−1
a (the (α − 1)th-order Hadamard fractional differential operator) on both sides of (3.6)

and using Lemmas 2.1, we obtain

(HDα−1
a y)(t) = −(HI1

ah)(t) + C1Γ(α). (3.8)

From the first boundary condition, we have

− mC1(α − 1) + lC2 = 0. (3.9)

The second boundary condition yields

C1

n(log
b
a

)α−1

+ pΓ(α)
 + nC2

(
log

b
a

)α−2

= n(HIαa h)(b) + p(HI1
ah)(b). (3.10)
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Solving (3.9) and (3.10) for C1 and C2, we have

C1 =
l
A

∫ b

a

n(log b
s )α−1

Γ(α)
+ p

 h(s)
ds
s
,

and

C2 =
m(α − 1)

A

∫ b

a

n(log b
s )α−1

Γ(α)
+ p

 h(s)
ds
s
.

Substituting C1 and C2 in (3.6), it follows that

y(t) =
l(log t

a )α−1

A

∫ b

a

n(log b
s )α−1

Γ(α)
+ p

 h(s)
ds
s

+
m(α − 1)(log t

a )α−2

A

∫ b

a

n(log b
s )α−1

Γ(α)
+ p

 h(s)
ds
s

−
1

Γ(α)

∫ t

a

(
log

t
a

)α−1
h(s)

ds
s

=

∫ b

a
G(t, s)h(s)ds.

The proof is complete. �

Corollary 1. Let 1 < α ≤ 2 and h : [a, b]→ R. The fractional boundary value problem(HDα
ay)(t) + h(t) = 0, a < t < b,

y(a) = 0, ny(b) + p(HDα−1
a y)(b) = 0,

(3.11)

has the unique solution

y(t) =

∫ b

a
Ḡ(t, s)h(s)ds, (3.12)

where Ḡ(t, s) is given by

Ḡ(t, s) =

Ḡ1(t, s), a ≤ s ≤ t ≤ b,

Ḡ2(t, s), a ≤ t ≤ s ≤ b,
(3.13)

Ḡ1(t, s) = Ḡ2(t, s) −

(
log t

s

)α−1

sΓ(α)
, (3.14)

and

Ḡ2(t, s) =

(
log t

a

)α−1

sĀ

n(log b
s )α−1

Γ(α)
+ p

 . (3.15)

Here n ≥ 0, p > 0 and Ā = n
(
log b

a

)α−1
+ pΓ(α) > 0.

Proof. The proof is similar to Theorem 3.1. �

We define H(t, s) = sG(t, s) and H̄(t, s) = sḠ(t, s). Now, we prove that these Green’s functions are
positive and obtain upper bounds for both the Green’s functions and their integrals.
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Theorem 3.2. The Green’s function H(t, s) for (3.1) satisfies H(t, s) > 0 for (t, s) ∈ (a, b] × (a, b].

Proof. Clearly, for a < t ≤ s ≤ b,

H(t, s) =

 l(log t
a )α−1 + m(α − 1)(log t

a )α−2

A

 n(log b
s )α−1

Γ(α)
+ p

 > 0.

Now, suppose a < s ≤ t ≤ b. Consider

H(t, s) =

 l(log t
a )α−1 + m(α − 1)(log t

a )α−2

A

 n(log b
s )α−1

Γ(α)
+ p


−

(log t
s )α−1

Γ(α)

=
ln

AΓ(α)

(log
t
a

)α−1
(
log

b
s

)α−1

−

(
log

b
a

)α−1 (
log

t
s

)α−1


+
mn(α − 1)

AΓ(α)

(log
t
a

)α−2
(
log

b
s

)α−1

−

(
log

b
a

)α−2 (
log

t
s

)α−1


+
lp
A

{(
log

t
a

)α−1
−

(
log

t
s

)α−1
}

+
mp(α − 1)

A

(
log

t
a

)α−2

=
1

AΓ(α)
[
X1 + X2 + X3 + X4

]
. (3.16)

Clearly, AΓ(α) > 0. Consider(
log

t
a

) (
log

b
s

)
−

(
log

b
a

) (
log

t
s

)
=(log t − log a)(log b − log s) − (log b − log a)(log t − log s)
=(log s − log a)(log b − log t) ≥ 0,

implying that

X1 = ln

(log
t
a

)α−1
(
log

b
s

)α−1

−

(
log

b
a

)α−1 (
log

t
s

)α−1
 ≥ 0. (3.17)

Since
a < s ≤ t ≤ b,

we have (
log

t
a

)α−2
≥

(
log

b
a

)α−2

,

(
log

b
s

)α−1

≥

(
log

t
s

)α−1

and (
log

t
a

)α−1
>

(
log

t
s

)α−1
,

implying that

X2 = mn(α − 1)

(log
t
a

)α−2
(
log

b
s

)α−1

−

(
log

b
a

)α−2 (
log

t
s

)α−1
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≥ mn(α − 1)
(
log

b
a

)α−2

(
log

b
s

)α−1

−

(
log

t
s

)α−1
 ≥ 0, (3.18)

and

X3 = lpΓ(α)
[(

log
t
a

)α−1
−

(
log

t
s

)α−1
]
> 0. (3.19)

Clearly,

X4 = mp(α − 1)Γ(α)
(
log

t
a

)α−2
> 0. (3.20)

Using (3.17) - (3.20) in (3.16), we have H(t, s) > 0. The proof is complete. �

Corollary 2. The Green’s function H̄(t, s) for (3.11) satisfies H̄(t, s) ≥ 0 for (t, s) ∈ [a, b] × [a, b].

Proof. The proof is similar to Theorem 3.2. �

Theorem 3.3. For the Green’s function H(t, s) defined in (3.3),

max
s∈(a,b]

H(t, s) = H(t, t), t ∈ (a, b],

and (
log

t
a

)2−α
H(t, t) <

 l
(
log b

a

)
+ m(α − 1)

A


n

(
log b

a

)α−1

Γ(α)
+ p

 , t ∈ [a, b].

Proof. For the first part, we show that for any fixed t ∈ (a, b], H(t, s) increases with respect to s from a
to t, and then decreases with respect s from t to b. Let a < t ≤ s ≤ b. Consider

∂

∂s
H(t, s) =

−n(α − 1)
(
log b

s

)α−2

sΓ(α)


 l

(
log t

a

)α−1
+ m(α − 1)

(
log t

a

)α−2

A

 < 0,

implying that H(t, s) is a decreasing function of s. Now, suppose a < s ≤ t ≤ b. Consider

∂

∂s
H(t, s) =

−n(α − 1)
(
log b

s

)α−2

sΓ(α)


 l

(
log t

a

)α−1
+ m(α − 1)

(
log t

a

)α−2

A


+

(α − 1)
(
log t

s

)α−2

sΓ(α)

=
ln(α − 1)

AΓ(α)

− (
log

t
a

)α−1
(
log

b
s

)α−2

+

(
log

b
a

)α−1 (
log

t
s

)α−2


+
mn(α − 1)2

AΓ(α)

− (
log

t
a

)α−2
(
log

b
s

)α−2

+

(
log

b
a

)α−2 (
log

t
s

)α−2


+
lp(α − 1)

A

(
log

t
s

)α−2

=
(α − 1)
AΓ(α)

[
X5 + X6 + X7

]
. (3.21)
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Clearly, (α−1)
AΓ(α) > 0. Since a < s < t ≤ b, we have(

log
t
s

)α−2
≥

(
log

b
s

)α−2

and
(
log

b
a

)α−1

≥

(
log

t
a

)α−1
,

implying that

X5 = ln
− (

log
t
a

)α−1
(
log

b
s

)α−2

+

(
log

b
a

)α−1 (
log

t
s

)α−2


≥ ln
(
log

t
s

)α−2
− (

log
t
a

)α−1
+

(
log

b
a

)α−1 ≥ 0. (3.22)

Since (
log

t
a

) (
log

b
s

)
−

(
log

b
a

) (
log

t
s

)
=(log t − log a)(log b − log s) − (log b − log a)(log t − log s)
=(log s − log a)(log b − log t) ≥ 0,

we have that

X6 = mn(α − 1)2

− (
log

t
a

)α−2
(
log

b
s

)α−2

+

(
log

b
a

)α−2 (
log

t
s

)α−2
 ≥ 0. (3.23)

Clearly,

X7 = lpΓ(α)
(
log

t
s

)α−2
> 0. (3.24)

Using (3.22) - (3.24) in (3.21), we have ∂
∂s H(t, s) > 0, implying that H(t, s) is an increasing function of

s. Then, it follows that
max
s∈(a,b]

H(t, s) = H(t, t), t ∈ (a, b].

To prove the second part, for t ∈ [a, b], consider(
log

t
a

)2−α
H(t, t) =

 l
(
log t

a

)
+ m(α − 1)

A


n

(
log b

t

)α−1

Γ(α)
+ p


<

 l
(
log b

a

)
+ m(α − 1)

A


n

(
log b

a

)α−1

Γ(α)
+ p

 .
The proof is complete. �

Corollary 3. For the Green’s function H̄(t, s) defined in (3.13),

max
s∈[a,b]

H̄(t, s) = H̄(t, t), t ∈ [a, b],

and

H̄(t, t) <


(
log b

a

)α−1

Ā


n

(
log b

a

)α−1

Γ(α)
+ p

 , t ∈ [a, b].
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Proof. The first part of the proof is similar to the proof of Theorem 3.3. To prove the second part, for
t ∈ [a, b], consider

H̄(t, t) =


(
log t

a

)α−1

Ā


n

(
log b

t

)α−1

Γ(α)
+ p


<


(
log b

a

)α−1

Ā


n

(
log b

a

)α−1

Γ(α)
+ p

 .
The proof is complete. �

We are now able to formulate Lyapunov-type inequalities for the fractional boundary value
problems (3.1) and (3.11).

Theorem 3.4. If the following fractional boundary value problem
(HDαy)(t) + p(t)y(t) = 0, 0 < a < t < b,

l(HI2−αy)(a) − m(HDα−1y)(a) = 0,
ny(b) + p(HDα−1y)(b) = 0,

(3.25)

has a nontrivial solution, then∫ b

a

(
log

s
a

)α−2
|p(s)|ds >

AΓ(α)[
n
(
log b

a

)α−1
+ pΓ(α)

][
l
(
log b

a

)
+ m(α − 1)

] . (3.26)

Proof. Let B = Cγ,log[a, b] be the Banach space of functions y endowed with norm

‖y‖Cγ,log = max
t∈[a,b]

∣∣∣∣(log
t
a

)γ
y(t)

∣∣∣∣.
It follows from Theorem 3.1 that a solution to (3.25) satisfies the equation

y(t) =

∫ b

a
H(t, s)p(s)y(s)ds =

∫ b

a
sG(t, s)p(s)y(s)ds.

Hence,

‖y‖C2−α,log = max
t∈[a,b]

∣∣∣∣( log
t
a

)2−α
∫ b

a
sG(t, s)p(s)y(s)ds

∣∣∣∣
≤ max

t∈[a,b]

[∫ b

a

∣∣∣∣( log
t
a

)2−α
sG(t, s)

∣∣∣∣|p(s)||y(s)|ds
]

≤ ‖y‖C2−α,log

[
max
t∈[a,b]

∫ b

a

∣∣∣∣ (log
t
a

)2−α
H(t, s)

∣∣∣∣( log
s
a

)α−2
|p(s)|ds

]
≤ ‖y‖C2−α,log

[
max
t∈[a,b]

∣∣∣∣ (log
t
a

)2−α
H(t, s)

∣∣∣∣] ∫ b

a

(
log

s
a

)α−2
|p(s)|ds,

or, equivalently,

1 <
[∣∣∣∣ (log

t
a

)2−α
H(t, t)

∣∣∣∣] ∫ b

a

(
log

s
a

)α−2
|p(s)|ds.

An application of Theorem 3.3 yields the result. �
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Corollary 4. If the following fractional boundary value problem(HDα
ay)(t) + q(t)y(t) = 0, a < t < b,

y(a) = 0, ny(b) + p(HDα−1
a y)(b) = 0,

(3.27)

has a nontrivial solution, then∫ b

a

∣∣∣q(s)
∣∣∣ds >

ĀΓ(α)[
n
(
log b

a

)2α−2
+ p

(
log b

a

)α−1
Γ(α)

] . (3.28)

Proof. Let B = C[a, b] be the Banach space of functions y endowed with norm

‖y‖ = max
t∈[a,b]

|y(t)|.

It follows from Corollary 1 that a solution to (3.27) satisfies the equation

y(t) =

∫ b

a
H̄(t, s)q(s)y(s)ds =

∫ b

a
sH̄(t, s)q(s)y(s)ds.

Hence,

‖y‖ = max
t∈[a,b]

∣∣∣∣ ∫ b

a
H̄(t, s)q(s)y(s)ds

∣∣∣∣ ≤ max
t∈[a,b]

[∫ b

a
H̄(t, s)

∣∣∣q(s)
∣∣∣∣∣∣y(s)

∣∣∣ds
]

≤ ‖y‖
[
max
t∈[a,b]

∫ b

a
H̄(t, s)

∣∣∣q(s)
∣∣∣ds

]
≤ ‖y‖

[
max
t∈[a,b]

H̄(t, t)
] ∫ b

a

∣∣∣q(s)
∣∣∣ds,

or, equivalently,

1 <
[
max
t∈[a,b]

H̄(t, t)
] ∫ b

a

∣∣∣q(s)
∣∣∣ds.

An application of Corollary 3 yields the result. �

Take l = p = 0 in Theorem 3.4. Then, we obtain the following Lyapunov-type inequality for the
left-focal fractional boundary value problem.

Corollary 5. If the following fractional boundary value problem(HDα
ay)(t) + q(t)y(t) = 0, a < t < b,

(HDα−1
a y)(a) = 0, y(b) = 0,

(3.29)

has a nontrivial solution, then ∫ b

a

(
log

s
a

)α−2 ∣∣∣q(s)
∣∣∣ds >

Γ(α)
(log b

a )
. (3.30)
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Take n = 0 in Corollary 4. Then, we obtain the following Lyapunov-type inequality for the right-
focal fractional boundary value problem.

Corollary 6. If the following fractional boundary value problem(HDα
ay)(t) + q(t)y(t) = 0, a < t < b,

y(a) = 0, (HDα−1
a y)(b) = 0,

(3.31)

has a nontrivial solution, then ∫ b

a

∣∣∣q(s)
∣∣∣ds >

Γ(α)(
log b

a

)α−1 . (3.32)

Take l = m = n = p = 1 in Theorem 3.4. Then, we obtain the following Lyapunov-type inequality
for the fractional boundary value problem with Robin boundary conditions.

Corollary 7. If the following fractional boundary value problem
(HDα

ay)(t) + q(t)y(t) = 0, a < t < b,

(HI2−α
a y)(a) − (HDα−1

a y)(a) = 0,
y(b) + (HDα−1

a y)(b) = 0,

(3.33)

has a nontrivial solution, then∫ b

a

(
log

s
a

)α−2 ∣∣∣q(s)
∣∣∣ds >

Γ(α)
[ (

log b
a

)α−1
+ (α − 1)

(
log b

a

)α−2
+ Γ(α)

]
[ (

log b
a

)α−1
+ Γ(α)

] [
log b

a + α − 1
] . (3.34)

Take l > 0 and p = 0 in Theorem 3.4. Then, we obtain the following Lyapunov-type inequality for
the fractional boundary value problem with Sturm-Liouville boundary conditions.

Corollary 8. If the following fractional boundary value problem(HDα
ay)(t) + q(t)y(t) = 0, a < t < b,

l(HI2−α
a y)(a) − m(HDα−1

a y)(a) = 0, y(b) = 0,
(3.35)

has a nontrivial solution, then ∫ b

a

(
log

s
a

)α−2 ∣∣∣q(s)
∣∣∣ds >

Γ(α)
log b

a

. (3.36)

4. Anti-periodic boundary condition

In this section, we obtain a Lyapunov-type inequality for an anti-periodic fractional boundary value
problem using the properties of the corresponding Green’s function.

Theorem 4.1. Let 1 < α ≤ 2 and h : [1,T ]→ R. The fractional boundary value problem
HDαy(t) + h(t) = 0, 1 < t < T,

(HI2−αy)(1) + (HI2−αy)(T ) = 0,
(HDα−1y)(1) + (HDα−1y)(T ) = 0,

(4.1)
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has the unique solution

y(t) =

∫ T

1
G̃(t, s)h(s)ds, 1 < t ≤ T, (4.2)

where

G̃(t, s) =

 (log t)α−1

2sΓ(α) +
(log t)α−2(log T−2 log s)

4sΓ(α−1) −
(log t

s )α−1

sΓ(α) , 1 ≤ s ≤ t ≤ T,
(log t)α−1

2sΓ(α) +
(log t)α−2(log T−2 log s)

4sΓ(α−1) , 1 ≤ t ≤ s ≤ T.
(4.3)

Proof. Applying HIα on both sides of (4.1) and using Lemma 2.2, we have

y(t) = C1(log t)α−1 + C2(log t)α−2 −

∫ t

1
(log t − log s)α−1h(s)

ds
s
, (4.4)

for some C1, C2 ∈ R. Applying HI2−α on both sides of (4.4) and using Lemma (2.1), we get(
HI2−αy

)
(t) = −

∫ t

1
h(s)

ds
s

+ C1Γ(α)(log t) + C2Γ(α − 1). (4.5)

Applying HDα−1 on both sides of (4.4) and using Lemma (2.1), we obtain(
HDα−1y

)
(t) = −

∫ t

1
h(s)

ds
s

+ C1Γ(α). (4.6)

From the first boundary condition, we get

C1Γ(α)(log T ) + 2C2Γ(α − 1) =

∫ T

1

(
log

T
s

)
h(s)

ds
s
. (4.7)

The second boundary condition yields ∫ T

1
h(s)

ds
s

= 2C1Γ(α). (4.8)

Solving (4.7) and (4.8) for C1 and C2, we have

C1 =
1

2Γ(α)

∫ T

1
h(s)

ds
s
,

and

C2 =
1

4Γ(α − 1)

∫ T

1
(log T − 2 log s)h(s)

ds
s
.

Substituting C1 and C2 in (3.6), we obtain the unique solution of (4.1) as

y(t) =
(log t)α−1

2Γ(α)

∫ T

1
h(s)

ds
s

+
(log t)α−2

4Γ(α − 1)

∫ T

1
(log T − 2 log s)h(s)

ds
s

−
1

Γ(α)

∫ t

1
(log t − log s)α−1h(s)

ds
s

=

∫ t

1

 (log t)α−1

2sΓ(α)
+

(log t)α−2(log T − 2 log s)
4sΓ(α − 1)

−
(log t

s )α−1

sΓ(α)

 h(s)ds

AIMS Mathematics Volume 5, Issue 2, 1127–1146.



1140

+

∫ T

t

[
(log t)α−1

2sΓ(α)
+

(log t)α−2(log T − 2 log s)
4sΓ(α − 1)

]
h(s)ds

=

∫ T

1
G̃(t, s)h(s)ds.

The proof is complete. �

Let us define H̃(t, s) = s(log t)2−αG̃(t, s) Now, we obtain an upper bound for the Green’s function
H̃(t, s).

Theorem 4.2. For the Green’s function H̃(t, s) defined in (4.3), we observe that∣∣∣H̃(t, s)
∣∣∣ < (3 − α) log T

4Γ(α)
, ∀ (t, s) ∈ [1,T ] × [1,T ].

Proof. Consider

H̃(t, s) =

 log t
2Γ(α) +

(log T−2 log s)
4Γ(α−1) −

(log t)2−α(log t−log s)α−1

Γ(α) , 1 ≤ s ≤ t ≤ T,
log t

2Γ(α) +
(log T−2 log s)

4Γ(α−1) , 1 ≤ t ≤ s ≤ T.
(4.9)

Denote by

H̃1(t, s) =
log t

2Γ(α)
+

(log T − 2 log s)
4Γ(α − 1)

−
(log t)2−α(log t − log s)α−1

Γ(α)
and

H̃2(t, s) =
log t

2Γ(α)
+

(log T − 2 log s)
4Γ(α − 1)

.

For a fixed t ∈ [1,T ],

d
ds

H̃1(t, s) =
(α − 1)(log t − log s)α−2(log t)2−α

sΓ(α)
−

2
4sΓ(α − 1)

=
−(log t − log s)2−α + (log t)2−α

2sΓ(α − 1)(log t − log s)2−α ≥ 0,

for all s ∈ [1, t]. So, H̃1(t, s) is an increasing function of s. Thus,

max
s∈[1,t]

∣∣∣H̃1(t, s)
∣∣∣ = max

{∣∣∣H̃1(t, 1)
∣∣∣, ∣∣∣H̃1(t, t)

∣∣∣} .
We observe that H̃1(t, t) is an increasing function of s, since

d
dt

H̃1(t, t) =
2 − α
2tΓ(α)

> 0.

Therefore, we have

max
s∈[1,T ]

H̃1(t, t) = max
{∣∣∣H̃1(1, 1)

∣∣∣, ∣∣∣H̃1(T,T )
∣∣∣}

= max
{

log T
4Γ(α − 1)

,
(3 − α) log T

4Γ(α)

}
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=
(3 − α) log T

4Γ(α)
.

Now, consider
d
dt

H̃1(t, 1) =
−1

2tΓ(α)
< 0,

implying that H1(t, 1) is a decreasing function of t. So, we have

max
t∈[1,T ]

∣∣∣H̃1(t, 1)
∣∣∣ = max

{∣∣∣H̃1(1, 1)
∣∣∣, ∣∣∣H̃1(T, 1)

∣∣∣}
= max

{
log T

4Γ(α − 1)
,

(3 − α) log T
4Γ(α)

}
=

(3 − α) log T
4Γ(α)

.

Therefore,

max
s∈[1,t],t∈[1,T ]

∣∣∣H̃1(t, s)
∣∣∣ =

(3 − α) log T
4Γ(α)

. (4.10)

For a fixed s ∈ [1,T ],
d
dt

H̃2(t, s) =
1

2tΓ(α)
> 0,

implying that H̃2(t, s) is an increasing function of t. So,

max
t∈[1,s]

∣∣∣H̃2(t, s)
∣∣∣ = max

{∣∣∣H̃2(1, s)
∣∣∣, ∣∣∣H̃2(s, s)

∣∣∣} .
Since

∣∣∣H̃2(s, s)
∣∣∣ =

∣∣∣H̃1(s, s)
∣∣∣ for s ∈ [1,T ], we only consider H̃2(1, s). Since

d
ds

H̃2(1, s) =
−1

2sΓ(α − 1)
< 0,

H̃2(1, s) is a decreasing function of s. Thus, we have

max
s∈[1,T ]

|H̃2(1, s)| = max{|H̃2(1, 1)|, |H̃2(1,T )|}

= max
{

log T
4Γ(α − 1)

,
log T

4Γ(α − 1)

}
=

log T
4Γ(α − 1)

.

Hence, we have

max
t∈[1,s],s∈[1,T ]

|H̃2(t, s)| =
(3 − α) log T

4Γ(α)
. (4.11)

The final result follows from (4.10) and (4.11). �

We are now able to formulate a Lyapunov-type inequality for the Hadamard type fractional
boundary value problem with anti-periodic boundary condition.
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Theorem 4.3. If the following fractional boundary value problem
(

HDαy)
)

(t) + p(t)y(t) = 0, 1 < t < T,

(HI2−αy)(0) + (HI2−αy)(T ) = 0,
(HDα−1y)(0) + (HDα−1y)(T ) = 0,

(4.12)

has a nontrivial solution, then ∫ T

1
(log s)α−2|p(s)|ds >

4Γ(α)
(3 − α) log T

. (4.13)

Proof. Let B = Cγ,log[1,T ] be the Banach space of functions y endowed with norm

‖y‖Cγ,log = max
t∈[1,T ]

∣∣∣(log t)γy(t)
∣∣∣.

It follows from Theorem 4.1 that a solution to (4.12) satisfies the equation

y(t) =

∫ T

1
H̃(t, s)p(s)y(s)ds =

∫ T

1
(log t)2−αsG̃(t, s)p(s)y(s)ds.

Hence,

‖y‖C2−α,log = max
t∈[1,T ]

∣∣∣∣(log t)2−α
∫ T

1
sG̃(t, s)p(s)y(s)ds

∣∣∣∣
≤ max

t∈[1,T ]

[∫ T

1

∣∣∣(log t)2−αsG̃(t, s)
∣∣∣|p(s)||y(s)|ds

]
≤ ‖y‖C2−α,log

[
max
t∈[1,T ]

∫ T

1

∣∣∣(log t)2−αsG̃(t, s)
∣∣∣(log s)α−2|p(s)|ds

]
≤ ‖y‖C2−α,log

[
max
t∈[1,T ]

∣∣∣(log t)2−αsG̃(t, s)
∣∣∣] ∫ T

1
(log s)α−2|p(s)|ds,

or, equivalently,

1 <
[
max
t∈[1,T ]

∣∣∣H̃(t, s)
∣∣∣] ∫ T

1
(log s)α−2|p(s)|ds.

An application of Theorem 4.2 yields the result. �

5. Applications

In this section, we discuss two applications of the results established in previous sections. First, we
estimate lower bounds on the smallest eigenvalues of the eigenvalue problems corresponding to (3.25),
(3.27) and (3.25).

Theorem 5.1. Assume y is a nontrivial solution of the Hadamard fractional eigenvalue problem
(HDα

ay)(t) + p(t)y(t) = 0, a < t < b,

l(HI2−α
a y)(a) − m(HDα−1

a y)(a) = 0,
ny(b) + p(HDα−1

a y)(b) = 0,
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where y(t) , 0 for each t ∈ (a, b). Then,

|λ| >
(−1)αAΓ(α)

[
Γ(α − 1) − Γ(α − 1,− log b

a )
]−1

a
[
n
(
log b

a

)α−1
+ pΓ(α)

][
l
(
log b

a

)
+ m(α − 1)

] .
Corollary 9. Assume y is a nontrivial solution of the Hadamard fractional eigenvalue problem(HDα

ay)(t) + p(t)y(t) = 0, a < t < b,

y(a) = 0, ny(b) + p(HDα−1
a y)(b) = 0,

where y(t) , 0 for each t ∈ (a, b). Then,

|λ| >
ĀΓ(α)(

log b
a

)α [
n
(
log b

a

)α−1
+ pΓ(α)

] .
Theorem 5.2. Assume y is a nontrivial solution of the Hadamard fractional eigenvalue problem

(HDαy)(t) + λy(t) = 0, 1 < t < T,

(HI2−αy)(0) + (HI2−αy)(T ) = 0,
(HDα−1y)(0) + (HDα−1y)(T ) = 0,

(5.1)

where y(t) , 0 for each t ∈ (1,T ). Then,

|λ| >
4Γ(α)(α − 1)[

Γ(α − 1) − Γ(α − 1,− log T )
]
log T (3 − α)

.

Proof. From (4.13), we obtain ∫ T

1
(log s)α−2|λ|ds >

4Γ(α)
(3 − α) log T

,

or, equivalently,

|λ| >
4Γ(α)[

Γ(α − 1) − Γ(α − 1,− log T )
]
log T (3 − α)

.

This proves the result (5.2). The proof is complete. �

Now we will discuss the disconjugacy and disfocality for Hadamard fractional boundary value
problems (1.5), (3.29) and (3.31).

Definition 5.1. The Hadamard fractional boundary value problem (1.5) is disconjugate on [a, b] if and
only if each nontrivial solution has less than [α] + 1 zeros on [a, b].

Definition 5.2. The Hadamard fractional boundary value problem (3.29) is left disfocal on [a, b] if and
only if each nontrivial solution has less than [α] zeros on [a, b].

Definition 5.3. The Hadamard fractional boundary value problem (3.31) is right disfocal on [a, b] if
and only if each nontrivial solution has less than [α] zeros on [a, b].
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Using these definitions, we introduce non-existence criteria for non-trivial solutions as follows:

Theorem 5.3. The Hadamard fractional boundary value problem (1.5) is disconjugate if∫ b

a

∣∣∣q(s)
∣∣∣ds ≤

Γ(α)(4)α−1(
log b

a

)α−1 . (5.2)

Theorem 5.4. Assume that the assumptions of Theorem 5.3 are satisfied. Then, the Hadamard
fractional boundary value problem (1.5) has no non-trivial solution on [a, b].

Theorem 5.5. The Hadamard fractional boundary value problem (3.29) is left disfocal if∫ b

a

(
log

s
a

)α−2 ∣∣∣q(s)
∣∣∣ds ≤

Γ(α)
log b

a

. (5.3)

Theorem 5.6. Assume that the assumptions of Theorem 5.5 are satisfied. Then, the Hadamard
fractional boundary value problem (3.29) has no non-trivial solution on [a, b].

Theorem 5.7. The Hadamard fractional boundary value problem (3.31) is right disfocal if∫ b

a

∣∣∣q(s)
∣∣∣ds ≤

Γ(α)(
log b

a

)α−1 . (5.4)

Theorem 5.8. Assume that the assumptions of Theorem 5.7 are satisfied. Then, the Hadamard
fractional boundary value problem (3.31) has no non-trivia l solution on [a, b].

6. Conclusions

In this article, we considered Hadamard fractional boundary value problems associated with two
different types of boundary conditions-general and anti-periodic, and established Lyapunov-type
inequalities for the same. In this process, we derived a few important properties of the corresponding
Green’s functions. In the later part of the article, we illustrated the applicability of established results
through two applications. As the first application, we obtained lower bounds on the smallest
eigenvalues for the corresponding Hadamard fractional eigenvalue problems. For the second
application, we introduced the concepts of disconjugacy and disfocality and using which we obtained
non-existence criteria for non-trivial solutions of Hadamard fractional boundary value problems.
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