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Abstract: In this manuscript the fractional form of wind-influenced projectile motion equations
which have a significant place in physics is extensively investigated by preserving dimensionality
of the physical quantities for fractional operators and features of wind-influenced projectile motion
are computed analytically in view of Atangana-Baleanu (ABC) fractional derivative in Caputo sense.
Moreover, ABC fractional derivative with (n + α)th-order and its Laplace transform (LT) are obtained,
α ∈ [0, 1] and n ∈ N. A comparative analysis based on the classical case is carried out in order to shed
more light on the potent of the ABC fractional operator. Hence we present the results for some values
of α, k friction constant, different wind effects and different masses in 3D illustrations by comparing
Caputo fractional operator. Thus, we can observe trajectory, time of flight, maximum height and range
clearly. Moreover, the obtained results are shown to correspond to the classical case while the order
α→ 1.
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1. Introduction

The reason of increasing popularity of fractional calculus is the natural appearance of its
applications in diverse areas of applied sciences and engineering. Fractional differential equations
(FDEs) involving real or complex order derivatives have proven to be a useful tool in modelling
anomalous dynamics of various physical and biological processes. One of the most important tasks
for fractional operators is to apply them to real world phenomena and to see the differences between
them. Using real data, Diethelm in [1] has presented a Caputo fractional model for better
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understanding of the dynamics of a dengue fever outbreak. The authors in [2] have fractionalized a
model in Caputo sense to get better dynamics of TB virus using real data whereas the dynamics of
Ebola epidemic was better described in [3] using the Caputo fractional derivative. The fractional
equivalent of various standard physics such as Schrödinger, frictional force, wave equation, harmonic
oscillator, Dirac equation and projectile motion equation which all theoretical physics can be studied
in via fractional calculus [4]. Chaotic systems, random walk problems, polymer material science and
biophysics which are all applied physics and also be investigated by fractional calculus [5–13].
Furthermore, Bas et al., Yusuf et al. and Abdeljawad studied fractional derivatives in a different way
in [14–18].

In nature, numerous physical features possess an intrinsic fractional order types [19, 20], for this
reason fractional calculus has become so important instrument due to its efficiency in explaining real
world phenomena more accurately. Fractional calculus stipulates a potent instrument for controlling
memory and hereditary characteristics of several materials and processes [21]. This is one of the great
significance of fractional calculus when compared with the ordinary calculus, whereas such control
has no many effects. A lot of physical features have been analyzed via the concept of fractional
calculus, with a very much amelioration over their integer order counterparts as well as more effective
result when conferring with experimental data, i.e., in chemical, agricultural, biomedical, and also
from physical perspectives such as Hamiltonian formulation and Lagrangian [22, 23]. Owing to this
impressive usefulness of fractional calculus, a number of fractional operators have been proposed to
precisely model the memory effects dealing with variety of dynamical systems [24–27]. However,
more works need to be done to properly expound such dynamical systems. Riemann-Liouville and
Caputo are some of the well-known fractional derivatives with the limitations of kernels with the
singular structure. It can be easily seen that these derivatives can not properly depict the whole of
memory effect of a particular system. To expunge this deficit of kernel with singular nature, the
authors in [28, 29] introduced a fractional operator founded on the exponential and Mittag-Leffler
functions, and thus, their definitions do not contain kernel of singular nature.

In light of the significance of the ABC fractional operator in engineering, science and in depicting
the entire memory effect of the system, we feel motivated to investigate and analyze the projectile
motion equations by means of ABC fractional derivative. Authors in [30–36] also studied fractional
version of projectile motion. One of the most important problems in the field of physics is the projectile
motion in a resistant medium. Furthermore, interesting structures of the projectile motion under wind
effect are analyzed in [37].

It is known that the projectile motion has a movement with 2-dimension. Herein, we discuss such
associated wind-influenced projectile motion. Projectile motion can be regarded as the movement of
a launched object under gravitational force and symbols used are given by g with m/s2, mass m with
kg and unheeding any of the corresponding external or resisting force k with s−1. Surmising that the
particle begins at origin that is to say at (x0 = y0 = 0 m), containing initial velocity with an angle
φ, θ is the angle the wind makes with respect to the horizontal axis x, U m/s is the wind speed, and
modulus ν0 m/s , then, in xy-plane one can present the classical equations of wind-influenced projectile
motion [37] as

m
dvx

dt
= −k(vx − U cos θ), m

dvy

dt
= −mg − k(vy − U sin θ), (1.1)

with the initial velocities of the projectile

AIMS Mathematics Volume 5, Issue 1, 467–481.



469

ν0x = ν0 cos φ, (1.2)

ν0y = ν0 sin φ. (1.3)

The corresponding solutions of (1.1)-(1.2) and (1.1)-(1.3) can be presented as,

x (t) =
m
k

(v0x − U cos θ)
(
1 − e−

kt
m
)

+ (U cos θ)t, (1.4)

y (t) =
m
k

(
mg
k
− U sin θ + v0y)

(
1 − e−

kt
m
)
− (

mg
k
− U sin θ)t. (1.5)

The manuscript has been prepared as follows: In section 2, essential definitions, properties and
theorems associated with ABC fractional operator are presented. In section 3, (n + α)th-order ABC
operator is identified and its Laplace transform (LT) is proved for solving higher order linear initial
value problems with Mittag-Leffler kernel when α ∈ [0, 1] and n ∈ N. In section 4, we present some
numerical results and compare obtained results with ABC and Caputo fractional derivatives for
different values of α and k friction coefficients, different wind effects and different masses in 3D
illustration. Finally, some conclusion comments are given in section 5.

2. Preliminaries

In here we provide some important definitions, properties and theorems that will serve as a tool to
the main results of the manuscript.

Definition 2.1. [38] The Atangana-Baleanu left and right fractional derivatives in Caputo form
involving Mittag-Leffler function are given by

ABC
aDα f (t) =

B(α)
1 − α

∫ t

a
f ′(s)Eα

(
−α

1 − α
(t − s)α

)
ds, (2.1)

ABCDα
b f (t) =

−B(α)
1 − α

∫ b

t
f ′(s)Eα

(
−α

1 − α
(s − t)α

)
ds, (2.2)

where f ∈ H1(a, b), a < b, α ∈ [0, 1] and B(α) is a normalization function that satisfy B(α) > 0,
B(0) = B(1) = 1.

Theorem 2.1. [38] ABC derivative has the following LT, 0 < α ≤ 1,

L{ABC
aDα f (t)}(s) =

B(α)
1 − α

sαL{ f (t)}(s) − sα−1 f (a)
sα + α

1−α

. (2.3)

Definition 2.2. [39] Mittag-Leffler function is expressed as

Eα(x) =

∞∑
k=0

xk

Γ(αk + 1)
, α > 0, (2.4)

Eα,β(x) =

∞∑
k=0

xk

Γ(αk + β)
, α, β > 0. (2.5)
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Definition 2.3. [39] For α ∈ [n − 1, n), the Caputo fractional derivative is defined as

C
a Dα( f )(t) =

1
Γ(n − α)

∫ t

0

[
f (n)(x)

(t − x)α−n+1

]
dx. (2.6)

Theorem 2.2. [40] The Laplace transform of Caputo fractional derivative is given by

L{C0 Dα
t f (t)} = sα f (s) −

n−1∑
k=0

sα−k−1 f (k)(0).

Definition 2.4. [40] Let f , g : [0,∞)→ R and their convolution can be expressed as

( f ∗ g)(t) =

∫ t

0
f (s)g(t − s)ds. (2.7)

Property 2.1. [40] The LT has the following property,

L{( f ∗ g)(t)} = L{ f (t)}L{g(t)}. (2.8)

Property 2.2. [40] The inverse LT of some specific functions as below:

i) L−1

{
sα

s(sα+a)

}
= Eα(−atα).

ii) L−1

{
a

s(sα+a)

}
= 1 − Eα(−atα).

iii) L−1

{
1

(sα+a)

}
= tα−1Eα,α(−atα).

3. Main results

In this portion, the main findings and results of the paper such as definition of ABC fractional
derivative with (n+α)th-order and its corresponding Laplace transform, projectile motion in a resistant
medium with ABC fractional derivative will be presented.

Definition 3.1. Let 0 < α ≤ 1, the definition of ABC fractional derivative with (n+α)th-order is defined
as following formula

ABC
aD(α+n) f (t) =

B(α)
1 − α

∫ t

a
f (n+1)(s)Eα

[
−α

1 − α
(t − s)α

]
ds, 0 < α ≤ 1, n ∈ N. (3.1)

Theorem 3.1. If f(t) satisfies equation (3.1), then the LT of (3.1) is as following equality,

L{ABC
aD(α+n) f (t)}(s) =

B(α)
1 − α

[sn+1L{ f (t)} −
∑n

k=0 sα+n−k−1 f (k)(a)]
sα + α

1−α

. (3.2)
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Proof. Let 0 < α ≤ 1, taking the LT of both sides of (3.1) and performing necessary operations,

L{ABC
aD(α+n) f (t)} =

B(α)
1 − α

L{ f (n+1)(t)}L
{

Eα

(
−α

1 − α
tα
)}

=
B(α)
1 − α

[
sn+1L{ f (t)} − sn f (a) − sn−1 f (a) − · · · − f (n)(a)

]
sα−1

sα + α
1−α

=
B(α)
1 − α

[sn+αL{ f (t)} −
∑n

k=0 sα+n−k−1 f (k)(a)]
sα + α

1−α

, (3.3)

thus, last equation is obtained and this completes the proof. �

3.1. Wind-influenced fractional projectile motion with Mittag-Leffler kernel

There exist some resistances from the practical point of view whose effects can be modelled with
fractional operators and a drag force. To this aim, we utilize ABC fractional operator to model
projectile motion equations under wind effect. We consequently obtain some novel exact expressions
for this equation.

At first, let us give the fractional form of ordinary derivative

d
dt
→ K1−α ABC

aDα, (3.4)

where K is a dimension (s−1). Starting from this, we can give the fractional version of (1.1) in the ABC
sense

mK1−α ABC
aDαvx (t) = −k(vx(t) − U cos θ) (3.5)

mK1−α ABC
aDαvy (t) = −k(vy(t) − U sin θ) − mg (3.6)

with the initial conditions
ν0x = ν0 cos φ (3.7)

ν0y = ν0 sin φ (3.8)

Taking the LT of both sides of (3.5), we have

L{mK1−α ABC
aDαvx (t)} = L{−k(vx(t) − U cos θ)}, (3.9)

thus one can attain

mK1−α B(α)
1 − α

sαL{vx(t)} − sα−1vx (0)
sα + α

1−α

= L{−k(vx(t) − U cos θ)}, (3.10)

and this yields

νx (t) =
B (α) mK1−αν0 cos φ + kU cos θ (1 − α)

B (α) mK1−α + k (1 − α)
Eα

(
−kα

B (α) mK1−α + k (1 − α)
tα
)

(3.11)

+U cos θ
(
1 − Eα

(
−kα

B (α) mK1−α + k (1 − α)
tα
))
,
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where B(α) is a normalization constant such that B(0) = B(1) = 1. If we use formula (3.2), we have

x (t) =
B (α) mK1−αν0 cos φ + kU cos θ (1 − α)

B (α) mK1−α + k (1 − α)
tEα,2

(
−kα

B (α) mK1−α + k (1 − α)
tα
)

(3.12)

+Ut cos θ
(
1 − Eα,2

(
−kα

B (α) mK1−α + k (1 − α)
tα
))
.

Performing similar operations to the equation (3.6), we have

vy (t) =
B (α) mK1−αν0 sin φ + (kU sin θ − mg) (1 − α)

B (α) mK1−α + k (1 − α)
Eα

(
−kα

B (α) mK1−α + k (1 − α)
tα
)

(3.13)

+
(kU sin θ − mg)

k

(
1 − Eα

(
−kα

B (α) mK1−α + k (1 − α)
tα
))
.

y (t) =
B (α) mK1−αν0 sin φ + (kU sin θ − mg) (1 − α)

B (α) mK1−α + k (1 − α)
tEα,2

(
−kα

B (α) mK1−α + k (1 − α)
tα
)

(3.14)

+
(kU sin θ − mg) t

k

(
1 − Eα,2

(
−kα

B (α) mK1−α + k (1 − α)
tα
))
.

Note that the results obtained above (1.4) can be found for all classical cases while the order α→ 1.
Moreover one can obtain flight time T from y(T ) = 0,

y (T ) =
B (α) mK1−αν0 sin φ + (kU sin θ − mg) (1 − α)

B (α) mK1−α + k (1 − α)
T Eα,2

(
−kα

B (α) mK1−α + k (1 − α)
Tα

)
+

(kU sin θ − mg) T
k

(
1 − Eα,2

(
−kα

B (α) mK1−α + k (1 − α)
Tα

))
= 0.

We can calculate it for approximate value of Mittag-Leffler function

B (α) mK1−αν0 sin φ + (kU sin θ − mg) (1 − α)
B (α) mK1−α + k (1 − α)

T
∞∑

i=0

(
−kα

B(α)mK1−α+k(1−α)T
α
)i

Γ[iα + 2]

+
(kU sin θ − mg) T

k

1 − ∞∑
i=0

(
−kα

B(α)mK1−α+k(1−α)T
α
)i

Γ[iα + 2]

 = 0,

from here similarly range R can be calculated from x(T ) = R for the approximate value of Mittag-
Leffler function.

3.2. Wind-influenced fractional projectile motion with singular kernel

Now, let’s apply Caputo fractional operator to model projectile motion equations under wind effect.

mK1−αC
a

Dαvy (t) = −k(vy(t) − U sin θ) − mg, (3.15)
mK1−αC

a
Dαvx (t) = −k(vx(t) − U cos θ). (3.16)
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Taking the LT of both sides of (3.15) and (3.16) with the initial conditions (3.7)-(3.8) by Theorem (2.2),
and subsequently applying inverse LT we have vertical and horizontal displacements and velocities

νx (t) = ν0 cos φEα

(
−k

mK1−α tα
)

+ U cos θ
(
1 − Eα

(
−k

mK1−α tα
))
, (3.17)

x (t) = ν0t cos φEα,2

(
−k

mK1−α tα
)

+ Ut cos θ
(
1 − Eα,2

(
−k

mK1−α tα
))
, (3.18)

νy (t) = ν0 sin φEα

(
−k

mK1−α tα
)

+
kU sin θ − mg

k

(
1 − Eα

(
−k

mK1−α tα
))
, (3.19)

y (t) = ν0t sin φEα,2

(
−k

mK1−α tα
)

+
kU sin θ − mg

k
t
(
1 − Eα,2

(
−k

mK1−α tα
))
. (3.20)

Following the same procedure for wind-influenced projectile motion with ABC fractional derivative,we
can find range and time of flight for the equations (3.15) and (3.16).

Note that, from the above obtained results, the results for classical cases represented in Eqs. (1.4)
and (1.5) can be obtained for the projectile motion in resistive medium by taking limit α→ 1.

4. Numerical discussion

In the portion, we provide the physical features and performances of the underlying wind-influenced
projectile equations involving ABC and Caputo fractional operators. We suppose K = k and B(α) = 1
in our results. We illustrate the governing wind-influenced projectile motion equation with fractional
ABC derivative with the order (α+ 1) and under different α orders, different initial velocities, different
air drags, different wind effects and different angles in 3-D figures. θ is the angle the wind makes with
respect to the horizontal axis x, U m/s is the wind speed, U = 0 shows no-wind position, and t is the
time (second).

U=0 θ=
π

6
θ=

π

4
θ=

π

2

Figure 1. Comparative analysis of
projectile motion under different
wind angles, ν0 = 22m/s, k =

0.01s−1,m = 0.01kg, g =

9.8m/s2, φ = π
4 ,U = 5m/s, α = 0.9.

U=0 θ=
5π

12
θ=

5π

6

Figure 2. Comparative analysis of
projectile motion under different
wind angles, ν0 = 22m/s, k =

0.01s−1,m = 0.01kg, g =

9.8m/s2, φ = π
4 ,U = 5m/s, α = 0.9.
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U=0 θ=
5π

12
θ=

7π

6

Figure 3. Comparative analysis of
projectile motion under different
wind angles, ν0 = 22m/s, k =

0.01s−1,m = 0.01kg, g =

9.8m/s2, φ = π
4 ,U = 5m/s, α = 0.9.

U=0 θ=
5π

12
θ=

33π

18

Figure 4. Comparative analysis of
projectile motion under different
wind angles, ν0 = 22m/s, k =

0.01s−1,m = 0.01kg, g =

9.8m/s2, φ = π
4 ,U = 5m/s, α = 0.9.

α=0.85 α=0.9 α=0.95 α=0.98 α=1.0

Figure 5. Comparative analysis of
wind-influenced projectile motion
under different fractional orders,
ν0 = 22m/s, k = 0.01s−1,m =

0.01kg, g = 9.8m/s2, φ = π
6 , θ =

π
3 ,U = 5m/s.

φ= π

6
φ= π

4
φ= π

3
φ= π

2

Figure 6. Comparative analysis of
wind-influenced projectile motion
under different launch angles,
ν0 = 22m/s, k = 0.01s−1,m =

0.01kg, g = 9.8m/s2, θ = π
3 ,U =

5m/s.
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α=0.85 α=0.9 α=0.95 α=0.99 α=1

0.0 0.5 1.0 1.5 2.0 2.5 3.0
t

2

4

6

8

10

y(t)

Figure 7. Comparative analysis
of wind-influenced projectile
motion for vertical displacement
under different fractional orders,
ν0 = 22m/s, k = 0.01s−1,m =

0.045kg, g = 9.8m/s2, φ = π
4 , θ =

π
3 ,U = 2m/s.

ν0=10 ν0=15 ν0=20 ν0=25

0.0 0.5 1.0 1.5
t

1

2

3

4

5
y(t)

Figure 8. Comparative analysis of
wind-influenced projectile motion
for vertical displacement under
different launch velocities, α =

0.85, k = 0.01s−1,m = 0.045kg, g =

9.8m/s2, φ = π
4 , θ = π

3 ,U = 2m/s.

k=0.001 k=0.005 k=0.009

0.0 0.2 0.4 0.6 0.8 1.0 1.2
t

0.5

1.0

1.5

2.0

2.5

3.0
y(t)

Figure 9. Comparative analysis
of wind-influenced projectile
motion for vertical displacement
under different drag forces, α =

0.85, ν0 = 20m/s,m = 0.045kg, g =

9.8m/s2, φ = π
4 , θ = π

3 ,U = 2m/s.

U=0 U=4 U=8

Figure 10. Comparative analysis of
wind-influenced projectile motion
under different wind speeds, α =

0.9, ν0 = 22m/s,m = 0.01kg, k =

0.01s−1, g = 9.8m/s2, φ = π
4 , θ =

33π
18 .
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U=0 U=2 U=4 U=6

Figure 11. Comparative analysis of
wind-influenced projectile motion
under different wind speeds, α =

0.9, ν0 = 22m/s,m = 0.01kg, k =

0.01s−1, g = 9.8m/s2, φ = π
4 , θ = 7π

6 .

U=0 U=2 U=4 U=6

Figure 12. Comparative analysis of
wind-influenced projectile motion
under different wind speeds, α =

0.9, ν0 = 22m/s,m = 0.01kg, k =

0.01s−1, g = 9.8m/s2, φ = π
4 , θ = 5π

6 .

U=0 U=2 U=4 U=6

Figure 13. Comparative analysis of
wind-influenced projectile motion
under different wind speeds, α =

0.9, ν0 = 22m/s,m = 0.01kg, k =

0.01s−1, g = 9.8m/s2, φ = π
4 , θ = π

6 .

m=0.01 m=0.015 m=0.02

Figure 14. Comparative analysis
of wind-influenced projectile
motion under different masses, α =

0.9, ν0 = 22m/s, k = 0.01s−1, g =

9.8m/s2, φ = π
4 , θ = π

6 ,U = 2m/s.
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k=0.01 k=0.02 k=0.03

Figure 15. Comparative analysis of
wind-influenced projectile motion
under different drag forces α =

0.9, ν0 = 22m/s,m = 0.01kg, g =

9.8m/s2, φ = π
4 , θ = π

6 ,U = 2m/s.

Caputo Classical ABC

Figure 16. Comparative analysis
of wind-influenced projectile
motion with ABC, classical and
Caputo fractional derivatives α =

0.9, ν0 = 22m/s,m = 0.01kg, g =

9.8m/s2, φ = π
4 , θ = π

3 ,U = 5m/s.

ABC Classical Caputo

Figure 17. Comparative analysis
of wind-influenced projectile
motion with ABC, classical and
Caputo fractional derivatives α =

0.95, ν0 = 22m/s,m = 0.01kg, g =

9.8m/s2, φ = π
4 , θ = π

3 ,U = 5m/s.

ABC Classical Caputo

Figure 18. Comparative analysis
of wind-influenced projectile
motion with ABC, classical and
Caputo fractional derivatives α =

0.99, ν0 = 22m/s,m = 0.01kg, g =

9.8m/s2, φ = π
4 , θ = π

3 ,U = 5m/s.
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5. Conclusions

We have studied wind-influenced projectile motion via ABC fractional derivative and have
presented projectile motion equations in wind influenced medium with the aid of Laplace transform
of ABC fractional operator. Due to the advantages of ABC fractional derivative, we have used this
fractional derivative for wind-influenced projectile motion with air drag. It is well-known that
preserving the dimensionality in physical quantities has so significance and so it has been preserved in
this study. Moreover, we have expressed (n + α)th-order ABC fractional derivative and demonstrate
its Laplace transform. The attained results via fractional operators are close with that of the classical
versions. We illustrate wind-influenced projectile motion with ABC-fractional derivative under
different wind effects, different angles, different orders, different velocities, different masses and air
drags in 3-D figures.

From Figure 7 and Figure 5, it is evident that the fractional parameter α serves as the resisting
parameter and resistivity of the medium varies inversely with the increasing values of the fractional
parameter, so for small value of alpha height as well as the range of the projectile is least.

• Figure 1 shows the effect of tailwind on the projectile motion under different wind angles between
[0, π2 ] and so the particle moves forward. We observe that if the wind effects with θ = π

4 , range
will be maximum and if the wind effects with θ = π

2 , range will be minimum relative to the other
wind effects and it will reach to maximum height.
• Figures 2 and 3 show the effect of headwind on the projectile motion under different wind angles

between (π2 ,
3π
2 ). We observe that if the wind effects with θ = 5π

6 , the particle moves backward,
and max-height increases. If the wind effects with θ = 7π

6 , the particle moves backward, and
max-height decreases.
• Figure 4 shows the effect of headwind on the projectile motion under different wind angles

between (3π
2 , 2π) and so the particle moves forward. We observe that if the wind effects with

θ = 33π
18 , range decreases and max-height decreases.

• Figure 5 shows the effect of headwind on the projectile motion under different fractional orders
with θ = π

3 , so the particle moves forward and max-height increases as the order increases. If the
wind angle was headwind, then it would move backward.
• Figure 6 shows the effect of headwind on the projectile motion under different launch angles. We

observe that time of flight and max-height increase as the angle increases. The particle reaches
max range in φ = π

4 and reaches max-height in φ = π
2 .

• Figures 7, 8, 9 show the effect of headwind on the projectile motion under different orders, launch
velocities and masses for vertical displacement.
• Figure 10 shows the effect of tailwind on the projectile motion under different wind speeds while
θ = 33π

18 , so the particle moves forward and max-height decreases as the velocity increases.
• Figure 11 shows the effect of headwind on the projectile motion under different wind speeds while
θ = 7π

6 , so the particle moves backward and max-height decreases as the velocity increases.
• Figure 12 shows the effect of headwind on the projectile motion under different wind speeds while
θ = 5π

6 , so the particle moves backward and max-height increases as the velocity increases.
• Figure 13 shows the effect of tailwind on the projectile motion under different wind speeds while
θ = π

6 , so the particle moves forward and max-height increases as the velocity increases.
• Figure 14 shows the effect of mass on the projectile motion while θ = π

6 , φ = π
4 , and we observe

AIMS Mathematics Volume 5, Issue 1, 467–481.
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that the particle moves forward, max-height increases as the mass increases.
• Figure 15 shows the effect of drag force on the projectile motion while θ = π

6 , φ = π
4 , and we

observe that range and max-height increase as drag force decreases.
• Figures 16, 17, and 18 show the comparison of wind-influenced projectile motion with ABC,

Caputo and classical cases while α → 1, and trajectories obtained by ABC and Caputo tend to
converge to the trajectories by classical derivatives as α→ 1.
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